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S U M M A R Y

This paper presents a comparison of ray-theoretical and finite-frequency traveltime tomog-

raphy for compressional waves. Our data set consists of 86 405 long-period P and PP–P

traveltimes measured by cross-correlation. The traveltime of a finite-frequency wave is sensi-

tive to anomalies in a hollow banana-shaped region surrounding the unperturbed ray path, with

the sensitivity being zero on the ray. Because of the minimax nature of the surface-reflected

PP wave, its sensitivity is more complicated. We compute the 3-D traveltime sensitivity ef-

ficiently by using the paraxial approximation in conjunction with ray theory and the Born

approximation. We compare tomographic models with the same χ2 fit for both ray theory and

finite-frequency analysis. Depending on the depth and size of the anomaly, the amplitudes of

the velocity perturbations in the finite-frequency tomographic images are 30–50 per cent larger

than in the corresponding ray-theoretical images, demonstrating that wave front healing cannot

be neglected when interpreting long-period seismic waves. The images obtained provide clear

evidence that a limited number of hotspots are fed by plumes originating in the lower mantle.

Key words: Fréchet derivatives, global seismology, mantle plumes, P waves, ray theory,

tomography.

1 I N T RO D U C T I O N

Global P-wave tomographic models have so far been obtained by

applying ray theory. In this paper, we investigate the effects that the

ray approximation has on the tomographic images, especially for

smaller objects. Waves propagate as rays only in the high-frequency

limit of the elastodynamic equations of motion. All scattering in-

teractions of the wave with the heterogeneities in the propagation

medium are neglected under the assumption that the velocity field

varies slowly on the scale of the wavelength. Rays might bend and

be deviated by the velocity structure, but energy is conserved along

the ray and is only influenced by the Earth’s properties along an

infinitesimally narrow path that follows Snell’s law. The velocity

information contained in a P or S wave is reduced to a single num-

ber, the time of the first break, which is assumed to correspond to

the arrival of the highest-frequency observable wave. This simpli-

fies the mathematics, but it is quite far from physical reality for

finite-frequency waves.

If the scale length of 3-D velocity heterogeneities is comparable

to the width of the Fresnel zone, finite-frequency effects are im-

portant. In regions where shadow zones or strong diffractors are

present, waves may scatter or diffract, and ray theory also breaks

down. In ray theory, waves preserve the time shifts accrued upon

passage through an anomaly somewhere along its path. Because

of an intrinsic diffraction phenomenon called ‘wave front healing’,

finite-frequency wave fronts do not. Diffraction acts to fill in or heal

irregularities in the wave front. Also, diffracted waves of significant

amplitude might interfere with the direct wave and introduce a bias

in the traveltime measurements. Consequently, the traveltime of a

finite-frequency seismic wave is sensitive to velocity anomalies off

the geometrical ray. Simple diffraction theory shows that a region

around the ray path affects the traveltimes, whereas structure far

from the ray paths plays a minor role. Such a volume surround-

ing the geometrical ray path is called the first Fresnel zone and is

loosely defined as the region where significant constructive inter-

ference of seismic energy takes place (Wielandt 1987; Nolet 1987,

1990; Müller et al. 1992; Nolet & Dahlen 2000). The size of the

Fresnel zone depends on the epicentral distance and on the frequency

content of the propagated wavefield (Kravtsov 1988): the higher the

frequency, the narrower the Fresnel zone.

The widespread availability of broad-band digital data has led to

the recent development of accurate techniques for traveltime mea-

surements using cross-correlation of an observed body-wave phase

with the corresponding spherical-Earth synthetic phase (Bolton &

Masters 2001). Cross-correlation methods have also been used to

measure the differential traveltime of two phases at the same sta-

tion (Kuo et al. 1987; VanDecar & Crosson 1990; Woodward &

Masters 1991; Su et al. 1994). The measurement obtained in this way

provides an integrated arrival-time difference between two wave-

forms, not simply the difference between onset times. Therefore the

ray-theoretical description for a traveltime along the ray may no

longer be valid, and finite-frequency waveform modelling may be
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required. A major aim of this paper is to investigate the necessity of

finite-frequency theory for broad-band seismic data.

The idea of using a ray of non-zero width to bridge the gap be-

tween rays and waves dates back to at least Hagendoorn (1954). He

introduced the concept of beam width defined as the region falling

within the first Fresnel zone. Various later attempts have been made

to compute Fresnel or influence zones for band-limited seismic trav-

eltimes in two and three dimensions (Gelchinsky 1985; Woodward

1992; Yomogida 1992; Cardimora & Garmany 1993; Stark & Niko-

layev 1993; Vasco & Majer 1993; Li & Tanimoto 1993; Marquering

et al. 1998, 1999; Dahlen et al. 2000; Hung et al. 2000; Zhao et al.

2000; Ritzwoller et al. 2002; Yoshizawa & Kennett 2002). These

investigations use the single-scattering or first-order Born approx-

imation, the Rytov approximation or the Kirchhoff approximation

to compute Fréchet sensitivity kernels that relate traveltime pertur-

bations to velocity anomalies.

Because of the computational difficulties that accompany a 3-D

formulation of sensitivity kernels for P or S waves, little effort has so

far been put into using them for seismic tomography, at least outside

the field of geophysical exploration. Castle et al. (2000) and Husen
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Figure 1. Top: Histograms of PP–P residuals of data used in this study. Bottom: P residuals computed with (left) the iasp91 velocity model and (right) a

modified version of the iasp91 velocity model shown in Fig. 2. 〈δT〉 indicates the average delay time. The offset of ∼ +5 s is discussed in the text.

& Kissling (2001) use what they call fat rays for the shear wave

speed anomalies at the base of the mantle, and a tomographic study

of the Antofagasta area (northern Chile), respectively. However, fat

rays account only qualitatively for wave front healing effects.

Marquering et al. (1998, 1999) and Zhao et al. (2000) present the-

oretical expressions for the Fréchet kernel for delay times, obtained

by summing surface waves and normal modes, respectively. Zhao

et al. (2001) uses such expressions in a 3-D tomographic study of the

western Pacific region. The normal-mode kernel provides the most

general description of the sensitivity kernel around the unperturbed

ray. However, since mode summation is computationally expensive,

the implementation of the exact kernel in a global inversion of large

data sets is not currently feasible. Dahlen et al. (2000) provide an

alternative procedure to economically compute the Fréchet kernel

of a finite-frequency traveltime measured by cross-correlation of

a broad-band waveform with a spherical-Earth synthetic seismo-

gram. The Green’s function and the response to a point scatterer

in Born theory are represented as a sum of rays rather than modes.

The paraxial approximation renders the computation of such kernels

much more efficient. In this paper we apply the 3-D Fréchet kernel
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formalism of Dahlen et al. (2000) to a global, finite-frequency trav-

eltime data set, and compare the result with the 3-D model obtained

by inverting the same data using conventional ray theory.

2 I N G R E D I E N T S O F T H E I N V E R S E

P RO B L E M

2.1 Data and reference model

We use arrival times of P and PP waves with a 20 s dominant pe-

riod (Bolton & Masters 2001). We invert 66 238 P traveltimes and

20 167 PP–P differential traveltimes. Systematic and correctable

timing errors were introduced by software bugs in various versions

of the Quanterra data logger. Measurements have been appropri-

ately corrected for such timing errors, and data obtained from sta-

tions with periods of erratic timing have been removed from further

analysis.

Absolute times are mainly affected by noise and errors due to

source mislocation. They are measured by cross-correlation of an

observed pulse with a synthetic one which is constructed by convolv-

ing the impulse response of the instrument at Albuquerque (ANMO)

with a t∗ attenuation operator (Bolton & Masters 2001); the attenu-

ation time t∗ is kept constant at 1 s for P waves.

Differential PP–P times are obtained by cross-correlation of the

Hilbert-transformed direct P phase with the reflected PP phase

(Woodward & Masters 1991). Here a 1 s t∗ operator accounts for

the different attenuation histories of the direct and reflected phase,

respectively. Differential traveltimes have the advantage of elimi-

nating source and receiver bias, and are most sensitive to shallow
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Figure 2. Comparison of the iasp91 velocity model (solid line) with a model

obtained by applying a slight perturbation (0.7 per cent) to the velocity of the

iasp91 velocity model (dotted line) between 400 and 660 km. The modified

iasp91 model removes the bias in the PP–P data.

structure in the vicinity of the bounce point, thus allowing us to

constrain the upper mantle beneath regions of the world where there

are no sources or receivers.

Predicted absolute and differential times are computed using the

iasp91 velocity model (Kennett & Engdahl 1991). We correct for

the signal due to ellipticity and for the effect of the crust (including

topography). Crustal corrections are computed using the 2◦ × 2◦

global crustal model CRUST2.0 (model available through the Ref-

erence Earth Model web site: http://mahi.ucsd.edu/Gabi/rem.html).

The remaining residuals show a baseline shift of about −1 s for

PP–P and about +4 s for P (Fig. 1a). Although the origin of these

offsets is not very clear, major candidates to explain them are the

use of NEIC source locations and/or imperfections in the 1-D refer-

ence model. Deviations from our assumed constant t∗ are not able

to explain this time-shift. Variations in the delays due to attenuation

are of the same order as the variations in t∗, which are of order of

0.1 s (see Stewart (1984) and eq. 6 in Bolton & Masters (2001)),

and therefore far too small to explain the 4 s shift.

Since differential times such as PP–P are insensitive to source

mislocations, the −1 s offset is best explained by the inadequacy of

the 1-D reference velocity model used. We eliminated this offset by

making a slight change to the iasp91 velocity model in the upper

mantle transition zone (Fig. 2). This correction is a purely technical

Figure 3. Perpendicular projection of a scatterer x onto the paraxial point

ξ , situated on the central geometrical ray from the source s to the receiver r.

The off-path difference vector is expressed in terms of two orthogonal unit

vectors: q = q1q̂1 + q2q̂2. The ray-centred coordinates of the scatterer are

x = (q 1, q 2, l) where l is the arc length along the central ray (Dahlen et al.

2000).

Figure 4. Ray-perpendicular cross-sections of the Fréchet kernel (a) for

a P wave between the source and the turning point and (b) for a PP wave

between the source and the bounce point. The shape of the PP kernel changes

drastically upon passage of a caustic.
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remedy and allows us to eliminate the PP–P offset for a range of

distances. After centring the PP–P times to zero, the offset in the

P data increases to about +5 s (Fig. 1b). The origin of this bias is

not fully understood and is the subject of current study. In order

to minimize the effect, we have applied a constant correction to all

P traveltimes such that the average 〈δTP〉 = 0. The effect of this

baseline shift is to bring the average of the origin time corrections

close to zero; it does not introduce discrepancies that cannot be

handled by the inversion.

2.2 Model parametrization

We sample the velocity structure by using an irregular distribution

of points to form a Delaunay mesh (Watson 1981, 1992; Sambridge

et al. 1995). In 3-D, a Delaunay mesh is a uniquely defined aggre-

gation of space-filling, disjoint, irregular tetrahedra. We build the

Delaunay connections by using qhull, a package distributed by the

Geometry Center of Minneapolis (Barber et al. 1996). Node spacing

is adapted to the expected resolving length of our data and ranges

from about 200 km in the upper mantle to about 600 km in the lower

Figure 5. (a) Distribution of sources (stars) and receivers (triangle) for P data. (b) Distribution of sources (stars), stations (triangles) and bounce points (dots)

for PP data.

mantle. The total number of nodes we use to model the mantle is

M = 19 279. The velocity c at any point x in the model is defined by

linear interpolation within each tetrahedron spanned by this mesh,

formally expressed as:

δc(x) =
∑

k

δckhk(x), (1)

where hk denote the interpolation functions, k being an index over

the four nodes of the tetrahedron that contains x.

2.3 Delay times tomography: rays and waves

To investigate the effects of wave front healing, we compare ray-

theoretical tomography with finite-frequency wave tomography. In

the following two sections we briefly review the analytical de-

scription of both formulations, which in the end both reduce to a

discrete system Ax = b of N traveltime shifts bi measured by cross-

correlation and M velocity perturbations xj, which we solve itera-

tively in a least-squares sense (Paige & Saunders 1982; Nolet 1985).

The inversion technique that we use is described in detail by Nolet

(1987) and Spakman & Nolet (1988).
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2.3.1 Rays

In the ray approximation, a measured traveltime residual is given by

a 1-D line integral along the unperturbed spherical-Earth ray:

δT = −
∫

ray

c(r )−2δc(x) dl, (2)

where dl is the differential arc length along the ray, c(r) is the back-

ground wave speed at radius r (in our case, modified iasp91) and

δc(x) is the 3-D heterogeneity that one is seeking to image. Fermat’s

principle allows us to use the ray path computed for the background

velocity c(r) (e.g. Nolet 1987). By virtue of the linear interpolation

on the tetrahedron structure (eq. 1), the expression for the traveltime

925 km 925 km

1525 km 1525 km

2125 km 2125 km

2770 km 2770 km

Ray Theory Finite Frequency

1.5 2.5 3.5 4.5 5.5

Σi |Aij| (log scale)

Figure 6. Sections at different depth of the density of the matrix A for ray-theory (left) and finite-frequency waves (right), expressed as the sum of the absolute

values of the elements of each column of the matrix A. Note that the maps have been ‘wrapped around’ to aid in the visualization of patterns in the vicinity of

the Greenwich meridian.

shift δT becomes:

δTi =
∑

j

Ai j

δc j

c j

, (3)

where cj = c(rj) at node j, and the elements of the matrix A are given

by:

Ai j = −
∫

i th path

dl c−1(r )h j (x), (4)

with i the datum number and j the node index. In the case of a differ-

ential traveltime PP–P, the delay time δTPP−P is given by δ(TPP −
TP) and the elements of the matrix A are simply the difference

between the matrix elements of the two phases individually.
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2.3.2 Finite-frequency waves

In finite-frequency tomography the 1-D integral along the geomet-

rical ray is replaced by a 3-D volume integral:

δT =
∫

⊕
K (x)

δc

c
d3x (5)

over the entire mantle ⊕ in which the wave speed perturbation is

non-zero, δc/c = 0. The quantity K(x) is the 3-D Fréchet kernel

of a finite-frequency traveltime shift δT that has been measured by

cross-correlation of a broad-band waveform with a spherical-Earth

synthetic.

Following Dahlen et al. (2000) the 3-D Fréchet kernel K(x) is

expressed by a double ray sum over all scattered body waves. This

formula reduces to an easily computable expression by invoking

the paraxial approximation which eliminates the need to conduct

repeated two-point ray tracing. By ignoring all forward-scattering

rays that are not of the same type as the unperturbed path, the Fréchet

kernel reduces to a compact expression given by (Dahlen et al.

2000):

K (x) = −
1

2πc

√

∣

∣det(M
′ + M

′′
)
∣

∣

×
∫ ∞

0
ω3 |ṁ(ω)|2 sin 	dω

∫ ∞
0

ω2 |ṁ(ω)|2 dω
, (6)

where

	 =
1

2
ωqT · (M

′ + M
′′
) · q − [sig(M

′ + M
′′
) − 2]

π

4
. (7)

The matrices M′ and M′′ are the forward and backward 2 × 2 travel-

time Hessians along the central ray, and q is the location vector of a
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Figure 7. Model norm versus χ2/N for a combination of values of norm

damping ǫ c and smoothing ǫ s. Solutions for ray-theory (solid line) and finite-

frequency (dotted line) tomographies are compared. Symbols—listed in the

legend—correspond to different norm damping parameters. Smoothing in-

creases from upper right to lower left along the curves. The two white dots

indicate the FF and RT solutions, respectively, which are discussed in the

text and in Figs 9–11.

scatterer at x, in ray coordinates (see Fig. 3). The symbols det and sig

denote the determinant and the signature, or the number of positive

minus the number of negative eigenvalues of M′ +M′′, respectively;

ω is the angular frequency and c = c(r ) is the background spherical-

Earth velocity. The kernel for a single, well-isolated seismic phase

depends only upon the sum M′ + M′′ of forward and backward

traveltime Hessians along the central geometrical ray. The quantity

	 (eq. 7) represents the phase delay of the wave scattered from x.

The quantity |ṁ(ω)|2 is the power spectrum of the attenuated syn-

thetic (see Section 2.1) and specifies the frequency content of the

cross-correlated arrivals. This is a reminder that K(x) is the Fréchet

kernel of a finite-frequency traveltime measurement δT . We have

ignored a possible bias in dominant frequency caused by the corre-

lation operator emphasizing the early part of the waveform rather

than a full period.

Written out explicitly, the 3-D integral for the traveltime shift δT

is given by:

δT = −
1

2π

∫ L

0

dl

∫∫ ∞

−∞
dq1dq2(1 + qk∂k ln c)c−2δc

×
√

∣

∣det(M
′ + M

′′
)
∣

∣

∫ ∞
0

ω3 |ṁ(ω)|2 sin 	dω
∫ ∞

0
ω2 |ṁ(ω)|2 dω

. (8)

The limit ±∞ on the transverse integrals over q1, q2 are purely

formal; in practice, the kernel K(x) is negligible except within the

first one or two Fresnel zones about the central ray.

Again, by virtue of the linear interpolation on the tetrahedron

structure (eq. 1), the expression for the traveltime shift δT becomes:

δTi =
∑

j

Ai j

δc j

c j

, (9)
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where the elements of the matrix A are given by:

Ai j = −
1

2π

×
∫

i th path

dl

∫∫ ∞

−∞
dq1dq2(1 + qk∂k ln c)c−1h j (x)

×
√

∣

∣det(M
′ + M

′′
)
∣

∣

∫ ∞
0

ω3 |ṁ(ω)|2 sin 	dω
∫ ∞

0
ω2 |ṁ(ω)|2 dω

,

(10)

with i = 1, 2, . . . , N the datum number, j = 1, 2, . . . , M the

node index and k = 1, 2 the ray coordinate index. In the case of

differential traveltimes δT PP−P = δ(TPP − T P), which is related

Figure 9. Comparison between velocity maps of the smooth, χ2/N = 1.18 model for ray theory (left) and finite-frequency theory (right) at different depths.

The quantity c is the velocity in the reference model shown in Fig. 2. Maps have been ‘wrapped around’ to aid in visualization of patterns both in the Atlantic

and the Pacific Oceans.

to the difference of the individual Fréchet kernels: K PP−P(x) =
K PP(x) − K P (x).

The difference between the ray-theoretical and finite-frequency

approach resides in the elements of the matrix A. In the ray-

theoretical formulation, each row of the matrix A represents the

geometrical ray connecting the source s to the receiver r. The ele-

ments Aij are interpolation weights integrated along the arc length

of the ray i contained in all tetrahedra having node j as a common

vertex. In the finite-frequency modelling, each row of A represents

one Fréchet kernel connecting the source s to the receiver r. There-

fore each element of the matrix Aij can be seen as the integrated

effect of the kernel i contained in all tetrahedra having node j as a

common vertex.
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Typical widths of the sensitivity region (i.e. the diameter of the ring

around the unperturbed geometrical ray) at the turning point of a di-

rect P wave range from about 1000 km to about 1300 km for a 60◦ and

80◦ epicentral distance, respectively. Delay times are relatively in-

sensitive to velocity perturbations close to the geometrical ray. This

region of insensitivity is smaller near the source and receiver but can

extend to about 400 km near the turning point of a P wave at 80◦

epicentral distance, giving the characteristic cross-sectional dough-

nut shape to the banana kernel (Fig. 4a). PP waves show a much

more complicated shape of the sensitivity region than direct P waves

(Fig. 4b). The PP wave from a source to a receiver passes through

a source-to-receiver caustic where it experiences a non-geometrical

π /2 shift; the backward wave from receiver to source passes through

the corresponding receiver-to-source caustic. Upon passage through

these caustics the shape of the kernel changes drastically and does
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Figure 10. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at different depths, for the model with χ2/N = 1.18.

Only changes with absolute value larger than 0.2 per cent are binned. Depth in the histograms is representative of the depth at the bottom of the shell considered

(zbott). There are six shells from the surface of the Earth down to the core–mantle boundary. The number in the corner represents the bottom depth of the shell

in kilometres. For each layer the total number of points of the grid present in that layer (# pts) and their average spacing (davg) are indicated.

not resemble a hollow banana any more. The on-ray PP sensitiv-

ity is identically zero between the source and the source-to-receiver

caustic, and between the receiver and the receiver-to-source caus-

tic; however, it is non-zero between the two caustics (Fig. 4b). The

characteristic zero-to-maximal-to-zero sensitivity variation of the

PP waves along the geometrical ray is due to the jumps in the term

sig(M′ + M′′) π/2 of eq. (7) (Dahlen et al. 2000; Hung et al. 2000).

Steps of integration in the computation of elements of the matrix A

have been dynamically adapted along the kernel to take into account

changes in the size and shape of the sensitivity region.

It is clear from Fig. 4 that a 1-D line integral along a ray is an ex-

tremely crude approximation of the complex sensitivity region of a

PP wave. PP waves are particularly useful in global tomography be-

cause they provide upper-mantle constraints in regions where there

are no sources or receivers. Fig. 5(a) shows the source and station
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distribution of the P waves contained in our data set. Significant

parts of the globe, particularly in the Southern Hemisphere, are

poorly covered by paths. Because of the bounce points, the intro-

duction of PP waves into the inversion significantly enhances the

path coverage in the upper mantle.

Because of the wide span of the sensitivity regions, finite-

frequency waves sample a larger volume of the model than do the

rays. As result, the matrix A for finite-frequency waves is an order

of magnitude less sparse than the one constructed with rays for our

parametrization. Nevertheless, the sensitivity is significant only in

a limited region around the geometrical ray and many of the matrix

elements are small. In Fig. 6 we show a comparison between the

column density for the two matrices. We define the density for a

given node of the grid to be the sum of all the elements of the matrix

in the column corresponding to that node. As expected, the density

is larger and broader for the finite-frequency matrix.

3 T E C H N I C A L A S P E C T S O F T H E

I N V E R S I O N

We simultaneously invert for perturbations in velocity δc/c and in

hypocentral parameters (origin time, longitude, latitude, depth). Our

system of inversion becomes [AH]x = b where H is the matrix

of (ray-theoretical) partial derivatives with respect to the source

parameters and where x = [xc, xh]T now contains both unknown

velocity perturbations xc and source corrections xh. The quantity

b on the right-hand side is the vector of the delay times δT . We

have 5738 sources and the grid consists of 19 279 points giving a

total of 42 231 unknowns and N = 86 405 observations (see Section

2.1). Changes in origin time and source location are computed with

respect to NEIC values.

We have many more data than unknowns, yet due to the sparseness

of the ray distribution, the problem has a partly underdetermined na-

ture. Also, because of errors, the system of equations is inconsistent.

To regularize the inversion, we apply norm damping to the velocity

perturbation xc, which biases to a lower-amplitude solution, and to

the source corrections xh, which limits changes in origin times and

hypocentral location coordinates: the strength of this ‖xc‖ → 0 and

‖xh‖→ 0 norm damping is controlled by two tunable parameter

ǫ c and ǫh. To supplement the norm damping, we also apply sec-

ond derivative damping, ‖Sxc‖ → 0, governed by a parameter ǫ s;

this biases the solution toward smooth velocity variations in every

direction (latitudinal, longitudinal and radial). Due to the irregular

nature of the grid, our smoothing operator is not truly a canonical

second derivative ∇2, since it averages over the total number of near-

est neighbours to a node. In finite-frequency modelling, the effect

of the uneven sampling is reduced by the implementation of kernel

volumes.

How are we going to compare two models obtained with two

different techniques? The least-squares problems in seismic tomog-

raphy can be rephrased in a statistical sense. Given a set of data,

with known standard deviations, we can ask which is the most likely

model from which these data could have arisen. A basic assump-

tion is that data errors are independent and Gaussian distributed,

so that the joint likelihood of obtaining the observed data vector b

(the quantity we want to maximize) is the product of the individual

probabilities. Maximizing the probability is equivalent to minimiz-

ing χ2:

∑

i

(

∑

j Ai j x j − bi

σi

)2

= χ2, (11)

where σ i are the estimated errors in the data.

Each measurement bi is characterized by a grade A, B or C based

on the confidence of the pick and how well the waveforms match.

Each grade corresponds to a different error σ i. A priori estimates of

the σ i values given in the traveltime measurement procedure (Bolton

& Masters 2001) were slightly raised on the basis of the misfits

obtained in preliminary inversions for P and PP–P separately. We

assigned an error σ of 0.44, 0.53 and 0.79 s for P residuals, and

0.75, 0.95 and 1.15 for PP–P residuals to measurements of quality

grades A, B and C, respectively.

To the extent that these errors are normally distributed, and for

very large tomographic problems involving a large number N of

data, the quantity χ 2 is a sum of N squares of normally distributed

quantities, each normalized to unit variance (Press et al. 1992; Parker

1994). Thus a typical value of χ2 for a good fit is χ 2 = N . More

precisely, the χ 2 statistic has a mean N and a standard deviation√
2N . In model space this motivates us to look for solutions which

lie on the boundary of the allowable misfit region, i.e. where χ2 = N .

Ray-theoretical and finite-frequency tomography will have different

regions of allowable misfit. We compare models which have exactly

the same χ 2, with χ2 ≈ N .

The least-squares system we are minimizing can finally be ex-

pressed as:

χ 2 + ǫc‖xc‖2 + ǫh‖xh‖2 + ǫs‖Sxc‖2 = minimum, (12)

where ǫ s and S are the smoothing factor and smoothing operator,

respectively. The three damping factors (ǫ c for the model norm,

ǫh for the hypocentral parameters and ǫ s for the smoothing) define

a 3-D space. Each point in this space corresponds to a particular

solution, and models with the same χ 2 span 2-D surfaces. We ex-

perimented with changing both the damping ǫ c and the smoothing

ǫ s, while keeping the damping factor ǫh constant at a value that

yields hypocentral corrections of realistic magnitude. In our inver-

sion, the norm damping (ǫh) applied to the hypocentral part of the

solution is such that 95 per cent of the changes in the origin time

lie between ±1.2 s and 95 per cent of the hypocentral coordinates

between ±14 km. The actual value of the damping factors has no

direct physical meaning, and their effect depends greatly on the

eigenvalue distribution of the matrix A. Their function is only to

let us navigate between the model norm, smoothness and the data

fit. Though it is possible to obtain damped solutions by halting the

iterative matrix solver before full convergence has been obtained,

such solutions are less than optimal (in the sense that a lower model

norm could be obtained for the same χ2) and we have always made

sure that our solutions iterated to full convergence. Our experience

confirms that, because of their differential nature, PP–P data are in-

sensitive to source parameters. We also found that finite-frequency

inversion requires much smaller values for damping and smoothing

parameters to achieve the same χ 2.

4 I N V E R S I O N R E S U LT S

We first investigate the sensitivity of the misfit, as measured by χ 2

divided by the number of data (χ 2/N), to the model norm |xc|2 for

both inversion formulations, by obtaining a series of models corre-

sponding to different values of ǫ c and ǫ s. Fig. 7 shows these solu-

tions in a plane of |xc|2 versus χ2/N . Solid lines correspond to the

ray-theoretical solutions, dashed lines denote the finite-frequency

version. It is clear that a very similar trade-off exists for both the-

ories. This graph does not tell the whole story, though, since the

smoothness of two models is different even if they occupy the same

location in this graph. Therefore, we plot the smoothness versus
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Figure 11. (Left) Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF, dashed line) and ray-theoretical tomography (RT,

solid line). Right: Correlation coefficient between the finite-frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is

χ2/N = 1.18.

the model norm in Fig. 8 for a series of solutions obtained at a

fixed value of χ 2/N = 1.18 (the vertical line in Fig. 7). Here the

large difference between ray-theoretical and finite-frequency solu-

tions becomes evident: for the same smoothness (a proxy for spectral

content), the finite-frequency models exhibit significantly larger-

amplitude anomalies.

In the following, we shall further investigate two models out of the

family shown in Fig. 8, denoted by FF (finite frequency) and RT (ray

theory), respectively. Fig. 9 shows these two P-wave velocity pertur-

bations with respect to our background model for ray theory (left)

and finite-frequency (right) at different depths. The two models are

constrained to have the same data misfit, χ2/N = 1.18, and the same

spectral content, ‖S xc‖/‖xc‖ = 0.16. One can, by eye, confirm the

aggregate result of Fig. 8 for individual anomalies. This is further

quantified in Fig. 10, where we show the ratio (δc/c)FF/(δc/c)RT for

those anomalies that are significantly different from zero (|δc/c| >

0.2 per cent) Clearly, the average ratio is larger than 1 with a tail in

the distribution extending well beyond 2, especially as the depth in-

creases. In the deepest layer (2408–2889 km depth) the average ratio

is as large as 1.5, with the larger values belonging to smaller anoma-

lies, as expected. The ratio decreases toward the surface, where it is

of the order of 1.3. This decrease is also expected, since the kernels

become narrower for shorter ray paths that are mostly located at

shallower depths.

The effect of finite-frequency theory is less when we do not restrict

our attention to the more significant anomalies. Fig. 11 allows one

to inspect how the difference in root-mean-square (rms) value of the

anomalies depends on depth. An average discrepancy of about 20

per cent or less (Fig. 11a) is present between the average absolute

value of the velocity changes in the two models. A slight depth

dependence is visible because the absolute difference between FF

and RT remains the same while the rms decreases to a minimum

near 2000 km depth. The correlation coefficient (Fig. 11b) between

the models is above 0.9 at all depths. We conclude from this analysis

that the effects of finite-frequency theory are especially important

for significant anomalies of small size.

To confirm that the incorporation of finite-frequency sensitiv-

ity kernels makes more of a difference for the smaller significant

anomalies, we increased the power of the small anomalies by re-

ducing ǫ s and compared models for which χ2 was lower—in this

case equal to N exactly. Fig. 12 shows the comparison of the ray-

theoretical and finite-frequency tomography as a function of depth

for this χ 2/N = 1 case. Again, both solutions have the same rough-

ness or spectral content, in this case ‖S xc‖/‖xc‖ = 0.64. Nu-

merous small-scale heterogeneities appear in the model. The in-

spection of the two solutions shows even more clearly the signifi-

cantly larger amplitudes of the finite-frequency model. Because of

the presence of small-scale anomalies at all depths, finite-frequency

velocity changes are now on average about 1.7 times larger than the

corresponding ray-theoretical ones at the base of the mantle (2408–

2889 km depth). As in the case of the χ2/N = 1.18 model, the ratio

decreases only mildly toward the surface, becoming as high as 1.6

(Fig. 13). A large difference is also visible in the rms (Fig. 14). In

this case, the finite-frequency analysis enhances the rms velocity

anomalies by about 25 per cent or more near the base of the mantle

(Fig. 14a). The two χ 2/N = 1 models are less well correlated, espe-

cially near the base of the mantle where the correlation coefficient

reduces to 0.6.

The reader might wonder why we did not choose the model with

χ 2/N = 1 in the first place. A look at Fig. 7 shows that there is a sig-

nificant increase in model norm between the two values of the model

misfit. This implies that many of the extra details (and the reduced

correlation between FF and RT) hinges on our choice of a priori

errors in the data, which admittedly are not cast in stone. William
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Figure 12. Comparison between velocity maps of the rough, χ2/N = 1 model for ray theory (left) and finite frequency (right) at different depths. Maps have

been ‘wrapped around’ to aid visualization of patterns both in the Atlantic and the Pacific Oceans.

of Occam’s dictum that the simplest hypothesis is the preferred one,

leads us to prefer the much simpler images in Fig. 9, which would

be equivalent to χ 2 = 1 if we underestimated the standard errors in

the data by only 9 per cent. From Fig. 7 it is, however, clear that a

further reduction in ‖xc‖ can only be obtained at the expense of a

much larger χ2/N .

We performed one final test to investigate the influence of the

model parametrization on the inversion. To verify that our previous

observations are independent of the chosen grid, we performed an

inversion with a much finer parametrization of 39 048 points (i.e.

approximately twice as many). The distribution of the nodes is, as

before, roughly proportional to the expected resolving length of our

data. The distance among the more closely spaced nodes ranges from

about 100 km at the surface to about 600 km near the core–mantle

boundary. None of the conclusions reached earlier were affected

by this test. We do see small differences in the velocity anomalies,

mainly at shallow depths. The original parametrization with 19 279

nodes was evidently fine enough to capture the smaller structure that

is affected by finite-frequency effects.

We personally do not believe that ‘variance reduction’ is a par-

ticularly useful parameter to evaluate a tomographic inversion. It is

as much a measure of the adequacy of the starting model as it is

a measure of goodness of fit of the final solution. However, since

other global tomographic models are often specified in terms of their

variance reduction, we give our values here. Both inversions with

the 19 279-point grid have a variance reduction of about 84 per cent
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Figure 13. Histograms showing the ratio between finite-frequency and ray-theoretical velocity changes at different depths, for the models with χ2/N = 1.

Only changes with absolute value larger than 0.2 per cent are binned. There are six shells from the surface of the Earth down to the core–mantle boundary. The

number in the corner represents the bottom depth of the shell in kilometres.

for χ 2/N = 1.18, and of about 87 per cent for χ 2/N = 1. In both

cases, roughly half of the variance reduction is due to the velocity

anomalies and half is due to the hypocentre corrections.

5 D I S C U S S I O N

Even though this tomographic study is primarily meant to study the

difference between ray-theoretical and finite-frequency inversions,

the results obtained are of enough interest that we also offer a few

speculations. A more extensive discussion of the velocity structure,

including a rigorous resolution analysis, is given in an already pub-

lished tomographic study in which we combined the long-period

data with short-period data from the ISC (Montelli et al. 2004).

There is a remarkable agreement between the low-velocity

anomalies in the finite-frequency model (FF) and the locations of

well-known hotspots visible both in the maps (Fig. 9) and in the

cross-sections (Fig. 15). A list of major hotspots with their location

is given in Table 1. We distinctly see Easter Island, Tahiti, Hawaii,

Bouvet, Kerguelen, Azores, the Canary Islands, Cape Verde, Tibesti,

Kilimanjaro, Galapagos and Ascension.

Fast velocity anomalies with amplitudes above 1 per cent are ob-

served beneath Tonga-Kermadec, Tasmania, Java and below Asia,

the latter presumably identifiable as the Tethys slab (Grand 1994;

Van der Hilst et al. 1997; Grand et al. 1997; Bijwaard et al. 1998;

Van der Voo et al. 1999; Gu et al. 2001). Also clear is the famil-

iar signature of the Farallon Plate migrating eastward with depth

(Grand 1994; Grand et al. 1997; Van der Hilst et al. 1997; Mégnin &

Romanowicz 2000). At 1800 km depth the high-velocity anomalies

below North and South America begin to disappear while becoming

more pronounced below Central America in the lowermost mantle.

In the lowermost mantle the pattern of heterogeneity is domi-

nated by two large-scale slow-velocity anomalies, one in the eastern
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Figure 14. Left: Root-mean-square velocity perturbation δc/c versus depth for the finite-frequency (FF, dashed line) and ray-theoretical tomography (RT, solid

line). Right: Correlation coefficient between the finite-frequency and ray-theoretical models versus depth. The data fit criterion in both inversions is χ2/N = 1.

Atlantic Ocean and one under the South Pacific (Dziewonski et al.

1991, 1993; Grand 1994; Su et al. 1994; Liu & Dziewonski 1998;

Masters et al. 1996; Ritsema et al. 1999; Mégnin & Romanowicz

2000; Romanowicz & Gung 2002), as well as by fast velocity un-

der the circum-Pacific common to many other tomographic models

(Grand et al. 1997). Both slow regions are loci of major hotspots. The

South Pacific ‘superswell’, which is considered to be an exhausted

remnant of the Mid-Cretaceous upwelling beneath the Pacific Basin

(Larson 1991; McNutt 1998), underlies Easter Island, Tahiti and

Samoa (Fig. 15b). The Atlantic ‘superswell’ contains Kerguelen,

the African superplume, the African hotspots, Cape Verde and the

Canary Islands, and extends all the way to the North Sea; with a

clear signature of the shallow Jan Mayen seamount connected with

a deeper anomaly below Greenland (Figs 9, 15a, c and d).

Crough & Jurdy (1980) removed subduction-related geoid highs

from the observed geoid and found a residual field which has a sim-

ple form of two large, elliptical highs surrounded by lows. Broad

residual geoid highs are in the central Pacific and the Africa/eastern

Atlantic region, in perfect correlation with the regions of highest

hotspot concentration. Because hotspots are regions of mantle up-

welling, they can contribute significantly to geoid anomalies. The

two low-velocity anomalies in the finite-frequency velocity map

(FF) are very well correlated with the geoid highs of Crough &

Jurdy (1980).

Many features are visible both in the ray-theoretical and finite-

frequency inversions. However, the continuity of anomalies is gen-

erally greater for the finite-frequency images. Also, the finite-

frequency tomographic images provide compelling evidence that

many hotspots are fed from the lower mantle (Fig. 15). The Pa-

cific superplume seems to feed the spreading of the South Pacific,

whereas the Atlantic megaplume feeds the spreading not only of the

North and South Atlantic but also of the Indian Ocean, through a

clearly visible conduit ‘leaning’ toward Kerguelen (Fig. 15d). The

interaction of the African superplume with both the mid-Atlantic

Ridge and the mid-Indian Ridge is present in the shear velocity

models obtained previously by Ritsema et al. (1999), Mégnin &

Romanowicz (2000) and Romanowicz & Gung (2002).

Major hotspots which do not seem connected to a lower mantle

plume include Afar, Ascension, Etna, Galapagos, Iceland, Kiliman-

jaro, Madeira, Reunion and Tristan. These all seem to originate in the

mid-mantle. Indications that Iceland is not a deep-seated anomaly

have already been presented by Ritsema et al. (1999), and a shal-

low origin was argued from indirect evidence by Foulger & Pearson

(2001), Foulger et al. (2001) and Foulger (2003). The result of our

inversion confirms these observations and clearly contradicts the

finding of Bijwaard & Spakman (1999), who proposed an Iceland

plume extending all the way to the core–mantle boundary.

6 R E S O L U T I O N

To determine the reliability of our tomographic images and to com-

pare the resolving power of finite-frequency and ray-theoretical in-

versions for relatively small-scale structures, we have performed a

limited number of resolution tests using synthetic plumes. We in-

troduce velocity anomalies having the form of vertical cylinders

at the location of known hotspots: Iceland, Ascension, Kerguelen,

Hawaii, Tahiti and Easter Island. The input velocity perturbation is a

circularly symmetric Gaussian centred on the cylindrical axis of the

hotspot. The highest velocity perturbation in the centre of the cylin-

der is defined by following the pattern for temperature derivatives

of P-wave velocities in the mantle as a function of depth given by

Karato (1993). Assuming a temperature T = 300 K at the centre of

the plume, the maximum input velocity perturbation is −2.4 per cent

above 600 km depth, −1.2 per cent between 600 and 1000 km depth,
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Figure 15. Cross-sections of the finite-frequency model with χ2/N = 1.18. The top figure shows the four great-circle paths. Letters (a)–(d) on the paths

match the plots below. (a) Cross-section across Greenland and Iceland (pole location 94.82◦W, 11.57◦N). (b) Cross-section through the Pacific superwell (pole

location 96.50◦E, 62.44◦N). (c) Cross-section across La Reunion and the African hotspots (pole location 125.39◦W, 45.09◦N). (d) Cross-section across the

Atlantic superwell and Hawaii (pole location 90.94◦W, 41.16◦N). Two-letter hotspot identifiers are listed in Table 1.
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Table 1. List of major hotspots clearly seen in our tomographic images

(locations are from W. Jason Morgan, personal communication 2003).

Hotspot Latitude Longitude Label

Amsterdam 38.7◦S 77.5◦E AM

Ascension 7.9◦S 14.3◦W AS

Azores 37.9◦N 26◦W AZ

Bouvet 54.4◦S 3.4◦E BV

Canaries 28.2◦N 18◦W CA

Cape Verde 14.9◦N 24.3◦W CV

Easter Is. 26.8◦S 107.6◦W ES

Kerguelen 49.6◦S 69◦E KG

Hawaii 19.1◦N 155.1◦W HW

Guadalupe 26.8◦N 112.4◦W BC

Iceland 64.4◦N 17.3◦W IC

Kilimanjaro 3◦S 37.5◦E KL

Madeira 32.7◦N 17◦W MA

Reunion 21.2◦S 55.7◦E RE

Tahiti 18.1◦S 148.3◦W TH

Tasmania 40.8◦S 146◦E TA

Tibesti 20.8◦N 17.5◦E TI

Yellowstone 44.5◦N 110.4◦W YW

and −1 per cent below 1000 km depth. The corresponding velocity

perturbation is assigned to each point of the grid lying within the

cylinder. Because of the tetrahedral nature of our parametrization,

the input velocity model deviates slightly from a smooth cylinder,

depending on the distribution of model nodes within and near the

synthetic plume.

The radius of the input cylinders is roughly the same as the quasi-

cylindrical anomalies in the smoother tomographic model (Fig. 9),

i.e. the standard width of the Gaussian is about 500 km. To verify the

vertical resolution we performed two kinds of test. In the first test,

the synthetic hotspots reach the core–mantle boundary (Fig. 16a); in

a second test, they are confined to depths above 660 km, to simulate

plumes originating in the upper mantle (Fig. 16b). These tests allow

us to examine whether the absence of a plume tail at great depth is

due to a lack of resolution, and whether a deep feature is due to the

leakage of a shallow anomaly to a greater depth in the mantle. Syn-

thetic delay times are computed using finite-frequency theory, and

inverted using both ray theory and finite-frequency kernels (Fig. 16,

‘exact data’). The same tests are then repeated adding normally dis-

tributed random noises to the synthetic residuals (Fig. 16, ‘noise

added’).

Overall we have adequate resolution at almost all synthetic

hotspot locations to recover the shape and depth extent of the anoma-

lies, no matter whether they are shallow or deep. A comparison by

eye of the results shows that finite-frequency analysis tends to more

faithfully recover the amplitude of the anomalies. This is further

quantified in Fig. 17, where we show the finite-frequency and ray-

theoretical maximum values of the reconstructed velocity anomalies

δc/c for each synthetic hotspot as a function of depth for plumes of

500 km radius (Fig. 17a) and 300 km (Fig. 17b) respectively. In

general, the amplitudes recovered using finite-frequency theory are

greater than those recovered using ray theory, as we observed in the

tomographic models. In absolute terms, the difference is larger in

the upper mantle. In relative terms, the effect of finite frequency

is still larger in the lower mantle, provided the damping does not

prevail, as it does for many synthetic plumes in the Southern Hemi-

sphere. For Iceland, the best resolved synthetic plume, the finite-

frequency perturbations are a factor of 1.2 times larger than the

ray-theoretical ones in the upper mantle, and 1.3 times larger in the

lower mantle. The lack of resolution in the lower mantle is more

evident with smaller-scale plumes, such as those of 300 km radius

used in Fig. 17(b). Deep anomalies beneath Kerguelen, Tahiti and

Ascension seem to be particularly poorly resolved; the same is true

for a shallow anomaly beneath Kerguelen (Fig. 16b). We attribute

this poor resolution to a lack of ray path coverage in these partic-

ular regions, visible also in Figs 5 and 6. Montelli et al. (2004)

have further improved the resolution with the introduction of the

high-frequency data (ISC delays).

7 C O N C L U S I O N

We have introduced 3-D finite-frequency Fréchet sensitivity ker-

nels into global P-wave tomography, and compared the results with

the corresponding tomographic images obtained using conventional

seismic ray theory. We inverted P and PP–P cross-correlation trav-

eltimes of 20 s dominant period. The results demonstrate that finite-

frequency analysis of such long-period waves significantly affects

the final images. The amplitudes of the velocity perturbations in

our finite-frequency model are 30–50 per cent higher than those

obtained with ray theory, depending upon the depth and size of

the heterogeneity. This demonstrates that the neglect of wave front

healing effects is a major shortcoming of ray theory. Finally, the

results in this paper show that it is possible, even with Fresnel zone

seismic waves with wavelengths of the order of 1000 km, to im-

age structures as narrow as mantle plumes. While some plumes are

still visible in the ray-theoretical inversion, properly accounting for

finite-frequency wave-front healing effects leads to an increase in

anomaly amplitudes, which raises the signal-to-noise ratio to signif-

icant levels. It is likely that other improvements also contributed to

our success in imaging plumes. The correction for timing errors may

have repaired the data somewhat, but we do not suspect these er-

rors to have been disastrous. Also, the use of the unstructured grid,

adapted to the decreased resolution at depth, plays an additional

important role in delineating anomalies at the limit of resolution.
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Figure 16. Resolution tests for six of the major hotspots observed in the tomographic images. Left: Recovered velocity model (Actual) for χ2/N = 1.18.

Right: Resolution tests—from left to right we present the input model (Input), the recovered model obtained by inverting the synthetic delay times δT using the

ray-theoretical inverse (RT out) and the finite-frequency inverse (FF out), respectively. The rightmost two columns show the corresponding recovered models in

the case where we invert the synthetic residuals after the addition of normally distributed random noise. Panel (a) shows the results with the synthetic hotspots

reaching the core–mantle boundary; panel (b) shows the results with the hotspots originating in the upper mantle (around 660 km depth). Two-letter hotspot

identifiers are listed in Table 1.
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Figure 17. Difference between the finite-frequency and ray-theoretical maximum velocity perturbation δc/c as a function of depth for the six plumes shown

in Fig. 16. Synthetic times are obtained by using finite-frequency modelling. No random errors were added in this case. Two-letter hotspot identifiers are listed

in Table 1. Panel (a) shows the results of the test done with synthetic plumes with 500 km radius, (b) shows the results with plumes of 300 km radius.
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