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Abstract

Background: The importance of stochasticity in cellular processes having low number of molecules has resulted in

the development of stochastic models such as chemical master equation. As in other modelling frameworks, the

accompanying rate constants are important for the end-applications like analyzing system properties (e.g.

robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually

limited and the model identification routine typically includes parameter estimation from experimental data.

Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for

the chemical master equation. In addition, recent advances in measurement technology have made the

quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop

practical and effective methods for estimating kinetic model parameters in the chemical master equation and

other stochastic models from single cell and cell population experimental data.

Results: Three parameter estimation methods are proposed based on the maximum likelihood and density

function distance, including probability and cumulative density functions. Since stochastic models such as chemical

master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo

realizations are computationally practical, specific considerations are given to account for the effect of finite

sampling in the histogram binning of the state density functions. Applications to three practical case studies

showed that while maximum likelihood method can effectively handle low replicate measurements, the density

function distance methods, particularly the cumulative density function distance estimation, are more robust in

estimating the parameters with consistently higher accuracy, even for systems showing multimodality.

Conclusions: The parameter estimation methodologies described in this work have provided an effective and

practical approach in the estimation of kinetic parameters of stochastic systems from either sparse or dense cell

population data. Nevertheless, similar to kinetic parameter estimation in other modelling frameworks, not all

parameters can be estimated accurately, which is a common problem arising from the lack of complete parameter

identifiability from the available data.

Background
Mathematical models form a cornerstone of systems

biology and these models are usually constructed from

available biological knowledge and data, which once

validated, are subsequently analyzed to address specific

biological questions. Many canonical modelling frame-

works, from statistical Bayesian networks to differential

equations, have been applied to capture a wide-variety

of biological behaviours. Specifically, the dynamics

related to cellular processes that involve low copy

number of molecules, such as mRNA transcription, are

best described as random and noisy events [1]. For

example, cells in an iso-genetic population do not neces-

sarily assume the same biological state, but rather exhi-

bit variegated genetic expressions [2,3]. In these

examples, the distribution of cells is simulated by sto-

chastic models that describe the probability density

function (PDF) of cellular states. However, unlike differ-

ential equation models, the identification of stochastic

models from experimental data of single cell or cell

population data are not yet routine.

Despite the availability of high-throughput cell biology,

the estimation of unknown (kinetic) model parameters
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from experimental data is still considered as the bottle-

neck in biological model identification, especially for

dynamical models [4,5]. The difficulty is generally attrib-

uted to the informativeness of the data, or the lack

thereof, a property that is proportional to not only the

quantity, but also the quality of data. Furthermore, in

dynamical models, the time resolution of data is natu-

rally of great importance. In recent years, advances in

bio-imaging allow for real time measurements of cellular

components such as mRNAs and proteins in individual

cells through the use of fluorescent proteins [2,3,6-8].

Such measurements provide more in-depth and infor-

mative data about the states of a cell and variability in a

cell population, than the traditional lumped measure-

ments from cell culture lysate or tissue homogenate.

The purpose of this work is to develop practical meth-

ods that can efficiently use these data in the parameter

estimation framework for stochastic biochemical

systems.

Chemical master equation (CME) is the most com-

monly adopted modelling framework to describe stochas-

tic cellular dynamics [1-3] and thus is used as a

benchmark application in this work. The estimation of

unknown kinetic parameters from data in CME and

other stochastic models has not been adequately

addressed in the literature. Many of the published CME

models use rate constants that are scaled from determi-

nistic parameter values or selected ad-hoc to replicate

desired behaviour. Since the low-copy-number random

events can generate dynamics that are characteristically

different from those in thermodynamic or deterministic

limit [9,10], deterministic model parameters identified

from data collected under this limit or averaged over cell

populations can be misleading. Furthermore, fitting

deterministic models (e.g. ordinary differential equation)

to stochastic data has been shown to give poor parameter

estimates and model prediction [11]. Among the existing

parameter estimation methods for stochastic biological

models, some rely on Bayesian inference based on the

stochastic differential equation [12,13], while others are

based on maximum likelihood (ML) methods. One ML

method obtains parameter estimates by fitting transition

density functions of stochastic differential equations in

biochemical pathways [11]. A similar approach based on

the ML of transitional probabilities requires measure-

ments of the state trajectories at very fast sampling rate,

whereby reactions are assumed to occur at most twice in

a sampling time interval [14]. The fast sampling require-

ment makes this approach impractical, since biological

data are typically sparse.

In this work, three kinetic parameter estimation meth-

ods for stochastic models were developed based on two

criteria: maximum likelihood (ML) and density function

distance (DFD). Two scenarios of practical application

were considered involving both sparsely and densely

populated datasets (i.e. low and high replicates). Since

the distribution density functions are commonly con-

structed using histograms, an important aspect related

to the binning strategy and the noise associated with

finite sampling, has been incorporated in the parameter

estimation framework. The efficacy of each method was

evaluated and compared based on applications to three

CME case studies: RNA dynamics in Escherichia coli,

gene expression network of galactose uptake model in

Saccharomyces cerevisiae, and a bimodal system com-

prising of a genetic toggle switch in E. coli. Despite the

use of CME models here, the methods are generally

applicable to other stochastic models in which the sys-

tem behaviour or output can be characterized by a PDF

of the states.

Methods
Chemical Master Equation

Consider a well mixed volume Ω containing N species

participating in M biochemical reactions. The CME of

this system is given by [15]:

dP t t

dt
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where the state x is an N-dimensional vector indicat-

ing the number of molecules of each species in the

volume Ω, the density function P(x, t|x0, t0) denotes the

probability that the system assumes the state configura-

tion xj at time t, given the initial condition x0 at time t0,

the vector νj gives the stoichiometric change in the

molecular count of each species due to a single j-th

reaction event, and k is the kinetic parameter vector.

The function aj(x, k) is known as the propensity func-

tion, where aj(x, k)dt gives the probability of the j-th

reaction to occur in the time interval t and t+dt given

the state x and parameters k. Due to the curse of

dimensionality with increasing number of reacting spe-

cies, the analytical solution of a CME is usually difficult,

if not practically impossible, to obtain even for moder-

ately sized systems [16].

In this work, Stochastic Simulation Algorithm (SSA)

[16] was used to generate in silico experimental data for

the purpose of parameter estimation and to solve for

the PDF of the CME model. Briefly, at any given time

and state configuration, the algorithm takes two uniform

random numbers, from which the time to the next reac-

tion and the reaction index are determined as a function

of the propensities [16,17]. The histogram should reflect

the true state PDF in the limit of the number of realiza-

tions tending to infinity. Since only a finite number of
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data samples are computationally feasible and experi-

mentally practical, the error associated with histogram

binning strategy is important, but this is not often dis-

cussed in existing literature of the CME. The shape of

the resulting density function is known to be sensitive

to the number and size of the bins, and the optimal bin-

ning distribution need not be of uniform sizes [18].

Characteristic features of a distribution such as bimodal-

ity may not be apparent when using bins that are too

wide, while histograms can be significantly affected by

random fluctuations associated with a small number of

data points in bins that are too narrow. Although there

is no hard and fast rule on the selection of bin sizes, the

minimum number of realizations in each bin should

typically range between 5 and 20 [19]. Unless stated

otherwise, the histograms here are constructed such that

each bin contains no fewer than ten occurrences. The

noise due to the histogram construction using finite size

random sample will be taken into account in the para-

meter estimation below.

In practice, the choice of numerical solvers for model

equations determines the performance of any parameter

estimation methods. For CME, there has been a tremen-

dous development of numerical algorithms for computing

the PDF solution, directly [20-22] or indirectly [15,16,23].

The SSA was selected in this work because this algorithm

is equivalent to the CME [16,17], motivating its use to

generate in silico data. Consequently, the CME model was

also solved using SSA, such that the efficacy of the pro-

posed methods can be evaluated independently from the

solvers. In this case, deficiencies of SSA will appear equally

in both in silico data and the model solution.

Parameter Estimation Methods

The methods developed here are formulated as a mini-

mization of distance measures between model predic-

tions and experimental data. The first method makes

use of the common likelihood function and the second

involves a distance metric between density functions as

predicted by the CME and the data. When experimental

error is known or can be determined from data, this

noise should be accounted for in the PDF solution. In

this work, the error is assumed to be independent and

identically distributed (i.i.d.) random samples from a

normal distribution with zero mean and variance s2 (N

(0,s2)), which are then added to the SSA realizations.

Maximum Likelihood (ML) Method

The first estimation criterion is the likelihood function

given by

L f i
j
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lihood function f i
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model, which in this case is evaluated from the density

function histogram of SSA realizations. The parameter

estimation is then formulated as maximization of the

likelihood function given by
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where P(o, ti|x0, t0) is the state PDF reconstructed

from SSA simulations, with added Gaussian i.i.d. noise ε

Î N(0,s2) when appropriate, i.e. the state trajectory is

simulated as o = x + ε rounded to the nearest integer.

For brevity, from hereon P(o, ti|x0, t0) will be denoted

by P(o, ti). Specific details of the accounting of experi-

mental errors can be found in the description of the

case studies in the results section. To avoid numerical

underflows, the log-likelihood formulation of the objec-

tive function (3) is used in this work, giving
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Density Function Distance (DFD) Method

The next two estimation methods are based on the

minimization of state density function distance, similar

to a divergence measure between two distribution func-

tions, such as the Kullback-Leibler distance [24]. In par-

ticular, two estimation criteria are considered using the

probability density function and cumulative density

function (CDF). In the PDF distance method, the objec-

tive of the parameter estimation is to minimize the dif-

ference between the PDF of the experimental data and

SSA simulations, as follows

k
o o

k
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where Pe(ol, ti) denotes the experimental PDF con-

structed using a histogram with L bins and ol is arbitra-

rily taken to be the centre of each bin. Unless stated
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otherwise, the binning strategy is referenced to the

experimental data and the same binning distribution is

used for the SSA simulations. The last bin represents an

extra degree of freedom due to normalization of the

sum (integral) of the PDF to 1, and thus not included in

the optimization procedure. The weighting factor s l i,
2 is

an estimate of the variance of the l-th bin probability at

time ti arising due to finite random sampling. The pro-

cess of classifying N elements from either the experi-

mental data or SSA realizations into bins of a histogram

can be assumed as a binomial process and thereby the

variance of the bin frequency is computed according to

s
P t P t

N
l i

e l i e l i
,

, ,
.2

1
=

( ) − ( )( )o o
(6)

As a reliable construction of a PDF typically requires a

large number of replicates, the PDF distance may not be

appropriate when only few replicates of data are avail-

able. On the other hand, the ML method above can be

applied to datasets with low replicates, as it does not

require the construction of a density function from the

experimental data.

The second criterion considers the minimization of

the differences between the CDF constructed using the

experimental data and the SSA realizations, given by
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where the CDF Fe(ol, ti) gives the probability to obtain

an experimental observation o <ol, and Fe(ol, ti) and

F(ol, ti) denote the CDF constructed from the cumulative

sums of the PDF, P te k i
k

l

o ,( )
=

∑
1

and P tk i
k

l
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,

respectively. Similar to the PDF criteria, the weighting fac-

tor Sl i,
2 is estimated using a binomial assumption to give
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The binning distribution can be kept the same as the

PDF, but this need not be necessarily so. Unlike PDF,

the shape of CDF is less sensitive to noise from finite

sampling, with the exception of the tail ends of the CDF

near the minimum and maximum values of the states.

An alternate formulation with a finer binning strategy

gives a similar performance to the objective function

above (data not shown). The lesser sensitivity to noise

also makes the CDF distance method applicable to

sparse datasets (low replicates), in which case the bin-

ning strategy is done based on the SSA realizations.

Global Optimization Algorithm

Aside from model solvers, the effectiveness of any para-

meter estimation methods also depends on the ability to

find the global optima to the minimization problems. In

the case of stochastic models, the error landscape is

anticipated to be highly stochastic due to noise from

finite experimental data points, which prevents the use

of any optimization algorithms involving gradient

search. Here, a variant of evolutionary algorithms, called

Differential Evolution (DE), is used as a general purpose

global optimization algorithm. This method can effec-

tively handle diversified objective function planes [25],

and like other evolutionary algorithms such as genetic

algorithm (GA), DE starts with a random population

member and looks for the global optima by generating

new population members using successive recombina-

tion and mutations based on the original parent popula-

tion. However, unlike GA, DE uses floating point

instead of bit string encoding, and arithmetic operations

instead of logical rules, thereby providing a greater flex-

ibility in the parameter search. Among the settings of

DE, the population size and total number of generations

are tuned in the case studies below based on the dimen-

sionality of the problem (i.e. number of parameters) and

the choice of parameter estimation method, respectively.

The remaining parameters are maintained at previously

suggested values [25]. The convergence and termination

of the optimization can be based on the improvement of

the best objective function in the population, standard

deviation of the population vector, or maximum differ-

ence between the best and worst population member. A

combination of several of these criteria can provide an

efficient and robust termination criterion [26]. Since the

case studies considered in this work involve in silico

data with known true parameters, a maximum iteration

number is used as a termination criteria and the efficacy

of each method is judged based on the accuracy of the

respective estimates.

The SSA and DE algorithms were implemented using

Message Passing Interface (MPI) in C++ and run on a

Linux IBM computing cluster (CentOS; GNU C++ com-

piler (v4.1.1)). A combination of a long period random

number generator [27] and multiple independent

streams generator [28] were used to guarantee statisti-

cally independent streams of random numbers required

for both the SSA and DE.

Results
Case Study 1: RNA dynamics in E. coli

The significance of intra-cellular noise arises from the

low copy number of genetic materials and gene tran-

scriptional machinery. Thus, the quantification of

mRNA would experience a greater influence of such

noise than that of proteins, which may have thousands
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of copies. A high resolution fluorescence microscopy

method has been developed to quantify the molecular

count of mRNAs in individual Escherichia coli cells [6].

This method is based on the amplification of MS2d-

fused fluorescence protein signal by binding to a repor-

ter RNA that has multiple MS2d receptor sites (Figure

1A). The transcriptional response was shown to rise and

plateau after 70-80 minutes post induction [6]. The

molecular counts of the transcripts were obtained by

normalizing the fluorescence flux with that generated by

a single tagged RNA molecule. A mass-action kinetic

model of the average mRNA level was used to fit the

experimental data to obtain the kinetic parameter values

[6].

The first case study uses the CME model correspond-

ing to the reactions and kinetic parameters proposed in

the original work, as shown in Figure 1B and detailed in

supplementary data [Additional File 1: Supplementary

Table S1] [6]. Considering this model to be the true sys-

tem, four experimental datasets of mRNA copy numbers

with different replicates (m = 10, 20, 100, and 10,000)

were simulated using the SSA. The simulated data were

contaminated with measurement errors arising due to

the normalization of the fluorescence flux, were taken to

be discrete rounded values of normal random samples N

(0,0.25), consistent with the actual wet-lab experiments

[6]. The mRNA transcripts per cell generation were

recorded every 0.5 minutes until 75 minutes, mimicking

the original experimental protocol.

The parameter search was constrained to a space

bounded by k Î [0,5]. The density functions predicted

by the CME were constructed using 10,000 SSA realiza-

tions with added i.i.d and N(0,0.25) noise. In the case of

low replicate datasets (m = 10, 20, and 100), only the

DFD-CDF method was applied, in which the CDF of the

experimental data was constructed according to: [19]

F o t
l

m
e l i,

.
,( ) =

− 0 5
(9)

where l now denotes the index of the state in replicate

vector after arranging the data in ascending order (i.e.,

o1 ≤ o2 ≤ ...≤ om). This construction implicitly uses the

differences between sorted data values as the bin sizes.

As stated earlier, since the DFD-PDF method requires

the histograms of experimental data, which in the case

of low replicate datasets, are highly inaccurate, this

method was only performed for cell population data

(m = 10,000). The DE optimization was implemented

with a population size of 30 (10 × the number of para-

meters) for 4,000 generations and the optimization rou-

tine took about 1.5 hours for completion.

Table 1 presents the parameter values estimated using

the ML and DFD methods for all datasets. In general,

the parameter estimates were closer to the true values

with increasing number of replicates, as expected from

the increase of information with higher replicates. The

DFD(-CDF) method generally performed better than the

ML. Amongst the parameters, k1 is the most accurately

determined parameter by all methods. At higher repli-

cates, the DFD-CDF method converged to the true solu-

tion faster than the PDF and ML methods, in this order,

which could be attributed to the difference in the shape

of the objective function surface. As seen in Figure 2A

and 2C, the DFD-CDF criterion produced a higher sur-

face curvature (second derivatives) than those of ML

and DFD-PDF (Figure 2B, D and 2E). Using a larger

population size and higher number of iterations (100

population members and 20,000 generations), the ML

method was able to match the accuracy of the CDF esti-

mates (see Table 1, m = 10).

Case Study 2: Galactose uptake model in S. cerevisiae

The inherent stochastic nature of gene expression can

lead to diversified responses in a (clonal) cell population,

even when subjected to uniform external conditions.

Genetic construct of RNA expression in E. Coli 

Reaction Scheme

Figure 1 mRNA Dynamics Model in Escherichia coli. (A) The

mRNA detection system comprises two genetic elements; a

fluorescence protein fused with bacteriophage protein (MS2d) and a

reporter mRNA containing tandem repeats of MS2-binding sites.

The GFP binding site repeats facilitate imaging and quantification of

cellular mRNA to single molecular level. (B) The transcriptional

model constitutes 3 reactions with 3 rate constants. DNAS
represents the silent form, while DNAA represents the activated

form
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This diversity has been demonstrated in a cell popula-

tion using fluorescence techniques such as flow cytome-

tery (FACS). The second case study used in this work

looks at the problem of estimating CME parameters

from a cell population data. The model describes an

artificial genetic construct with the green fluorescence

protein (GFP) gene downstream of a galactose activated

promoter UASG and a TetR repressor binding element

2xtetO2 (Figure 3A). In the presence of galactose, the

GFP expression can be modulated rheostatically by vary-

ing the level of inducer ATc [29]. The original publica-

tion utilized a clonal population of S. cerevisiae (yeast)

to investigate the inherent cellular noise in the GFP

gene expression, which is measured as the heterogeneity

of fluorescence among the cells.

The CME model adapted from this work captures the

random transitions among all possible promoter states

as shown in Figure 3B. The states PC1, PC2 and PC3

represent free/silent, intermediate complex, and pre-

initiation complex promoter configurations, respectively,

while the states RC1 and RC2 describe different forms of

repressed promoter configurations. The transcriptional

(RNA synthesis) and translational (protein synthesis)

processes are modelled as single-step irreversible reac-

tions (Figure 3B).

In the simplified model, the different promoter config-

urations are assumed to be in equilibrium, which

reduces the model to a set of 8 irreversible reactions, 4

states, and 8 kinetic parameters, as shown in Figure 3B

(dashed boxes) [29]. As in the first case study, this

model was considered to be the true system and the

molecular data of yEGFP and TetR were generated

using SSA, giving 104 realizations at every 5 dimension-

less time units up to 50 (or about 18 times the half life

of yEGFP [30]). This condition corresponds to 440 min-

utes of post induction by 2% galactose and 40 ng ml-1

ATc. To study the scalability of the proposed methods,

the parameter estimation of the full network with 18

reactions, 9 states, and 15 kinetic parameters was also

done using a second in silico dataset with 104 SSA reali-

zations from the complete model. The details on the

CME formulation for both the reduced and the com-

plete model of the yEGFP gene expression pathway have

been included in the supplementary data [Additional

File 1: Supplementary Table S2 and S3].

Both ML and DFD methods were first applied to the

reduced model, in which the DE optimization was done

with 80 population members for 4000 generations,

which took about 50 hours for convergence. The bounds

on the parameter search space are given in Table 2. As

mentioned above, the binning strategy in the DFD

methods was based on the simulated experimental data,

while the likelihood function in the ML method was

constructed based on the histogram of SSA simulations.

Table 2 presents the parameter estimates from the

ML and the two DFD methods along with the true

parameter values. As in the first example, the DFD-CDF

method gave the most accurate estimates, followed

by the DFD-PDF and ML methods, respectively. The

parameter estimates from DFD-CDF gave yEGFP PDF

that is in agreement with wet-lab data [Additional File 2].

As illustrated in Figure 2C, D &2E, the differences in the

performance of these methods again arises from the

steepness of the objective function plane. However,

the lesser performing methods can potentially match

the accuracy of the CDF method if population size and

number of iterations in the DE optimization are

increased.

The scalability of the methods discussed in this work

was evaluated by performing the estimation of the com-

plete model. In this case, the DE optimization was per-

formed using 150 population members for 4000

generations and took approximately 60 hours for con-

vergence. In this case also, the CDF method again gen-

erally outperformed the PDF and ML (Table 3). But

some of the parameters, especially those involving fast

reversible processes, cannot be accurately identified

from data. The lack of complete parameter identifiability

is perhaps not surprising, when one considers that mea-

surements of only few states are available and that the

time scale of these measurements better reflects the

slow kinetics of the irreversible processes.

Table 1 Parameter estimation of RNA dynamics model in E. coli

Replicates ML DFD-CDF DFD-PDF

k1 k2 k3 k1 k2 k3 k1 k2 k3

10 0.0235 (0.0233)a 1.304 (0.3231)a 3.2201 (0.7232)a 0.02 0.1029 0.3643 - - -

20 0.0227 0.1095 0.2858 0.0371 0.2124 0.5263 - - -

100 0.0362 0.2930 0.5533 0.0273 0.1702 0.4121 - - -

10000 0.0279 0.2354 0.4872 0.0276 0.1659 0.4102 0.0273 0.1532 0.3837

Parameter estimates in the mRNA dynamics model in E. coli. The true parameter values are k = [0.0277; 0.1667; 0.4]. The search bound for the optimization

algorithm was [0,5].
a DE optimization performed with 100 population members and 20,000 generations
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Two other estimation criteria based on the maximum

density function distance, in the form of
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for PDF and CDF, respectively, have also been evaluated,

showing similar performances and observations. The out-

come of the application of these criteria to the estimation

of parameters in the reduced and complete yEGFP gene

expression pathway is described in supplementary data

[Additional File 1: Supplementary Table S4 and S5].

Case Study 3: Stochastic model of a synthetic toggle

switch

Multi-stability is often seen in biological networks, such

as in l-phage decision circuit [31], MAPK cascade [32],

Figure 2 Normalized objective function contours of the ML and DFD methods in the E. coli RNA dynamics model. The parameter values

k2 and k3 were varied between 0.1 and 1 while keeping the value of k1 at its original value. The normalization was done with respect to the

optimal solution from each parameter estimation method, where the white circles represent the extrema on the normalized objective function

plane. (A-B) Normalized objective function contours of the DFD-CDF and ML methods using sparse datasets (m = 10), respectively. (C-E)

Normalized objective functions of the DFD-CDF, -PDF and ML methods using population datasets (m = 10,000).
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and cell cycle regulation [33]. In particular, bistability is

a common motif encountered in cellular signalling path-

ways [34]. Motivated by this, a genetic toggle switch had

previously been engineered in E. coli to show the ability

to synthesize such motif. The synthetic switch consisted

of two repressor-promoter pairs, with (i) PLs1con-lacI

repressing Ptrc-2 promoter and (ii) vice versa Ptrc-2-cIts

(thermal sensitive) repressing PLs1con promoter [8],

such that they are mutually inhibitory (see Figure 4A).

The switching behavior was visualized by means of

green fluorescence protein (GFP), inserted downstream

of cIts. The ON switch was accomplished by an inducer,

Figure 3 Gene Expression Model for the Preferential Galactose

Uptake in Yeast Cells. (A) Genetic construct of the transcriptional

control of the yeast-enhanced green florescent protein expression

in the galactose utilization pathway of yeast. (B) The complete gene

expression pathway includes (fast) reversible transformations among

different promoter configurations and subsequent irreversible RNA

and protein synthesis pathways. The reduced model assumes

pseudo-equilibrium among the promoter configurations, and thus

only describes dynamics of processes in the dashed boxes.

Table 2 Parameter estimation of reduced yEGFP model in

S. cerevisiae

Parameters ML DFD-CDF DFD-PDF Bounds True values

�R 1.1443 1 1.0478 [0,5] 1

�P 1.0382 1.005 1.2174 [0,5] 1

gR 4.5036 5.0306 5.7355 [0,10] 5

gP 0.0128 0.0126 0.012 [0,5] 0.0125

 R
t 0.428 0.432 0.431 [0,5] 0.417

 P
t 2.1254 1.0542 1.24 [0,5] 1

 R
t 6.2433 2.9966 3.4982 [0,10] 3

 P
t 0.0102 0.0114 0.0115 [0,5] 0.0125

Table 3 Parameter estimation of full yEGFP model in S.

cerevisiae

Parameters Transcription processes

ML DFD-CDF DFD-PDF Bounds True value

k1f 0.4061 0.4082 0.4292 [0,5] 0.42

k1b 0.211 0.1171 0.8296 [0,5] 0.2485

k2f 74.1848 25.9882 99.7701 [0,100] 50

k2b 4.1423 18.8779 2.0815 [0,20] 10

k3f 3.2 × 10-3 3.87 × 10-3 0.0166 [0,5] 3.032 × 10-3

k3b 17.2405 19.9408 19.7665 [0,20] 10

a 0.1 0.0183 0.0211 [0,5] 0.025

Irreversible processes

�R 0.8939 0.9296 0.8078 [0,5] 1

�P 2.0345 1.1103 1.0995 [0,5] 1

gR 7.3543 5.2431 5.4116 [0,10] 5

gP 0.0116 0.0124 0.012 [0,5] 0.0125

 R
t 0.4376 0.4157 0.4152 [0,5] 0.417

 P
t 1.7641 0.9755 1.3732 [0,5] 1

 R
t 4.3235 2.9034 3.9315 [0,10] 3

 P
t 0.0107 0.0116 0.0103 [0,5] 0.0125

Figure 4 Stochastic dynamics of synthetic gene toggle switch

engineered in E. coli. (A) Synthetic circuit of the genetic toggle

switch of E.coli [8]. (B) The genetic model of the toggle switch

comprising of 4 reactions and (C) the corresponding propensity

functions.
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isopropyl b-D-thiogalactosepyronoside (IPTG), that

represses the activity of lacI (Figure 4A). By modulating

the concentrations of the IPTG, the genetic toggle sys-

tem could exhibit bistability with hysteresis [8].

A simple deterministic model was proposed to exam-

ine the behaviour of the toggle switch and to analyze

different conditions of bistability [8]. The corresponding

CME formulation is described in the Figure 4B and 4C

[35]. Here, the propensity functions are taken directly

from the deterministic model and they give effective

rates of reaction following a canonical Hill equation.

Taking this model to be the true system, in silico data

of GFP fluorescence at IPTG concentration of 6 × 10-5

M were simulated using 104 independent SSA realiza-

tions, emulating flow cytometry data.

As the ML performed consistently poorer than the

DFD methods in the previous case studies, the stochas-

tic rate constants here (a1, a2, b, g, h, K) were estimated

using the DFD-CDF and -PDF methods, with DE para-

meters: 150 population members and 4000 generations.

Both CDF and PDF criteria took about 48 hours for

completion. The parameter bounds and estimates are

given in Table 4. Comparing to the true values, this case

study, like the previous two, again showed that the

DFD-CDF method performed better than DFD-PDF

with more accurate and robust estimates of the kinetic

rate constants. Performance of different estimation

methods on another bistable system (Schlögl model) is

presented in supplementary data [Additional File 1: Sup-

plementary Table S6][Additional File 3].

Discussion
In this work, three practical methods are proposed for

the estimation of the parameters from (noisy) single cell

datasets with low and high replicates. As the methods

rely on a histogram construction of density functions

from a finite sample of experimental data and Monte

Carlo simulations, the objective function evaluation has

a trade-off between low accuracy when using bins that

are too wide, and high sensitivity to noise when bins are

too small. In order to balance this trade-off, the binning

was done such that the narrowest bin has at least ten

occurrences. The noise associated with this binning

strategy is also taken into account in the objective func-

tion in the DFD methods, which is modelled according

to a binomial distribution.

The proposed methods are developed while consi-

dering a few practical issues when dealing with real bio-

logical datasets, such as data sparsity (low replicates),

data noise and relatively coarse sampling intervals. The

methods developed here do not require fast time-

sampling like in [14], which might pose a restrictive

constraint in practice. When population data are avail-

able, the DFD methods can fully exploit the additional

information and rigorously handle the noise associated

with the finite sample construction of a density function

through the weighting factors. Although the examples

considered in this work are represented by the CME,

the methodologies developed in this work are generally

applicable to parameter estimation of other stochastic

models (e.g. Langevin), as long as the distribution den-

sity function can be constructed. Furthermore, the dif-

ferent methods developed in this work can be used to

robustly estimate the rate constants of large scale gene

expression networks as well as systems with multistabil-

ity and general nonlinear propensity equations.

The case studies above showed that methods based on

matching density function shapes between model and

data generally performed better than maximizing likeli-

hood function. Furthermore, the DFD-CDF distance is

more sensitive to parameters than both the DFD-PDF

and ML, and thus is the most effective method devel-

oped in this work. The higher sensitivity of the CDF

with respect to parameter variations is expected as a

result of the cumulative sum of the PDF sensitivity. This

is evident from comparing the normalized objective

function surfaces as shown in Figure. 2, in which the

CDF objective functions have the steepest curvature.

The increased curvature leads to a faster convergence to

the minima in the DE optimization of the CDF than the

PDF, though both methods eventually converge to opti-

mal parameter estimates with similar accuracy. In addi-

tion, the CDF is generally less sensitive to noise from

finite sampling as can be seen from the noise weighting

factor Sl,i when normalized with the respective probabil-

ity, i.e. the coefficient of variation (CoV)

S F t F t n F tl i e l i e l i e l i, , , ,o o o( ) = − ( ) ( )1 . The mono-

tonically decreasing CoV as a function Fe(ol, ti) of indi-

cates that the CDF construction becomes less affected

by finite sampling noise with increasing Fe(ol, ti).

Similar to the parameter estimation in deterministic

models, parameter identifiability is a key issue in the

estimation of the CME parameters. Such problem is

commonly encountered in the parameter estimation of

deterministic ODE models [36]. Following the same

arguments from the deterministic estimation, the

Table 4 Parameter estimation of synthetic toggle switch

in E. coli

DFD-CDF DFD-PDF Bounds True value

a1 137.716 99.456 [0,200] 156.25

a2 15.644 15.391 [0,20] 15.6

b 2.309 2.543 [0,10] 2.5

g 1.071 1.015 [0,10] 1

h 2.065 8.434 [0,10] 2.0015

K 7.331 × 10-5 5.831 × 10-4 [0,1] 6.0 × 10-5
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identifiability problem is caused by the limited informa-

tion contained in the data about the parameters govern-

ing the fast transformations among the different

promoter configurations. Such problem can be alleviated

by getting additional measurements with a faster sam-

pling rate and if possible, measuring the variables that

are directly affected by the parameters, e.g. the fractions

of promoters in each configuration of the second case

study. An analogue of deterministic parameter identifia-

bility analysis can be performed using the parametric

sensitivity of the density function and experiments can

be designed to maximize the degree of information in

the data [35,37,38].

Most of the computational cost of the parameter esti-

mation related to CME is due to the large number of

SSA realizations needed to construct the solution of the

CME. Furthermore, every generation of DE requires

multiple computations of the objective function accord-

ing to the population size setting and each of population

members in turn requires the SSA solution as men-

tioned previously. One way to alleviate the computa-

tional burden would be to lower the SSA realizations in

constructing the density function. This would however

increase the binning noise, and could possibly reduce

the speed of convergence to the optimal solution and

the accuracy of parameter estimates (see Figure 5A-C).

Nevertheless, there is a diminishing return with increas-

ing number of SSA realizations, since noise variance

generally scales with the inverse of the number of sam-

ples (i.e. the standard deviation is only halved for every

4 times increase in the number of data). Alternatively,

efficient approximation methods for simulating the

CME can be used in place of the exact SSA

[20,23,39-42], again at the cost of reduced estimation

accuracy. In addition, the optimization parameters,

namely population size and generations, can be further

tuned for the proposed methods. Unfortunately, the

relationship between these two parameters is most likely

nonlinear and problem specific, which may require trial

and error methods to find the best setting for a particu-

lar problem.

Conclusions
The inherent stochasticity associated with low copy

number processes in the cellular genetic milieu can

introduce significant noise in gene expression profiles.

The modelling of such noisy system requires a careful

consideration of random processes and the parameters

governing the probability of random events [1]. Three

parameter estimation methods for stochastic models

have been proposed based on the maximum likelihood

criterion and density function distances of PDF and

CDF. Since state density functions of stochastic systems

are often constructed from a finite number of experi-

mental data points or Monte Carlo realizations, a careful

consideration has been taken to characterize the influ-

ence of noise arising from the histogram binning. Speci-

fically, the effects of histogram noise are directly

incorporated into the parameter estimation objective

function as weighting functions. Applications to two

Figure 5 Effect of the finite sampling noise on the parameter

estimation of E. coli RNA dynamics model. Normalized objective

function contours of the DFD-PDF method for SSA realizations of

10,000 (A), 5000 (B), and 1000 (C). The parameter values k2 and k3
were varied between 0.1 and 1 while keeping the value of k1 at its

original value. The normalization was done with respect to the

optimal solution from each case, where the white circles represent

the extrema on the normalized objective function plane.
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case studies have shown that the proposed methods are

both effective and practical. Amongst the proposed

methods, the CDF-DFD method has been found to be

the most efficient in estimating the kinetic rate constant

than the others (i.e., the ML and DFD-PDF methods)

due to the higher sensitivity of CDF to the parameters.

Additional material

Additional file 1: Supplementary tables of the manuscript file. Six

supplementary tables are included in this document; Table S1 describes

the SSA formulation of the E. coli RNA dynamics model of the case study

1. Table S2 details the SSA formulation of the reduced yeast enhanced

GFP galactose utilization pathway of the case study 2. Table S3 provides

the SSA formulation of the complete gene expression model of the

yEGFP galactose utilization pathway. Tables S5 and S6 give the

parameter estimation results for the reduced and complete yEGFP gene

expression models, respectively. The parameter estimation in these cases

was done using the DFD methods involving the maximum distance

measures (equation 10 and 11 in the main text). Table S6 lists the

parameter estimation results of the Schlögl model.

Additional file 2: Supplementary figure of the manuscript file.

Comparison of actual experimental data and CME model prediction

using SSA simulations with the parameters estimated in case study 2.

Additional file 3: Supplementary text of the manuscript file. Details

of the SSA formulation and the parameter estimation method used in

the Schlögl case study.
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