Global Optimization with Non-Convex Constraints

Sequential and Parallel Algorithms

by

Roman G. Strongin

Nizhni Novgorod State University, Nizhni Novgorod, Russia

and

Yaroslav D. Sergeyev

Institute of Systems Analysis and Information Technology, University of Calabria, Rende, Italy and Nizhni Novgorod State University, Nizhni Novgorod, Russia

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

CONTENTS

PR	EFA	CE	xvii
AC	KNO	OWLEDGEMENTS	xxvii
Par	PR BA	GORITHMS AS DECISION OCEDURES. THEORETICAL CKGROUND AND CORE UNIVARIATE	
	CA	SE	1
1	INT	TRODUCTION	3
	1.1	Optimization Problems and Search Techniques	3
	1.2	A priori Information and Estimates for an Optimum	10
		Role of a priori Information	10
		Unimodality and Local Improvements	11
		Multimodality and Adaptation of Local Techniques	13
		A priori Information and Expansion in Standard Problems	17
		Lipschitz Continuity Assumptions and Global Op- timality	19
		Objective Function as a Sample of some Random Function	25
	1.3	Decision Rules as Minimax Optimal Strategies	28
		Minimax Approach	29
		One-step Optimality Principle	33

	1.4	Information-Statistical Approach and Average Optimality	35
	1.5	Problem of Dimensionality and Reduction to One Dimension	40
		Exponential Growth of the Grid Technique Complexity with the Increase of Dimensionality	40
		Increasing Complexity of Building Effective Grids in Many Dimensions	41
		Reduction to One Dimension	4 4
	1.6	Constraints and Reduction to Unconstrained Case without Penalties	47
		Optimality and Constraints	47
		Partial Computability of Problem Functionals	49
		Indexes and Compatibility of Constraints	50
		Reduction to the Unconstrained Case	50
2	\mathbf{AS}	OBAL OPTIMIZATION ALGORITHMS STATISTICAL DECISION PROCEDURES HE INFORMATION APPROACH	53
	2.1	Estimates for the Global Optimum Based on a Stochastic	
		Description of the Problem	53
		A priori Description and Estimates	53
		Model for Outcomes of Trials	55
		A posteriori Estimates for the Global Optimizer	57
		Estimates for the Case of Error-Free Observa- tions	59
	2.2	Approximate Stochastic Estimators for the Global Optimizer	62
		Simplified Estimators for the Global Optimizer	62
		Sufficient Conditions for Approximation	64
		Particular Stochastic Model	67
		Bayesian Estimates for Error-Free Observations	70
		Bayesian Estimates for Observations Corrupted	
		by Gaussian Errors	74

ix

	2.3	Decision and Termination Rules for Error-Free Obser-	
		vations	78
		Forecasting Outcomes of Trials	78
		One-Step Optimal Decisions	82
		Termination Rule and the Search Algorithm	84
		Randomized Strategies	85
	2.4	Decision Rules for Observations Corrupted by additive	
		Non-Biased Gaussian Errors	90
		Forecasting Outcomes of Noise-Corrupted Trials	90
		Decision Rule and Convergence Study	93
		Numerical Simulation of Search in the Presence of Noise	98
	2.5	Estimations and Decisions in Problems of Equation	
		Solving	106
		Stochastic Model and Bayesian Estimates for a	
		Root of an Equation	106
		Decision Rule and Convergence Study	113
		Root Search Algorithms	121
3	CO	RE GLOBAL SEARCH ALGORITHM	
	AN	D CONVERGENCE STUDY	127
	3.1	Global Search Algorithm	127
	3.2	Convergence Conditions	133
		Lipschitzian Case	133
		Discontinuous Case	138
		Smoothing Global Search Algorithm	144
	3.3	Rate of Convergence	149
		Density of Trials	149
		Sequence Structures in the Ranges of Function	
		Linearity	151
		Comparison with the Grid Technique in Ranges	
		of Function Linearity	160
	3.4		162
	3.5	Monotonous Convergence	170
		Monotonous and Nearly Monotonous Convergence	170

Bounding Procedures

Lipschitz Constant

Algorithm Using the Exact A Priori Given Global

270

274

		Algorithm Adaptively Estimating the Global Lipsch	itz
		Constant During the Search	274
		Algorithm Adaptively Estimating the Local Lipschi	tz
		Constants	277
		Convergence Conditions	278
		Numerical Examples	284
	4.5	Local Tuning and the Relationship between the Information and Geometric Approaches	288
		Convergence Conditions and Numerical Examples	291
	4.6	Fast Finding the First Root of an Equation by the	
		Methods Using Smooth Bounding Procedures	295
		Filters as an Example of Applications Where the	
		Problem Arises	298
		Description of the Algorithms	302
		Convergence Analysis	309
		Numerical Experiments	312
D	TT-	CENEDALIZATIONS FOR	
Pai		wo GENERALIZATIONS FOR RALLEL COMPUTING, CONSTRAINED	
		D MULTIPLE CRITERIA PROBLEMS	317
	AIV	D MODITI LE CITTERIA PROBLEMS	317
5	PA	RALLEL GLOBAL OPTIMIZATION	
	\mathbf{AL}	GORITHMS AND EVALUATION OF THE	
	\mathbf{EF}	FICIENCY OF PARALLELISM	319
	5.1	From Fast Sequential Methods towards Non-Redundant	
		Parallel Algorithms	319
	5.2	Information Algorithm with Parallel Trials	324
		Decision Rules of the Information Algorithm with	
		Parallel Trials	325
		Convergence Conditions	328
		Estimates of the Efficiency of Parallelism	332
	5.3	Parallel Method for Solving Problems with the Ob-	
		jective Functions Satisfying a Generalized Lipschitz	
		Condition	343
		Decision Rules of the Method	344

		Convergence Conditions of the Parallel Algorithm	34
		Efficiency Evaluation	352
		Numerical Examples	359
	5.4	Parallel Algorithm for Solving Problems with Lipschitz	
		Derivatives	360
		Description of the Algorithm	361
		Convergence Conditions	363
		Efficiency of Parallelization	368
		Numerical Examples	375
6		OBAL OPTIMIZATION UNDER	
		ON-CONVEX CONSTRAINTS - THE	
	IN	DEX APPROACH	379
	6.1	Problems with Partially Defined Objective Function	0=0
		and Constraints	379
	6.2	Reduction to Core Unconstrained Problem	382
	6.3	Index Method of Global Optimization	385
	6.4	Convergence Conditions	391
	6.5	ε -Reserved Solutions and Acceleration of Search	396
		ε -Reserved Solutions and Convergence Properties	396
		Reserves and the Rate of Convergence	403
		Index Method with Adaptive Reserves	405
	6.6	Local Tuning for Solving Problems with Non-Convex Constraints	409
		Description of the Algorithm	410
		Sufficient Conditions of Global Convergence	413
		Numerical Experiments	415
7		GORITHMS FOR MULTIPLE CRITERIA JLTIEXTREMAL PROBLEMS	419
	7.1	Multiobjective Optimization and Scalarization Tech-	
		niques	419
		Statement of the Problem	419
		Scalarization Technique	421

	7.2 7.3	Global Search Algorithm for Multicriteria Problems Multiple Criteria Problems with Non-Convex Constraints	424 431
Par		aree GLOBAL OPTIMIZATION IN NY DIMENSIONS. GENERALIZATIONS ROUGH PEANO CURVES	443
8		ANO-TYPE SPACE-FILLING CURVES AS	
	ME	ANS FOR MULTIVARIATE PROBLEMS	445
	8.1	Peano Curves and Multidimensional Global Optimiz-	
		ation	445
		Space-Filling Curves and Reduction of Dimensionality	445
		Algorithm for Unconstrained Global Search in	
		Many Dimensions	453
		Local Refinement of the Best Current Estimates	461
		Optimization over the Cube with Cavities Built of Subcubes	463
		Search for the Global Minimizer Yielding the Known Optimal Value	464
	8.2	Approximations to Peano Curves	467
		Adjacent Subcubes	467
		Numeration in the First Partition	468
		Numeration in the Second Partition	471
		Linking Numerations in Subsequent Partitions	475
		Approximation by Centers of the M th Partition Subcubes	484
		Piecewise-Linear Approximations to Peano	
		Curves	485
		Peano Curves Versus Spirals and TV Evolvents	490
		Non-Univalent Peano-like Evolvents	492
		Standard Routines for Computing Approxima-	
		tions to Peano Curves	499
	8.3	Index Scheme for Multidimensional Constrained Prob-	
		lems	511

		Reduction to One Dimension	511
		Multivariate Index Method	513
		Convergence Conditions	523
	8.4	Multicriteria Scheme in Many Dimensions	531
	8.5	Peano Curves and Local Tuning for Solving Multidimensional Problems	541
9	ΜU	JLTIDIMENSIONAL PARALLEL	
	\mathbf{AL}	GORITHMS	551
	9.1	Parallel Multidimensional Information Algorithm	552
	9.2	Parallel Multidimensional Information Algorithm with Adaptive Local Tuning	558
	9.3		566
		Class of Parallel Characteristic Global Optimization Algorithms	566
		Convergence of Parallel Characteristic	
		Algorithms	569
		Conditions of Non-Redundant Parallelization	580
		Numerical Examples	586
	9.4	Parallel Asynchronous Global Search and the Nested Öptimization Scheme	590
		Nested Optimization Scheme and Parallel Computations	590
		Asynchronous Parallel Algorithm for Univariate Global Optimization Problems	595
		Convergence and Non-Redundancy Conditions	597
		Numerical Examples	604
10		JLTIPLE PEANO SCANNINGS AND	
	ΜŪ	JLTIDIMENSIONAL PROBLEMS	611
	10.1	Metric Properties in One and Many Dimensions: Multiple Shifted Scannings	611
		Reduction to One Dimension and Retaining the Property of Nearness	611
		Multiple Scanning	613
			323

Metric Properties of Multiple Scannings	616
10.2 Algorithm for Global Multidimensional Constrained	
Problems Employing Multiple Scannings	621
Index Method with Multiple Scannings	621
Convergence Properties	627
10.3 Implementation of Global Optimization Schemes with Multiple Scannings on Multiprocessor Systems	633
Reduction to a Family of Linked Univariate Prob-	
lems	633
Parallel Scheme and Search Algorithm	635
Convergence Conditions	642
REFERENCES	651
LIST OF ALGORITHMS	679
LIST OF FIGURES	683
LIST OF TABLES	693
INDEX	697