
GLOBAL OPTIMIZATION WITH POLYNOMIALS AND THE
PROBLEM OF MOMENTS∗

JEAN B. LASSERRE†

SIAM J. OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 11, No. 3, pp. 796–817

Abstract. We consider the problem of finding the unconstrained global minimum of a real-
valued polynomial p(x) : Rn

→ R, as well as the global minimum of p(x), in a compact set K defined
by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence
of convex linear matrix inequality (LMI) problems. A notion of Karush–Kuhn–Tucker polynomials
is introduced in a global optimality condition. Some illustrative examples are provided.
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1. Introduction. Given a real-valued polynomial p(x) : Rn → R, we are inter-
ested in solving the problem

P 7→ p∗ := min
x∈Rn

p(x),(1.1)

that is, finding the global minimum p∗ of p(x) and, if possible, a global minimizer x∗.
We are also interested in solving

PK 7→ p∗K := min
x∈K

p(x),(1.2)

where K is a (not necessarily convex) compact set defined by polynomial inequalities
gi(x) ≥ 0, i = 1, . . . , r, which includes many applications of interest and standard
problems like quadratic, linear, and 0-1 programming as particular cases.

In the one-dimensional case, that is, when n = 1, Shor [17] first showed that
(1.1) reduces to a convex problem. Next, Nesterov [13], invoking a well-known rep-
resentation of nonnegative polynomials as a sum of squares of polynomials, provided
a self-concordant barrier for the cone K2n of nonnegative univariate polynomials so
that efficient interior point algorithms are available to compute a global minimum.

However, the multivariate case radically differs from the one-dimensional case, for
not every nonnegative polynomial can be written as a sum of squares of polynomials.
Even more, as mentioned in Nesterov [13], the global unconstrained minimization of a
4-degree polynomial is an NP-hard problem. Via successive changes of variables, Shor
[18] (see also Ferrier [5]) proposed to transform (1.2) into a quadratic, quadratically
constrained optimization problem and then solve a standard convex linear matrix
inequality (LMI) relaxation to obtain good lower bounds. By adding redundant
quadratic constraints one may improve the lower bound and sometimes obtain the
optimal value.

In this paper, we will show that the global unconstrained minimization (1.1) of
a polynomial can be approximated as closely as desired (and often can be obtained
exactly) by solving a finite sequence of convex LMI optimization problems of the
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same flavor as in the one-dimensional case. A similar conclusion also holds for the
constrained optimization problem PK in (1.2), when K is a compact set, not neces-
sarily convex, defined by polynomial inequalities. The difference between nonnegative
and strictly positive polynomials is the reason why, in some cases, only an asymp-
totic result is possible. Indeed, for the latter, several representations in terms of
weighted sums of squares are always possible, whereas few results are known for the
former. However, from a numerical point of view, the distinction is irrelevant. In the
constrained case, the nonnegative squared polynomials in the representation of the
polynomial p(x)−p∗K can be interpreted as generalized Karush–Kuhn–Tucker multipli-
ers whose value at a global minimizer are precisely the original Karush–Kuhn–Tucker
scalar multipliers. This representation of nonnegative polynomials thus provides a
natural optimality condition for global optimality.

When the optimal value is obtained at a particular LMI relaxation, the con-
strained global optimization problem thus has a natural “primal” LMI formulation,
whose optimal solution provides a global minimizer, whereas an optimal solution of
the dual LMI problem provides the Karush–Kuhn–Tucker polynomial multipliers in a
representation of p(x) − p∗K . Hence, the primal and dual LMI formulations perfectly
match both sides of the same theory (moments and positive polynomials).

This approach is also valid for handling combinatorial problems, e.g., 0-1 program-
ming problems, since the integrality constraint xi ∈ {0, 1} can be written x2

i − xi ≥ 0
and xi − x2

i ≥ 0. An elementary illustrative example is provided. We finally consider
the general convex quadratic, quadratically constrained problem and provide a nat-
ural exact LMI formulation for both primal and dual problems (the Shor relaxation
and its dual). The standard linear programming problem also appears as a particular
case.

In [13], for the univariate case, the idea was to characterize the nonnegative
polynomial p(x) − p∗ as a sum of squares. However, we will adopt a dual point of
view. Namely, we replace P and PK with the equivalent problems

P 7→ p∗ := min
µ∈P(Rn)

∫

p(x)µ(dx)(1.3)

and

PK 7→ p∗ := min
µ∈P(K)

∫

p(x)µ(dx),(1.4)

respectively, where P(Rn) (respectively, P(K)) is the space of finite Borel signed
measures on Rn (respectively, on K). That P is equivalent to P is trivial. Indeed,
as p(x) ≥ p∗, then

∫

pdµ ≥ p∗ and thus inf P ≥ p∗. Conversely, if x∗ is a global
minimizer of P, then the probability measure µ∗ := δx∗ (the Dirac at x∗) is admissible
for P. We then observe that if p is a polynomial of degree, say m, the criterion to
minimize is a linear criterion a′y on the finite collection of moments {yα}, up to order
m, of the probability measure µ. We can then in turn replace P (respectively, PK)
with an optimization problem on the yα variables with the constraint that the yα’s
must be moments of some probability measure µ. The theory of moments provides
adequate conditions on the yα variables. It has been known for a long time that the
theory of moments is strongly related to—and in fact, in duality with—the theory of
nonnegative polynomials and Hilbert’s 17th problem on the representation of nonneg-
ative polynomials. For the historical development and recent results on the theory
of moments, the interested reader is referred to Berg [1], Curto and Fialkow [2], [3],
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Jacobi [8], Putinar [15], Putinar and Vasilescu [14], Simon [19], Schmüdgen [16], and
references therein.

The paper is organized as follows. We introduce the notation and some prelim-
inary results in section 2. The unconstrained case is treated in section 3 and the
constrained case (1.2) in section 4. Some elementary as well as nontrivial examples
are presented for illustration. In the last section we show that when p(x) − p∗K is a
weighted sum of squares, then the squared polynomials can be interpreted as general-
ized Karush–Kuhn–Tucker multipliers. The convex quadratic case is also investigated.

2. Notation and preliminary results. Let

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x2x3, . . . , x

2
n, . . . , x

m
1 , . . . , xm

n(2.1)

be a basis for the m-degree real-valued polynomials p(x) : Rn → R, and let s(2m)
be its dimension. We adopt the following standard notation. If p(x) : Rn → R is an
m-degree polynomial, write

p(x) =
∑

α

pαx
α with xα := xα1

1 xα2

2 · · ·xαn

n and
∑

i

αi ≤ m,(2.2)

where p = {pα} ∈ Rs(m) is the coefficient vector of p(x) in the basis (2.1). When
needed, a polynomial of degree m can be considered as a polynomial of higher degree,
say r, with coefficient vector p ∈ Rs(r), where the coefficients of monomials of degree
higher than m are set to zero.

Given an s(2m)-vector y := {yα} with first element y0,...,0 = 1, let Mm(y) be
the moment matrix of dimension s(m), with rows and columns labeled by (2.1). For
instance, for illustration and clarity of exposition, consider the two-dimensional case.
The moment matrix Mm(y) is the block matrix {Mi,j(y)}0≤i,j≤2m defined by

Mi,j(y) =









yi+j,0 yi+j−1,1 . . . yi,j
yi+j−1,1 yi+j−2,2 . . . yi−1,j+1

. . . . . . . . . . . .
yj,i yi+j−1,1 . . . y0,i+j









,(2.3)

where yi,j represents the (i + j)-order moment
∫

xiyj µ(d(x, y)) for some probability
measure µ. To fix ideas, when n = 2 and m = 2, one obtains

M2(y) =

























1 | y1,0 y0,1 | y2,0 y1,1 y0,2

− − − − − − −
y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2

y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2

y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3

y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4

























.

For the three-dimensional case, Mm(y) is defined via blocks {Mi,j,k(y)}, 0 ≤ i, j, l ≤
2m in a similar fashion, and so on.

Let y = {yα} (with y0,...,0 = 1) be the vector of moments up to order 2m of
some probability measure µy. Let Am be the vector space of real-valued polynomials
q(x) : Rn → R of degree at most m. Identifying q(x) with its vector q ∈ Rs(m) of
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coefficients in the basis (2.1), one may then define a bilinear form 〈., 〉y : Am×Am → R

by

〈q(x), p(x)〉y = 〈q,Mm(y)p〉 =
∑

α

(qp)αyα =

∫

q(x)p(x)µy(dx).(2.4)

This bilinear form also defines a positive semidefinite form on Am since

〈q(x), q(x)〉y =
∑

α

(q2)αyα =

∫

q(x)2 µy(dx) ≥ 0(2.5)

for all polynomials q(x) ∈ Am. The theory of moments identifies those sequences y
with Mm(y) � 0 that correspond to moments of some probability measure µy on Rn.

We first briefly outline the idea developed in the next section: With K an arbitrary
(Borel) subset of Rn, one first reduces PK to the equivalent convex optimization
problem PK ,

PK 7→ min
µ∈P(K)

∫

p(x) dµ,(2.6)

on the space of Borel probability measures µ with support contained in K. Indeed,
we have the following.

Proposition 2.1. The problems PK and PK are equivalent, that is,
(a) inf PK = inf PK .
(b) if x∗ is a global minimizer of PK , then µ∗ := δx∗ is a global minimizer of PK .
(c) assuming PK has a global minimizer, then, for every optimal solution µ∗ of

PK , p(x) = min PK , µ∗-almost everywhere (µ∗-a.e.).
(d) if x∗ is the unique global minimizer of PK , then µ∗ := δx∗ is the unique global

minimizer of PK .
Proof. (a) As for every x ∈ K, p(x) =

∫

p dδx, it follows that inf PK ≤ inf PK

(including the case −∞). Conversely, assume that p∗ := inf PK > −∞. As p(x) ≥ p∗

for all x ∈ K, it follows that
∫

pdµ ≥ p∗ for every probability measure µ with support
contained in K.

(b) This proof is trivial.
(c) From (b), PK has at least one optimal solution. For an arbitrary optimal

solution µ∗, we have
∫

pdµ∗ = p∗ with p∗ = min PK . Assume that there is a Borel set
B ⊂ K such that µ∗(B) > 0 and p(x) 6= p∗ on B, that is, p(x) > p∗ on B. Then,

∫

p dµ∗ =

∫

B

p dµ∗ +

∫

K−B

p dµ∗ > p∗,

in contradiction with
∫

pdµ∗ = p∗.
(d) This proof follows from (c).
Observe that since p(x) is a polynomial of degree, say m, the criterion

∫

pdµ
involves only the moments of µ, up to order m and, in addition, is linear in the
moment variables. Therefore, one next replaces µ with the finite sequence y = {yα}
of all its moments, up to order m, that is,

yα :=

∫

xα dµ,

n
∑

i=1

αi = k, k = 0, 1, . . . ,m,
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and one works with the finite sequence y of the moments of µ, up to order m, in-
stead of µ itself. Of course, not every sequence y has a representing measure µ; that
is, given an arbitrary finite sequence y, there might not be any probability measure
µ, all of whose moments up to order m coincide with the yα scalars. In the one-
dimensional case, characterizing those sequences y that have a representing measure
on X (respectively, on [0,∞) and [a, b]) is called the (truncated) Hamburger (respec-
tively, Stieltjes and Hausdorff) moment problem (see Curto and Fialkow [3] or Simon
[19] and references therein). The various necessary and sufficient conditions for the
existence of a representing measure µy all invoke the positive semidefiniteness of the
related (Hankel) moment matrix

Hm(y) :=









y0 y1 y2 . ym
y1 y2 . . ym+1

.. . . . .
ym ym+1 . y2m−1 y2m









(2.7)

(see, for instance, the various conditions related to the truncated Hamburger, Stielt-
jes, and Hausdorff moment problems in Curto and Fialkow [3]). For trigonometric
polynomials, Toeplitz matrices are the analogues of the Hankel matrices.

As mentioned earlier, this theory of moments is in duality with the theory of
nonnegative polynomials and Hilbert’s 17th problem on the representation of nonneg-
ative polynomials as sum of squares (always possible in the one-dimensional case).
However, the multivariate case radically differs from the univariate case, for not ev-
ery nonnegative polynomial can be written as a sum of squares. Also, in contrast to
the univariate case, with Mm(y) the moment matrix previously introduced (in lieu
of the Hankel matrix (2.7)), there are vectors y for which Mm(y) ≻ 0 but with no
representing measure µy.

3. Unconstrained global optimization. Let p(x) : Rn → R be a real-valued
polynomial of degree 2m with coefficient vector p ∈ Rs(2m). Since we wish to minimize
p(x), we may and will assume that the constant term vanishes, that is, p0 = 0. Let
us introduce the following convex LMI optimization problem (or positive semidefinite
(psd) program):

Q 7→







inf
y

∑

α

pαyα,

Mm(y) � 0,
(3.1)

or equivalently,

Q 7→















inf
y

∑

α

pαyα,

∑

α6=0

yαBα � −B0,
(3.2)

where the matrices B0 and Bα are easily understood from the definition of Mm(y).
The dual problem Q∗ of Q is the convex LMI problem defined by

Q∗ 7→











sup
X

〈X,−B0〉 (= −X(1, 1)),

〈X,Bα〉 = pα, α 6= 0,
X � 0,

(3.3)
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where X is a real-valued symmetric matrix and 〈A,B〉 stands for the usual Frobenius
inner product trace(AB) for real-valued symmetric matrices. The reader is referred
to Vandenberghe and Boyd [20] for a survey on semidefinite programming.

We first have the following result.
Proposition 3.1. Assume that Q∗ has a feasible solution. Then Q∗ is solvable

and there is no duality gap, that is,

inf Q = max Q∗.(3.4)

Proof. The result follows from the duality theory of convex programming if we can
prove that there is a feasible solution y of Q with Mm(y) ≻ 0. Let µ be a probability
measure on Rn with a strictly positive density f with respect to the Lebesgue measure
and with all its moments finite; that is, µ is such that

yα :=

∫

xα dµ < ∞

for every combination α1 + α2 + αn = r, r = 1, 2, . . . . Then the matrix Mm(y), with
y as above, is such that Mm(y) ≻ 0. Indeed, for every polynomial q(x) : Rm → R, we
have

〈q(x), q(x)〉y = 〈q,Mm(y)q〉 =

∫

q2(x)µ(dx) (by (2.5))

=

∫

q(x)2f(x) dx

> 0 whenever q 6= 0 (as f > 0).

Therefore, y is feasible for Q and Mm(y) ≻ 0, the desired result.
Let p(x) : Rn → R be a real-valued polynomial with p0 := p(0) = 0. The first

result of this paper is as follows.
Theorem 3.2. Let p(x) : Rn → R be a 2m-degree polynomial as in (2.2) with

global minimum p∗ = min P.
(i) If the nonnegative polynomial p(x) − p∗ is a sum of squares of polynomials,

then P is equivalent to the convex LMI problem Q defined in (3.1). More precisely,
min Q = min P and, if x∗ is a global minimizer of P, then the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2m, . . . , (x∗
n)2m)(3.5)

is a minimizer of Q.
(ii) Conversely, if Q∗ has a feasible solution, then min P = min Q only if p(x)−p∗

is a sum of squares.
Proof. (i) Let p(x) − p∗ be a sum of squares of polynomials, that is,

p(x) − p∗ =

r
∑

i=1

qi(x)2, x ∈ Rn,(3.6)

for some polynomials qi(x) : Rn → R, with coefficient vector qi ∈ Rs(m), i = 1, 2, . . . , r.
Equivalently,

p(x) − p∗ = 〈X,Mm(y)〉, x ∈ Rn,(3.7)
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with X =
∑r

1 qiq
′
i and y = (x1, . . . , (x1)

2m, . . . , (xn)2m). But from (3.7) and

p(x) − p∗ = −p∗ +
∑

α

pαx
α,

it follows that

X(1, 1) = −p∗ and 〈X,Bα〉 = pα for all α 6= 0

so that (as X � 0) X is feasible for Q∗ with value −X(1, 1) = p∗. Next, observe that
y∗ in (3.5) is feasible for Q with value p∗ so that min Q = max Q∗ and y∗ and X are
optimal solutions of Q and Q∗, respectively.

(ii) Assume that Q∗ has a feasible solution and min P = min Q. Then, from
Proposition 3.1, Q∗ is solvable and there is no duality gap, that is, max Q∗ = inf Q =
min Q. Let X∗ be an optimal solution of Q∗, guaranteed to exist. Write X∗ =
∑r

i=1 λiqiq
′
i with the qi’s being the eigenvectors of X∗ corresponding to the positive

eigenvalues λi, i = 1, . . . , r.
As λ∗ := max Q∗ = min Q, and min Q = min P, let y∗ as in (3.5) be an optimal

solution of Q. From the optimality of both X∗ and y∗, we must have

〈X∗,Mm(y∗)〉 = 0.

Equivalently,

0 =

r
∑

i=1

λi〈qi,Mm(y∗)qi〉 =

r
∑

i=1

λiqi(x
∗)2.

For an arbitrary x ∈ Rn, let

y := (x1, . . . , xn, x
2
1, x1x2, . . . , x

2m
1 , . . . , x2m

n )

so that, as we did for x∗,

〈X∗,Mm(y)〉 =

r
∑

i=1

λiqi(x)2.

On the other hand,

〈X∗,Mm(y)〉 = λ∗ +
∑

α6=0

yα〈X∗, Bα〉

= λ∗ +
∑

α6=0

pαyα = λ∗ + p(x).

Therefore, as X∗ is optimal, −X∗(1, 1) = −λ∗ = p∗, and we obtain

r
∑

i=1

λiqi(x)2 = p(x) − p∗,

the desired result.
From the proof of Theorem 3.2, it is obvious that if min Q = min P, then x∗ is

a root of each polynomial qi(x), where X∗ =
∑r

i=1 qiq
′
i at an optimal solution X∗ of
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Q∗. When p(x) − p∗ is a sum of squares, solving the dual LMI problem Q∗ provides
the qi polynomials of such a decomposition. As a corollary, we obtain the following.

Corollary 3.3. Let p(x) : Rn → R be a real-valued polynomial of degree 2m.
Assume that Q∗ has a feasible solution. Then,

p(x) − p∗ =

r
∑

i=1

qi(x)2 − [min P − inf Q](3.8)

for some real-valued polynomials qi(x) : Rn → R of degree at most m, i = 1, 2, . . . , r.
The proof is the same as the proof of Theorem 3.2(ii), except now we may not

have min Q = min P, but instead inf Q ≤ min P. Hence, inf Q always provides a lower
bound on p∗.

Corollary 3.3 states that one may always write p(x) − p∗ as a sum of squares of
polynomials up to some constant whenever Q∗ has a feasible solution.

One may ask whether a nonnegative polynomial can be “approached” by polyno-
mials that are the sum of squares. The answer is yes (see Remark 3.6 below).

Example 1. Consider the polynomial p(x) : R2 → R

(x1, x2) 7→ (x2
1 + 1)2 + (x2

2 + 1)2 + (x1 + x2 + 1)2.

It is not obvious a priori that with x∗ a global minimizer, p(x)−p∗ is a sum of squares.
Solving Q yields a minimum value of −0.4926, and from the solution y, one may check
that

y = (x∗
1, x

∗
2, (x

∗
1)

2, x∗
1x

∗
2, (x

∗
2)

2, . . . , (x∗
1)

4, . . . , (x∗
2)

4),

with x∗
1 = x∗

2 = −0.2428, is a good approximation of a global minimizer of P since
the gradient vector

∂p(x∗
1,

∗
2 )

∂x1
=

∂p(x∗
1, x

∗
2)

∂x2
= 4 ∗ 10−9.

Solving Q∗ yields

X∗ ≈

















0.4926 1.0000 1.0000 −0.0196 −0.0316 −0.0668
1.0000 3.0392 1.0316 0 −0.0276 −0.1666
1.0000 1.0316 3.1335 0.0276 0.1666 0
−0.0196 0 0.0276 1.0000 0 −0.5539
−0.0316 −0.0276 0.1666 0 1.1078 0
−0.0668 −0.1666 0 −0.5539 0 1.0000

















with eigenvalues

[1.0899, 1.5414, 2.0885, 0.4410, 0.0000, 4.6123]

and corresponding eigenvectors

















0.0579 0.0144 0.0163 0.0675 0.9414 −0.3246
−0.0972 0.1118 0.6999 −0.0759 −0.2286 −0.6559
0.1010 −0.0657 −0.6861 0.0114 −0.2286 −0.6800
0.0224 −0.7105 0.0503 −0.6993 0.0555 −0.0092
−0.9882 −0.0334 −0.1368 −0.0028 0.0555 −0.0242
−0.0006 0.6907 −0.1337 −0.7075 0.0555 0.0377

















.
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Example 2. Consider the polynomial p(x) : R2 → R

(x1, x2) 7→ (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 + x2 + 1)2.

Solving Q yields an optimal value p∗ ≈ −11.4581 and an optimal solution

(x∗
1, x

∗
2) = (1.3247, 1.3247)

with corresponding gradient

∂p(x∗
1, x

∗
2)

∂x1
=

∂p(x∗
1, x

∗
2)

∂x2
= −8.7 ∗ 10−6.

Solving Q∗ yields an optimal solution

X∗ ≈

















11.4581 −2.0000 −2.0000 −1.0582 −1.1539 −1.2977
−2.0000 2.1164 −0.8461 0 −0.0868 0.2676
−2.0000 −0.8461 2.5953 0.0868 −0.2676 0
−1.0582 0 0.0868 1.0000 0 −0.4625
−1.1539 −0.0868 −0.2676 0 0.9250 0
−1.2977 0.2676 0 −0.4625 0 1.0000

















.

The eigenvalues of X∗ are

[1.2719, 1.4719, 0.5593, 0.0000, 3.2582, 12.5336]

with corresponding eigenvectors (in columns below)

















0.0854 −0.0552 −0.0615 0.2697 0.0177 −0.9554
0.5477 −0.1658 −0.3615 0.3573 −0.6204 0.1712
0.3274 −0.2171 −0.2965 0.3573 0.7740 0.1760
0.2384 0.6906 0.4831 0.4733 0.0403 0.0847
−0.6736 0.2490 −0.4967 0.4733 −0.0744 0.0896
−0.2740 −0.6191 0.5454 0.4733 −0.0919 0.1081

















.

Hence,

p(x1, x2) − p∗

≈1.2719(0.0854 + 0.5477x1 + 0.3274x2 + 0.2384x2
1 − 0.6736x1x2 − 0.2740x2

2)
2

+1.4719(−0.0552 − 0.1658x1 − 0.2171x2 + 0.6906x2
1 + 0.2490x1x2 − 0.6191x2

2)
2

+0.5593(−0.0615 − 0.3615x1 − 0.2965x2 + 0.4831x2
1 − 0.4967x1x2 + 0.5454x2

2)
2

+3.2582(0.0177 − 0.6204x1 + 0.7740x2 + 0.0403x2
1 − 0.0744x1x2 − 0.0919x2

2)
2

+12.5336(−0.9554 + 0.1712x1 + 0.1760x2 + 0.0847x2
1 + 0.0896x1x2 + 0.1081x2

2)
2.

General case. We now provide a result valid in the general case, that is, when
p(x) − p∗ is not necessarily a sum of squares.

We first need to introduce some notation: Let q(x) : Rn → R be a real-valued
polynomial of degree w with coefficient vector q ∈ Rs(w).

If the entry (i, j) of the matrix Mm(y) is yβ , let β(ij) denote the subscript β of
yβ . Let Mm(qy) be the matrix defined by

Mm(qy)(i, j) =
∑

α

qαy{β(i,j)+α}.(3.9)
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For instance, with

M1(y) =





1 y10 y01

y10 y20 y11

y01 y11 y02



 and x 7→ q(x) = a− x2
1 − x2

2,

we obtain

M1(qy) =





a− y20 − y02, ay10 − y30 − y12, ay01 − y21 − y03

ay10 − y30 − y12, ay20 − y40 − y22, ay11 − y31 − y13

ay01 − y21 − y03, ay11 − y31 − y13, ay02 − y22 − y04



 .

Let {yα} (with y0 = 1) be an s(2m)-vector of moments up to order 2m of some
probability measure µy on Rn. Then, for every polynomial v(x) : Rn → R, of degree
at most m, with coefficient vector v ∈ Rs(m),

〈v,Mm(qy)v〉 =

∫

q(x)v(x)2 µy(dx).(3.10)

Therefore, with Kq := {x ∈ Rn | q(x) ≥ 0}, if µy has its support contained in Kq,
then it follows from (3.10) that Mm(qy) � 0.

Suppose that we know in advance that a global minimizer x∗ of p(x) has norm
less than a for some a > 0, that is, p(x∗) = p∗ = min P and ‖x∗‖ ≤ a. Then, with
x 7→ θ(x) = a2 − ‖x‖2, we have p(x) − p∗ ≥ 0 on Ka := {θ(x) ≥ 0}.

We will use the fact that every polynomial p(x), strictly positive on Ka, can be
written

p(x) =

r1
∑

i=1

qi(x)2 + θ(x)

r2
∑

j=1

tj(x)2,

for some polynomials qi(x), tj(x), i = 1, . . . , r1, j = 1, . . . , r2 (see, e.g., Berg [1, p.
119]). For every N ≥ m, let QN

a be the convex LMI problem

QN
a















inf
y

∑

α

pαyα,

MN (y) � 0,
MN−1(θy) � 0.

(3.11)

Writing MN−1(θy) =
∑

α yαCα, for appropriate matrices {Cα}, the dual of QN
a is the

convex LMI problem

(QN
a )∗

{

sup
X,Z�0

−X(1, 1) − a2Z(1, 1),

〈X,Bα〉 + 〈Z,Cα〉 = pα, α 6= 0.
(3.12)

Now we have the following theorem.
Theorem 3.4. Let p(x) : Rn → R be a 2m-degree polynomial as in (2.2) with

global minimum p∗ = min P and such that ‖x∗‖ ≤ a for some a > 0 at some global
minimizer x∗. Then

(a) as N → ∞, one has

inf QN
a ↑ p∗.(3.13)
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Moreover, for N sufficiently large, there is no duality gap between QN
a and its dual

(QN
a )∗, and (QN

a )∗ is solvable.
(b) min QN

a = p∗ if and only if

p(x) − p∗ =

r1
∑

i=1

qi(x)2 + θ(x)

r2
∑

j=1

tj(x)2(3.14)

for some polynomials qi(x), i = 1, . . . , r1, of degree at most N , and some polynomials
tj(x), j = 1, . . . , r2, of degree at most N − 1. In this case, the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2N , . . . , (x∗
n)2N )(3.15)

is a minimizer of QN
a . In addition, max(QN

a )∗ = min QN
a and for every optimal

solution (X∗, Z∗) of (QN
a )∗,

p(x) − p∗ =

r1
∑

i=1

λiqi(x)2 + θ(x)

r2
∑

j=1

γjtj(x)2,(3.16)

where the vectors of coefficients of the polynomials qi(x),tj(x) are the eigenvectors of
X∗ and Z∗ with respective eigenvalues λi, γj.

Proof. (a) From x∗ ∈ Ka, and with

y∗ := (x∗
1, . . . , (x

∗
1)

2N , . . . , (x∗
n)2N ),

it follows that MN (y∗),MN−1(θy
∗) � 0 so that y∗ is admissible for QN

a and thus
inf QN

a ≤ p∗.
Now, fix ǫ > 0 arbitrary. Then, p(x) − (p∗ − ǫ) > 0 and, therefore, there is some

N0 such that

p(x) − p∗ + ǫ =

r1
∑

i=1

qi(x)2 + θ(x)

r2
∑

j=1

tj(x)2

for some polynomials qi(x), i = 1, . . . , r1, of degree at most N0, and some polynomials
tj(x), j = 1, . . . , r2, of degree at most N0 − 1 (see Berg [1, p. 119]).

Let qi ∈ Rs(N0), tj ∈ Rs(N0−1) be the vector of coefficients of the polynomials
qi(x), tj(x), respectively, and let

X :=

r1
∑

i=1

qiq
′
i, Z :=

r2
∑

j=1

tjt
′
j

so that X,Z � 0. It is immediate to check that (X,Z) is admissible for (QN0

a )∗ with
value −X(1, 1) − a2Z(1, 1) = (p∗ − ǫ). From weak duality it follows that inf QN0

a ≥
−(X(1, 1) + a2Z(1, 1)) = p∗ − ǫ, and the desired result follows from

p∗ − ǫ ≤ inf QN0

a ≤ p∗.

We next prove that there is no duality gap between QN
a and its dual (QN

a )∗ as soon
as N ≥ N0. Indeed, let µ be a probability measure with uniform distribution in Ka.
Let yµ = {yα} with

yα :=

∫

xαµ(dx)
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for all combinations (α1, . . . , αn) = r, r = 1, . . . , N . All the yα’s are well defined since
µ has its support contained in the compact set Ka. From (2.4),

〈q,MN (yµ)q〉 =

∫

q(x)2µ(dx) > 0 whenever 0 6= q ∈ Rs(N),

and from (3.10),

〈q,MN−1(θyµ)q〉 =

∫

θ(x)q(x)2µ(dx) > 0 whenever 0 6= q ∈ Rs(N−1).

It follows that MN (yµ),MN−1(θyµ) ≻ 0; that is, yµ is (strictly) admissible for QN
a and,

as (QN
a )∗ has an admissible solution, from a standard result in convex optimization,

there is no duality gap between (QN
a )∗ and QN

a . In addition, (QN
a )∗ is solvable, that

is, sup(QN
a )∗ = max(QN

a )∗.
That inf QN

a ↑ p∗ follows from the fact that, obviously, MN (y) � 0 implies
MN ′(y) � 0 for every N ≥ N ′ (since MN ′(y) is a submatrix of MN (y)) and simi-
larly for MN−1(θy). Therefore, for every solution y of QN

a , the adequate truncated
vector y′ is admissible for QN ′

a , whenever N ′ ≤ N , with the same value. Hence,
inf QN

a ≥ inf QN ′

a whenever N ≥ N ′.
(b) Only if part. That y∗ in (3.15) is a minimizer of QN

a is obvious. From (a)
we know that there is no duality gap between QN

a and (QN
a )∗ for N sufficiently large,

and (QN
a )∗ is solvable. Therefore, for N sufficiently large, let (X∗, Z∗) be an optimal

solution of (QN
a )∗, guaranteed to exist.

As X∗ � 0, Z∗ � 0, write

X∗ =

r1
∑

i=1

λiqiq
′
i; Z

∗ =

r2
∑

j=1

γjtjt
′
j ,

where the qi’s (respectively, the tj ’s) are the eigenvectors of X∗ (respectively, Z∗),
with eigenvalues λi (respectively, γj). With

y = (x1, . . . , xn, . . . , (x1)
2N , . . . , (xn)2N ),

we have

〈X∗,MN (y)〉 + 〈Z∗,MN−1(θy)〉 = X∗(1, 1) + a2Z∗(1, 1)

+
∑

α6=0

yα[〈X∗, Bα〉 + 〈Z∗, Cα〉]

= X∗(1, 1) + a2Z∗(1, 1) + p(x)

= p(x) − p∗,

where the last equality follows from

min QN
a = p∗ = max(QN

a )∗ = −X∗(1, 1) − a2Z∗(1, 1).

On the other hand,

〈X∗,MN (y)〉 =

r1
∑

i=1

λi〈qi,MN (y)qi〉 =

r1
∑

i=1

λiqi(x)2
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and

〈Z∗,MN−1(θy)〉 =

r2
∑

j=1

γj〈tj ,MN−1(θy)tj〉 = θ(x)

r2
∑

j=1

γjtj(x)2.

Therefore,

p(x) − p∗ =

r1
∑

i=1

λiqi(x)2 + θ(x)

r2
∑

j=1

γjtj(x)2,

the desired result.
If part. If (3.14) holds, then one proves as in (a) (but with ǫ = 0) that sup(QN

a )∗ ≥
p∗ so that, in fact, max(QN

a )∗ = p∗ = min QN
a for N sufficiently large.

Thus, one may approach the global optimal value p∗ as closely as desired by
solving a finite number of convex LMI problems QN

a , and if p(x) − p∗ (which is only
nonnegative and not strictly positive) can be written as a weighted sum of squares, one
obtains the exact optimal value by solving a finite number of problems QN

a . However,
from a computational point of view, the remark is irrelevant, especially if one solves
QN

a with an interior point method.
Remark 3.5. Theorem 3.4 also applies for the global minimization of p(x) on

Ka if Ka does not contain any global minimizer of p(x) on Rn. It suffices to replace
p∗ with δ∗ := minx∈Ka

p(x).
Example 3. Consider the polynomial p(x) : R2 → R,

x 7→ p(x) := x2
1x

2
2(x

2
1 + x2

2 − 1).

1 + p(x) is positive but is not a sum of squares (see Berg [1]). A global minimizer of
p(x) is x2

1 = x2
2 = 1/3 with optimal value p∗ = −1/27.

Solving the LMI problem Q in Theorem 3.2 yields an approximated optimal value
of −33.157352 < p∗. With K1 (the unit ball), solving Q3

1, one obtains exactly the
global minimum p∗ and a global minimizer x∗. In fact, as p(x) contains only even
powers of x1 and x2, y

∗ is the convex combination of 0.5y∗1 + 0.5y∗2 with y∗1 , y
∗
2 being

the sequences of moments corresponding to the Dirac measures at x∗
1 = −

√

1/3 and

at x∗
2 =

√

1/3, respectively.
This shows that in some cases one will obtain the exact global optimal value

with few trials. In the present example, p(x) is of degree 6 and we do not need to
increase the degree to get the weighted sum of squares (3.14) when it exists; that is,
qi(x)2, tj(x)2 in (3.14) are of degree at most 6, as p(x).

Remark 3.6. One may ask whether a nonnegative polynomial can be “ap-
proached” by polynomials that are sums of squares. An answer is given in Berg [1].
Indeed, let A be the space of real-valued polynomials p(x) : Rn → R equipped with the
norm ‖p(x)‖A = ‖p‖ with p the (finite-dimensional) vector of the coefficients of p(x)
(for instance, in the (extended) basis (2.1)). Then, the cone Σ of polynomials that
are sums of squares is dense (for the norm ‖.‖A) in the set of polynomials that are
nonnegative on [−1, 1]n.

For instance, as we know that p(x)− p∗ is positive in [−1, 1]2, for the polynomial
p(x) in the above example we may try to solve the LMI problem Q with M4(y) � 0
instead of M3(y) � 0 and perturbate p(x) by adding the terms 0.01(x8

1 + x8
2) whose

effect in [−1, 1]2 is negligible. Solving Q for p̃(x) = p(x) + 0.01(x8
1 + x8

2) yields the
optimal value p̃∗ = −0.036792 to compare with −0.037037 and a global minimizer
(x̃∗

1)
2 = (x̃∗

2)
2 = 0.3319 to compare with (x∗

1)
2 = (x∗

2)
2 = 1/3. In this case, p̃(x) − p̃∗

is a sum of squares. However, the smaller perturbation 0.001(x8
1 +x8

2) does not work.
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4. Constrained case. We now consider the constrained case, that is,

PK 7→ p∗K := min
x∈K

p(x),(4.1)

where

• p(x) : Rn → R is a real-valued polynomial of degree at most m.
• K is a compact set defined by polynomials inequalities gi(x) ≥ 0 with gi(x) :

Rn → R being a real-valued polynomial of degree at most wi, i = 1, 2, . . . , r.

Concerning the semi-algebraic compact set K, we make the following assumption.

Assumption 4.1. The set K is compact and there exists a real-valued polynomial
u(x) : Rn → R such that {u(x) ≥ 0} is compact, and

u(x) = u0(x) +

r
∑

k=1

gi(x)ui(x) for all x ∈ Rn,(4.2)

where the polynomials ui(x) are all sums of squares, i = 0, . . . , r.

Assumption 4.1 is satisfied in many cases, for instance, if there is one polynomial
gi(x) such that {gi(x) ≥ 0} is compact (take uk(x) ≡ 0 except ui(x) ≡ 1 in (4.2)).
It is also satisfied if all the pi’s are linear (see Jacobi and Prestel [9]) and for 0-1
programs, that is, when K includes the inequalities x2

i ≥ xi and xi ≥ x2
i for all i.

Therefore, one way to ensure that Assumption 4.1 holds is to add to the definition of
K the extra constraint gr+1(x) = a2 − ‖x‖2 ≥ 0 for some a sufficiently large.

It is important to emphasize that we do not assume that K is convex (it may even
be disconnected). We will use the fact that whenever Assumption 4.1 holds, every
polynomial p(x), strictly positive on K, can be written

p(x) = q(x) +

r
∑

k=1

gk(x)tk(x) for all x ∈ Rn(4.3)

for some polynomials q(x), tk(x), k = 1, . . . , r, that are all sums of squares (see, e.g.,
Lemma 4.1 in Putinar [15] and also Jacobi [8]). In fact, Assumption 4.1 is an if and
only if condition for (4.3) to hold. Of course, one does not know in advance the
degrees of these polynomials.

As we did for θ(x) in the previous section, for every i = 1, . . . , r, let Mm(giy) be
the matrices defined as in (3.9), with gi(x) in lieu of θ(x). Therefore, if y is an s(2m)
moment vector for some probability measure µ on Rn, then for every i = 1, 2, . . . , r,
and every polynomial q(x) of degree at most m,

〈q(x), q(x)〉giy := 〈q,Mm(giy)q〉 =

∫

gi(x)q(x)2 µ(dx)(4.4)

so that, if µ has its support contained in K, then Mm(giy) � 0 for all i = 1, 2, . . . , r.

Let w̃i := ⌈wi/2⌉ be the smallest integer larger than wi/2, and with N ≥ ⌈m/2⌉
and N ≥ maxi w̃i, consider the convex LMI problem

QN
K















inf
y

∑

α

pαyα,

MN (y) � 0,
MN−w̃i

(giy) � 0, i = 1, . . . , r.

(4.5)
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Writing MN−w̃i
(giy) =

∑

α Ciαyα, for appropriate symmetric matrices {Ciα}, the
dual of QN

K is the convex LMI problem

(QN
K)∗



























sup
X,Zi

−X(1, 1) −
r

∑

i=1

gi(0)Zi(1, 1),

〈X,Bα〉 +

r
∑

i=1

〈Zi, Ciα〉 = pα, α 6= 0,

X, Zi � 0, i = 1, . . . , r.

(4.6)

Now we have the following theorem.
Theorem 4.2. Let p(x) : Rn → R be an m-degree polynomial and K be the

compact set {gi(x) ≥ 0, i = 1, . . . , r}. Let Assumption 4.1 hold, and let p∗K :=
minx∈K p(x). Then

(a) as N → ∞, one has

inf QN
K ↑ p∗K .(4.7)

Moreover, for N sufficiently large, there is no duality gap between QN
K and its dual

(QN
K)∗ if K has a nonempty interior.
(b) if p(x) − p∗K has the representation (4.3), that is,

p(x) − p∗K = q(x) +

r
∑

i=1

gi(x)ti(x)(4.8)

for some polynomial q(x) of degree at most 2N , and some polynomials ti(x) of degree
at most 2N − wi, i = 1, . . . , r, all sums of squares, then min QN

K = p∗K = max (QN
K)∗

and the vector

y∗ := (x∗
1, . . . , x

∗
n, (x

∗
1)

2, x∗
1x

∗
2, . . . , (x

∗
1)

2N , . . . , (x∗
n)2N )(4.9)

is a global minimizer of QN
K . In addition, for every optimal solution (X∗, Z∗

1 , . . . , Z
∗
r )

of (QN
K)∗,

p(x) − p∗K =

r0
∑

i=1

λiqi(x)2 +

r
∑

i=1

gi(x)

ri
∑

j=1

γijtij(x)2,(4.10)

where the vectors of coefficients of the polynomials qi(x),tij(x) are the eigenvectors of
X∗ and Z∗

i with respective eigenvalues λi, γij.
Proof. The proof is similar to that of Theorem 3.4. For (a) it is immediate that

inf QN
K ≤ p∗K since the sequence of moments y∗ constructed from a global minimizer

x∗ is admissible with value p∗K . Also, as in Theorem 3.4, the sequence {inf QN
K} is

easily seen to be monotone nondecreasing in N . Moreover,
(i) given ǫ > 0 arbitrary, the polynomial p(x) − p∗K + ǫ is strictly positive on K

and thus can be written as in (4.3) for some polynomial q(x) of degree at most 2N
and some polynomials ti(x), i = 1, . . . , r, of degree at most 2N −wi, that are all sums
of squares. As in Theorem 3.4, writing q(x) =

∑

i qi(x)2 and ti(x) =
∑

j tij(x)2, from
the vector of coefficients qi of qi(x) (and tij of tij(x)), one may construct matrices
X :=

∑

i qiq
′
i � 0 and Zi :=

∑

j tijt
′
ij � 0, i = 1, . . . , r, that are admissible for (QN

K)∗,
with value −X(1, 1) −∑

i gi(0)Zi(1, 1) = p∗K − ǫ. Indeed, with

y = (x1, . . . , (x1)
2N , . . . , (xn)2N ),
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we obtain

〈X,MN (y)〉 +

r
∑

i=1

〈Zi,MN−w̃i
(giy)〉 = p(x) − p∗K + ǫ

so that, as x was arbitrary,

〈X,Bα〉 +

r
∑

i=1

〈Zi, Ciα〉 = pα for all α 6= 0,

and X(1, 1) +
∑

i gi(0)Zi(1, 1) = −(p∗K − ǫ). Hence, p∗K − ǫ ≤ sup(QN
K)∗ ≤ inf QN

K ≤
p∗K . As ǫ was arbitrary, (4.7) follows.

(ii) That there is no duality gap between QN
K and its dual (QN

K)∗ follows from the
fact that QN

K admits a strictly admissible solution. It suffices to consider a probability
measure µ with uniform distribution on K. The vector yµ of its moments up to order
2N is such that MN (y) ≻ 0 and MN−w̃i

(giy) ≻ 0. Therefore, as (QN
K)∗ has a feasible

solution, by a standard result in convexity, sup(QN
K)∗ = max(QN

K)∗ = inf QN
K .

The proof of (b) is also similar. If p(x)−p∗K has the representation (4.3), then from
the polynomials q(x) and {ti(x)}, of degree at most 2N and 2N−wi, respectively, one
may construct matrices X,Zi � 0, i = 1, . . . , r, as in (a), such that (X,Z1, . . . , Zr) is
an admissible solution for (QN

K)∗, with value −X(1, 1)−∑

i gi(0)Zi(1, 1) = p∗K . From
p∗K ≤ sup(QN

K)∗ ≤ inf QN
K ≤ p∗K , it follows immediately that max(QN

K)∗ = p∗K =
min QN

K and (X,Z1, . . . , Zk) is an optimal solution of (QN
K)∗. The last statement is

obtained in a similar fashion.
One may also prove that if K has a nonempty interior, then (4.8) is also necessary

for minQN
K = p∗K to hold.

When K is compact and Assumption 4.1 does not hold, there is still a rep-
resentation of polynomials, strictly positive on K (see Corollary 3 in Schmüdgen
[16]). But, instead of being “linear” as in (4.3), there are product terms of the
form gi1(x)gi2(x) . . . gil(x) times a sum of squares of polynomials, with i1, . . . , il ∈
{1, . . . , r}. It then suffices to include the corresponding constraints Mm(gi1 . . . gily) �
0 in the LMI problem QN

K . However, the number of LMI constraints in QN
K grows

exponentially with the number of constraints.
Example 4. Let p(x) : R2 → R be the polynomial x 7→ p(x) := −a1x

2
1 − a2x

2
2 and

K be the compact set

K := {x ∈ R2 |x1 + x2 ≤ b1; ax1 + y ≤ b2; x1, x2 ≥ 0}.

Whenever ai > 0, p(x) is concave so that we have a concave minimization problem
and thus, some vertex of K is a global minimizer.

We have solved Q2
K for several values of ai > 0, bi, i = 1, 2, and a < 0, each time

providing a global minimizer exactly, so that

p(x) − p∗K = q(x) + (b1 − x1 − x2)t1(x) + (b2 − ax1 − x2)t2(x) + x1t3(x) + x2t4(x)

for some 4-degree polynomial q(x) and 2-degree polynomials ti(x), all sums of squares,
i = 1, . . . , 4.

Example 5. Let p(x) : R2 → R be the concave polynomial x 7→ p(x) :=
−(x1 − 1)2 − (x1 − x2)

2 − (x2 − 3)2 and

K := {(x1, x2) ∈ R2 | 1 − (x1 − 1)2 ≥ 0; 1 − (x1 − x2)
2 ≥ 0; 1 − (x2 − 3)2 ≥ 0}.
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The point (1, 2) is a global minimizer with optimal value −2. Solving Q1
K , that is,

with N = 1 and p̃(x) = p(x) + 10 (since we eliminate the constant term −10), yields
an optimal value of 7 instead of the desired value 8. On the other hand, solving Q2

K

yields an optimal value 8.00017 and an approximate global minimizer (1.0043, 2.0006)
(the error 0.00017 is likely due to the use of an interior point method in the LMI
toolbox of MATLAB). Hence, with polynomials of degree 4 instead of 2, one obtains
a good approximation of the correct value. Observe that there exist λi = 1 ≥ 0 such
that

p(x) + 3 = 0 +

r
∑

i=1

λigi(x),

but p(x) − p∗K (= p(x) + 2) cannot be written that way.
Therefore, for the general nonconvex and quadratically constrained quadratic

problem, Q1
K may sometimes provide directly the exact global minimum, but in gen-

eral a lower bound only (if (Q1
K)∗ has a feasible solution).

Solving some test problems. We have also solved the following test problems
proposed in Floudas and Pardalos [6].

Problem 2.2 in [6].



















min
x,y

p(x, y) := cTx− 0.5xTQx + dT y;

6x1 + 3x2 + 3x3 + 2x4 + x5 ≤ 6.5;
10x1 + 10x3 + y ≤ 20;
0 ≤ y; 0 ≤ xi ≤ 1, i = 1, . . . , 5

with Q := I and c = [−10.5,−7.5,−3.5,−2.5,−1.5]. The optimal value −213 is
obtained at the Q2

K relaxation.

Problem 2.6 in [6].







min
x

p(x) := cTx− 0.5xTQx;

Ax ≤ b;
0 ≤ xi ≤ 1, i = 1, . . . , 10

with A being the matrix













−2 −6 −1 0 −3 −3 −2 −6 −2 −2
6 −5 8 −3 0 1 3 8 9 −3
−5 6 5 3 8 −8 9 2 0 −9
9 5 0 −9 1 −8 3 −9 −9 −3
−8 7 −4 −5 −9 1 −7 −1 3 −2













,

c = [48, 42, 48, 45, 44, 41, 47, 42, 45, 46], b = [−4, 22,−6,−23,−12], and Q = 100I. The
optimal value −39 is obtained at the Q2

K relaxation.

Problem 2.9 in [6].











max
x

p(x) :=

9
∑

i=1

xixi+1 +

8
∑

i=1

xixi+2 + x1x7 + x1x9 + x1x10 + x2x10 + x4x7;

∑10
i=1 xi = 1; xi ≥ 0, i = 1, . . . , 10.
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The optimal value 0.375 is obtained at the Q2
K relaxation.

Problem 3.3 in [6].















































min
x

p(x) := −25(x1 − 2)2 − (x2 − 2)2

−(x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2;
(x3 − 3)2 + x4 ≥ 4; (x5 − 3)2 + x6 ≥ 4;
x1 − 3x2 ≤ 2; −x1 + x2 ≤ 2;
x1 + x2 ≤ 6; x1 + x2 ≥ 2;
1 ≤ x3 ≤ 5; 0 ≤ x4 ≤ 6;
1 ≤ x5 ≤ 5; 0 ≤ x6 ≤ 10;
x1, x2,≥ 0.

The optimal value −310 is obtained at the Q2
K relaxation.

Problem 3.4 in [6].























min
x

p(x) := −2x1 + x2 − x3;

x1 + x2 + x3 ≤ 4;
x1 ≤ 2; x3 ≤ 3; 3x2 + x3 ≤ 6;
xi ≥ 0, i = 1, 2, 3;
xTBTBx− 2rTBx + ‖r‖2 − 0.25‖b− v‖2 ≥ 0

with r = [1.5,−0.5,−5] and

B =





0 0 1
0 −1 0
−2 1 −1



; b =





3
0
−4



; v =





0
−1
−6



 .

The optimal value −4 is obtained at the Q4
K relaxation, whereas inf Q3

K = −4.0685.

Problem 4.6 in [6].















min
x

p(x) := −x1 − x2;

x2 ≤ 2x4
1 − 8x3

1 + 8x2
1 + 2;

x2 ≤ 4x4
1 − 32x3

1 + 88x2
1 − 96x1 + 36;

0 ≤ x1 ≤ 3; 0 ≤ x2 ≤ 4.

The feasible set K is almost disconnected. The Q4
K relaxation provides the optimal

value −5.5079, the best value known so far, and therefore proves its global optimality.

Problem 4.7 in [6].







min
x

p(x) := −12x1 − 7x2 + x2
2;

−2x4
1 + 2 − x2 = 0;

0 ≤ x1 ≤ 2; 0 ≤ x2 ≤ 3.

The Q5
K relaxation provides the optimal value −16.73889, the best known solution so

far, and therefore proves its global optimality.
0-1 programming. It is also worth mentioning that constrained and uncon-

strained 0-1 programming problems can also be treated by solving convex LMI
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problems QN
K since the integral constraints xi ∈ {0, 1} can be written x2

i ≥ xi;x
2
i ≤ xi

for all i = 1, . . . , n. Therefore, the set

K1 := {xi − x2
i ≥ 0; x2

i − xi ≥ 0; i = 1, 2, . . . , n}(4.11)

(and its intersection with other additional polynomial constraints) is compact and
Assumption 4.1 holds. However, there is no strictly admissible solution (or interior
point). For illustration we have solved the elementary problem

min{−ax1 − bx2 | r − x1 − cx2 ≥ 0;x1, x2 ≥ 0; x1, x2 ∈ {0, 1}},

replacing the integrality constraints with (x1, x2) ∈ K1, and K1 as in (4.11).
Solving Q2

K with 0 < a < b, and several random values of c, yields the global
optimal value in all cases and a global minimizer at one of the integral points (0, 1),
(1, 0), and (1, 1) of K.

Also, the first experimental results on a sample of randomly generated MAX-CUT
problems in Rn (that is, maximizing a quadratic form with no squared terms under
the integrality constraints x2

i = 1 for all i) are encouraging. Indeed, the optimal value
was obtained at the Q2

K relaxation in all cases (see Lasserre [12]) for n = 5 and even
n = 10.

5. Karush–Kuhn–Tucker global optimality conditions. In this section we
still consider the problem PK with a compact set K defined by polynomials inequalities
gi(x) ≥ 0, i = 1, . . . , r.

Proposition 5.1. Let p∗K := min PK and assume that x∗ ∈ K is a global
minimizer. If p(x) − p∗K can be written

p(x) − p∗K =

r0
∑

i=1

qi(x)2 +

r
∑

k=1

gk(x)

rk
∑

j=1

tkj(x)2, x ∈ Rn,(5.1)

for some polynomials qi(x), tkj(x), i = 1, . . . , r0, k = 1, . . . , r, j = 1, . . . rk, then

0 = gk(x
∗)





rk
∑

j=1

tkj(x
∗)2



 , k = 1, . . . , r.(5.2)

∇p(x∗) =

r
∑

k=1

∇gk(x
∗)





rk
∑

j=1

tkj(x
∗)2



 .(5.3)

Moreover, if there exist associated Lagrange Karush–Kuhn–Tucker multipliers
λ∗ ∈ (Rr)+ and if the gradients ∇gk(x

∗) are linearly independent, then

rk
∑

j=1

tkj(x
∗)2 = λ∗

k, k = 1, . . . , r.(5.4)

Proof. As x∗ is a global minimizer of PK , it follows from p(x∗)−p∗K = 0 and (5.1)
that

0 =

r0
∑

i=1

qi(x
∗)2 +

r
∑

k=1

gk(x
∗)

rk
∑

j=1

tkj(x
∗)2
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so that

0 = qi(x
∗), i = 1, . . . , r0, and 0 = gk(x

∗)

rk
∑

j=1

tkj(x
∗)2, k = 1, . . . , r.

Moreover, from (5.1) and in view of the above,

∇p(x∗) =

r
∑

k=1

∇gk(x
∗)

rk
∑

j=1

tkj(x
∗)2

=

r
∑

k=1

λ∗
k∇gk(x

∗)

so that (5.4) follows from the linear independence of the ∇gk(x
∗).

Hence, the representation (5.1) can be viewed as a global optimality condition of
the Karush–Kuhn–Tucker type, where the multipliers are now nonnegative polynomi-
als instead of nonnegative constants. In general, and in contrast to the usual (local)
Karush–Kuhn–Tucker optimality conditions, the polynomial multiplier associated to
a constraint gk(x) ≥ 0, nonactive at x∗, is not identically null, but vanishes at x∗.

If p(x) − p∗K cannot be written as (5.1), we still have that p(x) − p∗K + ǫ can be
written as (5.1) for every ǫ > 0. Of course, the degrees of qi(x) and tkj(x) in (5.1)
depend on ǫ, but we have

lim
ǫ→0

r0(ǫ)
∑

i=1

qi(x
∗)2 = 0 and lim

ǫ→0

rk(ǫ)
∑

j=1

tkj(x
∗)2 = 0

for every k such that gk(x
∗) > 0.

Convex quadratic programming. In the case where p(x) is a convex quadratic
polynomial and gk(x) are concave quadratic (or linear) polynomials, then, at a Karush–
Kuhn–Tucker point (x∗, λ∗), and with the Lagrangian L(x, λ∗) := p(x)−∑r

k=1 λ
∗
kgk(x),

we have

p(x) − p∗K = L(x, λ∗) − L(x∗, λ∗) +

r
∑

k=1

λ∗
kgk(x)

=
1

2
〈x− x∗,∇2

xxL(x∗, λ∗)(x− x∗)〉 +

r
∑

k=1

λ∗
kgk(x)

=

n
∑

i=1

αi(〈qi, x− x∗〉)2 +

r
∑

k=1

λ∗
kgk(x),

where the qi’s are the eigenvectors of the psd form ∇2
xxL/2 with respective eigenvalues

αi, i = 1, . . . , n.
In this case, p(x)− p∗K can be written as (5.1) with rk = 1 and tk(x) ≡

√

λ∗
k, and

qi(x) =
√
αi〈qi, x− x∗〉, i = 1, . . . , n.

That is, the polynomial
∑

j tkj(x)2 is just the constant λ∗
k. Therefore, we have the

following theorem.
Theorem 5.2. Let p(x) : Rn → R be a convex quadratic polynomial and K :=

{gi(x) ≥ 0} be a compact convex set defined by concave quadratic polynomials gi(x),
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i = 1, . . . , r. Let x∗ be a local (hence global) minimum of PK with associated Karush–
Kuhn–Tucker multipliers λ∗ ∈ (Rr)+. Then,

y∗ = (x∗
1, . . . , x

∗
n, (x

∗
1)

2, . . . , (x∗
n)2)

is an optimal solution of the convex LMI problem

Q1
K



















min
y

∑

α

pαyα,

∑

α

(gi)αyα ≥ −gi(0), i = 1, . . . , r,

M1(y) � 0

and λ∗ is an optimal solution of the dual LMI problem

(Q1
K)∗























max
X�0,λ≥0

−X(1, 1) −
r

∑

i=1

λigi(0),

〈X,Bα〉 +

r
∑

i=1

λi(gi)α = pα, α 6= 0.

Hence (Q1
K)∗, which is the well-known Shor’s relaxation for nonconvex quadratic

programs, is also the natural dual problem of the general convex quadratically con-
strained quadratic program. In fact, Theorem 5.2 is also true in the more general
case where ∇2

xxL(x∗, λ∗) � 0, which may also happen at a global minimizer of some
nonconvex quadratic programs. For instance, the particular nonconvex quadratic
problems investigated in [4] reduce to solving the single LMI problem Q1

K .
The difference between the convex and nonconvex cases is that Q1

K provides an
exact solution in the convex case, whereas one has to solve an (often finite) sequence
of problems {QN

K} in the nonconvex case.
In the case where p(x), gi(x) are all linear, then the standard linear programming

problem minx{c′x|Ax ≥ b} is just Q0
K , with K := {Ax ≥ b}.

6. Conclusion. We have shown that the constrained and unconstrained global
optimization problem with polynomials has a natural sequence of convex LMI re-
laxations {QN

K} whose optimal values converge to the optimal value p∗K . In some
cases, the exact optimal value and a global minimizer are obtained at a particular
relaxation. When this happens, every optimal solution of the dual LMI problem pro-
vides the Karush–Kuhn–Tucker polynomials in the representation of the polynomial
p(x) − p∗K , nonnegative on K, the analogues of the scalar multipliers in the standard
Karush–Kuhn–Tucker (local) optimality condition. Identifying classes of problems,
for which the dimension of the LMI problem QN

K to solve is known in advance, is a
topic of further research.
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