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As a tool to monitor marine environments and to perform dangerous tasks instead of manned vessels, unmanned surface vehicles
(USVs) have extensive applications. Because most path planning algorithms have di
culty meeting the mission requirements of
USVs, the purpose of this study was to plan a global path with multiple objectives, such as path length, energy consumption, path
smoothness, and path safety, for USV in marine environments. A global path planning algorithm based on an improved quantum
ant colony algorithm (IQACA) is proposed. 	e improved quantum ant colony algorithm is an algorithm that bene�ts from the
high e
ciency of quantum computing and the optimization ability of the ant colony algorithm. 	e proposed algorithm can plan a
path considering multiple objectives simultaneously.	e simulation results show that the proposed algorithm’s obtainedminimum
was 2.1–6.5% lower than those of the quantum ant colony algorithm (QACA) and ant colony algorithm (ACA), and the number of
iterations required to converge to the minimumwas 11.2–24.5% lower than those of the QACAandACA. In addition, the optimized
path for the USV was obtained e�ectively and e
ciently.

1. Introduction

An unmanned surface vehicle (USV) is a kind of autonomous
marine vehicle. Determining the path of a USV is an
important problem associated with its safety and e
ciency
[1]. Depending on whether the environmental information is
obtained from a digital map or sensors, path planning is
divided into global and local stages [2]. In this paper, a USV
global path planning study is presented. Global path planning
is the process of planning a path to connect the starting and
destination points under a given planning space fromadigital
map and constraints according to the mission requirements.
	e indices for evaluating a path can be path length, energy
consumption, path smoothness, and path safety.

Obtaining a short path from the starting point to the
destination point is one of the main objectives of global path
planning. Planning the shortest path is an NP-hard problem
[3]. Existingmethods take the path length as a single objective
of the path planning, and neither energy consumption nor
other indices are considered.

	e energy consumption during sailing determines the
USV’s endurance and the duration of the mission. Since the

environmental loads such as wind, waves, and ocean currents
in�uence the performance of the USV, the calculation of
the USV’s energy consumption is complex. Niu et al. [4]
considered the e�ect of the ocean current on the energy
consumption of USVs. Lee et al. [5] found amore economical
path by considering the shallow water e�ect as well as
tidal currents and wind for surface ship navigation. Most
calculations of energy consumption have considered the
e�ects of ocean currents on the USV without considering
wind and waves.

	e smoothness of a path depends on the size and number
of the turns that the USV makes while sailing along the
planned path. 	e smoother path allows the USV to make
fewer turns along the path, which reduces the mechanical
wear on the steering actuators, such as rudders. Smooth paths
can reduce unnecessary curvature discontinuities and pos-
sible stops. In a previous report [6], the smoothness of a
path was evaluated by summing the angles of each turn on
the path that the vehicle follows. Ma et al. [7] evaluated
the turn angle set by adopting the maximum value of
the turn angle set to assess the path smoothness for the
USV.
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Obstacles such as islands and reefs a�ect the safety of
the USV. Path safety means that the USV cannot collide with
any obstacles while sailing. Ma et al. [7] used circles that just
covered the obstacles to identify the safe area.

Since USV global path planning involves optimization
algorithms, environmental models, and marine cra� hydro-
dynamics, existing path planning algorithms have di
culty
meeting the mission requirements. Intelligent optimization
algorithms are widely used in global path planning, such
as the genetic algorithm [8], particle swarm algorithm [9],
NSGA-II [10], and ant colony algorithm [11]. With the devel-
opment of quantum technology, the idea of combining quan-
tum computing with intelligent optimization algorithms has
been developed. Narayanan and Moore combined quantum
mechanics principles and evolutionary computing methods
for the �rst time [12]. A quantum bit and superposition of
states were proposed to solve the knapsack problem by a
quantum-inspired evolutionary algorithm (QEA) [13]. Based
on the QEA with a quantum rotation gate strategy, an adap-
tive evolution-based quantum-inspired evolutionary algo-
rithm (AEQEA) introduces an adaptive evolution mecha-
nism [14]. A new improved quantum evolution algorithm
(IQEA) with a mixed local search procedure was proposed
[15]. Li et al. [16] proposed a quantum ant colony algorithm
(QACA) that combined quantum computing and the ant
colony algorithm for continuous space optimization. You
et al. [17] proposed a novel parallel ant colony optimiza-
tion algorithm based on a quantum dynamics mechanism
(PQACO). An improved quantum ant colony algorithm
was proposed for the optimization of evacuation paths from
dangerous areas to safe areas [18]. 	e quantum ant colony
algorithm was used to determine campus path navigation
[19].

In this paper, a global path planning algorithm for
USV based on the improved quantum ant colony algorithm
(IQACA) is proposed. 	e main contributions of the pro-
posed approach are as follows:

(1) At present, most USV global path planning algo-
rithms only search for a feasible path for one objective
[3–6]. In this paper, path planning was considered
with multiple simultaneous objectives, which were
path length, energy consumption, path smoothness,
and path safety.

(2) 	e IQACA is a new optimization algorithm that
combines quantum-inspired computing with the ant
colony algorithm (ACA). 	e quantum bit (Q-bit) is
used to encode the pheromone in the ACA to obtain
the quantum pheromone, and the ant movement
is determined based on the concentration of the
quantum pheromone on the path. Compared to the
existing QACA [16–19], the phase of the quantum
ant colony is transformed by an adaptive quantum
rotation gate, and the quantumpheromone is updated
by local and global update rules in the IQACA.

Simulation experiments in a complex environment with
wind, waves, and ocean currents veri�ed the e�ectiveness of
the objective model, and we obtained a desired path based on
the IQACA.

	e paper is organized as follows. In Section 2, the USV
path planning problem is established, and the USV kinetic
model, environmental loads, and cost function of the path
planning are described. In Section 3, the principles of the
IQACA are provided, and we apply the IQACA toUSV global
path planning. In Section 4, the simulations for USV global
path planning using the IQACA are presented. Conclusions
are provided in Section 5.

2. Problem Statement

2.1. USVKineticModel. 	ekinetic model of a USV accounts
for the forces, such as the control force and environmental
loads, which cause USV motion. For the USV, the control
force is mainly the thrust of each propeller.	e environmen-
tal loads on the USV are generated by wind, waves, and ocean
currents. 	e kinetic model of the USV, which was proposed
previously [20], is as follows:

�]̇ + � (]) ] + � (]) ] = ���V + ��ℎ� (1)

���V = ����	 + ��
V� + �������� (2)

where � is the system inertia matrix, �(]) is the Coriolis-

centripetal matrix, �(]) ∈ �3×3 is damping matrix. ����	,��
V�, and �������� are wind, wave, and ocean current forces
acting on the USV, respectively, and ��ℎ� is the thrust
generated by the USV propulsion system. 	e generalized

velocity ] = [	, V, 
] is obtained by (1), where the �rst two
components (	, V) are the linear velocities of the surge and
sway, and 
 is the angular velocity of the yaw.
2.2. Models of Environmental Loads. When planning a global
path for USVs, it is necessary to consider the environmental
e�ects on the vehicles. 	us, we need to analyze the impacts
of wind, waves, and ocean currents on the USV. 	e planned
area is a con�ned sea with some static obstacles, and the
mission execution time is short. 	erefore, it can be assumed
that the environmental loads are basically stable in limited
time and space.

2.2.1. Wind Forces. 	ewind acts directly on the superstruc-
ture of the hull. As reported previously [21], the wind forces
are written as follows:

����	� = 12�
��2
���� (��)

����	� = 12�
��2
���� (��)

����	� = 12�
��2
���� (��) ⋅ �

(3)

where �
 is the density of air, �� and �� are the frontal and
lateral projected areas,���(��),���(��), and���(��) are the
empirical force coe
cients, �� is the angle between the wind
and the heading of the vessel, � is the length of the vessel, �
is the relative wind speed, and ����	�, ����	�, and ����	� are
the wind forces during the surge, sway, and yaw, respectively
[22].
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2.2.2. Wave Forces. When a vehicle is sailing on the sea, the
interference of wave forces is complicated. 	e wave forces
acting on the hull are �rst- and second-order wave forces.	e
second-orderwave forces, which impact the heading and path
of the USV, are proportional to the square of the wave height
[22]. 	e wave forces are simpli�ed as follows:

��
V�� = ��1��2 + 2�1��1� + �2
�1
�1 + �1

��
V�� = ��2��2 + 2�2��2� + �2
�2
�2 + �2

��
V�� = ��3��2 + 2�3��3� + �2
�3
�3 + �3

(4)

where �� (� = 1, 2, 3) are Gaussian white noise processes,
and ��
V��, ��
V��, and ��
V�� are the wave forces during the
surge, sway, and yaw, respectively. 	e amplitudes of ��
V��,��
V��, and ��
V�� are adjusted by choosing the constants��� (� = 1, 2, 3), while the spectra are parameterized in terms
of the pairs �� and ��� (� = 1, 2, 3). 	e wave dri� forces�� (� = 1, 2, 3) are usually modeled as slowly varying bias
terms:

̇�1 = �4

̇�2 = �5

̇�3 = �6

(5)

where�� (� = 4, 5, 6) are Gaussian white noise processes [22].

2.2.3. Ocean Current Forces. 	e ocean currents cause vessels
sailing on the sea to change their positions and postures. 	e
ocean current forces are given as follows:

��������� = 12���2
� �� (�)

��������� = 12�� �2
� �� (�)

��������� = 12�� �2
� �� (�) ⋅ �

(6)

where � is the density of the seawater, �� and �� are the
frontal and lateral projected areas below thewaterline, respec-
tively, ��, ��, and �� are the empirical force coe
cients,� is the relative current speed, � is the angle between the
ocean current and the heading of the vessel, � is the length
of the vessel, and ���������, ���������, and ��������� are the
ocean current forces during surge, sway, and yaw, respectively
[22].

2.3. Path Representation by Grids. 	e real task area is parti-
tioned to reduce the modeling complexity. Visibility graphs
[23], Voronoi diagrams [24], and grid maps [25] are the most
commonly used path planning algorithms. 	e grid map-
based path planning algorithm is powerful in that it generates
a path with the shortest computation time [25]. To facilitate

pi pi

pi+1

pi+1pi+1

pi+1 pi+1 pi+1

pi+1pi+1

Figure 1: 	e positions of �� and ��+1.

the calculation, the planned path is represented on grids.
	e area under consideration is discretized into grids. 	e
information, such as the relative speed and direction of the
wind, the amplitude and direction of the waves, the relative
speed and direction of ocean current, and the position of the
obstacles, is discretized in each grid. Stationary obstacles are
encoded in a binary format on the grids. We assigned weights
of 1 to all obstacle grids and weights of 0 to all free neighbor
grids of them.

2.4. Objectives of USV Global Path Planning. Since USV
global path planning is a multiobjective optimization prob-
lem, we should analyze the interrelated objectives and discuss
the importance of each objective based on the requirements
of the mission. A cost function can be constructed as a
weighted sum of the objective functions. Finally, the cost
function is used to evaluate the quality of the planned
path.

2.4.1. Path Length. Since the task area is modeled by grids,
the planned path is represented on a rectangular grid. 	e
path passes the centers of the grids. 	us, the distance � �,�+1
between two adjacent waypoints �� = (��, ��) and ��+1 =(��+1, ��+1) is equal to the Euclidean distance between the
centers of the grids as follows:

� �,�+1 = {{{
1, �� = ��+1 or �� = ��+1
√2, otherwise

(7)

	e positions of �� and ��+1 are shown in Figure 1. If ��
and ��+1 are adjacent in the horizontal or vertical direction,� �,�+1 = 1. If�� and ��+1 are adjacent in the diagonal direction,� �,�+1 = √2.

	erefore, the total length of the path � is the sum of the
distances between the adjacent waypoints:

� = �∑
�=1
� �,�+1 (8)

where# is the number of path segments.
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2.4.2. Energy Consumption. In this paper, the energy con-
sumption of theUSVwhile sailing is derived from the propul-
sion system.	us, $ is the sum of the energy consumption of
each segment along the entire path:

$ = �∑
�=1
$�,�+1 (9)

Supposing that the USV is sailing at a constant velocity
between �� and ��+1, the energy consumption $�,�+1 between�� and ��+1 equals the work done by the propulsion system to
overcome the environmental loads, such that

$�,�+1 = ���V ⋅ %%%%%&→V ��V
%%%%% ⋅ * (10)

where * is the time for the USV to sail in � �,�+1.

* = � �,�+1%%%%%&→V ���
%%%%% (11)

where |&→V ��V| is the magnitude of the velocity &→V ��V generated
by the USV propulsion system, ���V is the resultant force of
the environmental loads, and |&→V ���| is the magnitude of the

velocity &→V ��� of the USV moving in the horizontal plane.
Since the headings of the USV in the grid are several �xed
values, as shown in Figure 1, the angular velocity 
 caused by

the yaw motion can be ignored when solving |&→V ���|. Hence,|&→V ���| is equal to %%%%%&→V ���
%%%%% = √	2 + V2 (12)

where 	 and V are obtained by (1).
It is known from (10) and (11) that the energy consump-

tion is proportional to |&→V ��V| and 1/|&→V ���|, when the thrust��ℎ� generated by the propulsion system is a �xed value. To
reduce the energy consumption, it is necessary to adjust the
USV’s heading to take advantage of the environmental loads

to increase |&→V ���|.
2.4.3. Path Smoothness. It is assumed that the current way-
point of the USV is �� = (��, ��), the previous waypoint is��−1 = (��−1, ��−1), and the nextwaypoint is��+1 = (��+1, ��+1).
	us, the angle .�+1 of the vector &&&&→����+1 and the angle .� of the
vector

&&&&→��−1�� are
.�+1 = arctan (��+1 − ����+1 − ��) (13)

.� = arctan (�� − ��−1�� − ��−1) (14)

	e di�erence 8� between .�+1 and .� is
8� = 9:� (.�+1 − .�) (15)

.�, .�+1, and 8�, are shown in Figure 2. 	erefore, the cost
function of the path smoothness ;�����ℎ is

;�����ℎ = �∑
�=1
8� (16)

where< is the number of di�erences 8�.
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Figure 2: 	e angles of the path segments.
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Figure 3: Schematic diagram of the calculation of the path safety.

2.4.4. Path Safety. Using the safety cost of the nodes on the
grids cannot accurately represent the threat impact of each
path segment. First, three sampling points are selected on a
path segment and the average Euclidean distance between
the three sampling points and the center of the obstacle is
calculated. 	e schematic diagram of the calculation of the
path safety is shown in Figure 3. >� is the length of the ?th path
segment between the waypoint �� and ��+1. For the ?th path
segment, three sampling points are taken at >�/6, >�/2, and5>�/6, respectively. 	e average Euclidean distance between
the three sampling points and the center of the obstacle
is

�,� = 13 [��,� (>�6 ) + ��,� (>�2 ) + ��,� (5>�6 )] (17)

where ��,�() is the Euclidean distance from the sampling

point on the ?th path segment to the center of the obstacleB�.
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	e path safety cost between waypoint �� and ��+1
denoted as ;�,�+1�
�� is

;�,�+1�
�� =
{{{{{{{{{{{

0, � > ��
�� max1
��,�+1

,�
, ��
�� min ≤ � ≤ ��
�� max

1, � < ��
�� min

(18)

where � is the distance between the USV and the obstacle’s
center, ��
�� max is the radius of the obstacle’s a�ected area,

and ��
�� min is the radius of the no-sail zone. ;�,�+1,� is obtained

using (17).
	us, the entire path safety cost function ;�
�� is

;�
�� = �∑
�=1
;�,�+1�
�� (19)

where< is the number of the waypoints of the planned path.

2.4.5. Cost Function. In summary, the cost function of the
USV global path planning was established as

min ; = �1 ⋅ � + �2 ⋅ $ + �3 ⋅ ;�����ℎ + �4 ⋅ ;�
�� (20)

where �, $, ;�����ℎ, and ;�
�� are obtained by (8), (9), (16), and
(19), respectively. �1, �2, �3, and �4 represent the weights of
the path length, energy consumption, path smoothness, and
path safety in the cost function, respectively, subject to

� ≤ �max

0 ≤ %%%%%&→V ���
%%%%% ≤ %%%%Vmax

%%%% (21)

where �max is the maximum voyage distance of the USV and|Vmax| is the maximum speed of the USV.

3. Optimization Algorithm

In this section, we will introduce the optimization algorithm
for the USV global path planning—the IQACA. 	e IQACA
is a new optimization algorithm that combines quantum-
inspired computing with ant colony optimization algorithm.
Wewill introduce quantum code and a quantum rotation gate
from quantum-inspired computing. Some rules based on the
ant colony optimization algorithm are presented.

3.1. Quantum Code. 	equantum bit (Q-bit) is the basic unit
in quantum computing. A Q-bit is a system that has two
possible states |0⟩ and |1⟩.	e state of a Q-bit |I⟩ is expressed
as

%%%%I⟩ = � |0⟩ + � |1⟩ (22)

where � and � are the probability amplitudes, which satisfy|�|2 + |�|2 = 1. |�|2 and |�|2 are the probabilities in states|0⟩ and |1⟩, respectively. 	us, the state of the Q-bit |I⟩ is an

uncertain superposition state between |0⟩ and |1⟩. When the
number of Q-bits of an individual K� is L,K� is expressed as

K� = [ ��1 ��2 . . . �����1 ��2 . . . ��� ] (23)

whereK�� = (��1, ⋅ ⋅ ⋅ , ���) andK�� = (��1, ⋅ ⋅ ⋅ , ���) are the two
sets of solutions for individual K�. 	erefore, a�er quantum
coding, every individual has two sets of solutions and the
search space is doubled.

In the IQACA, the quantum pheromone is obtained by
encoding the pheromone le� by the ants on the path in
the ACA by the Q-bits. 	e transfer direction of the ants is
selected by the quantum pheromone concentration on the
path. 	us, the quantum pheromone concentration value ����
of the �th ant on the Pth point in the *th iteration is expressed
as

���� = [�
�
��

����] (24)

3.2. Adaptive Quantum Rotation Gate. In the quantum opti-
mization algorithm, a quantum rotation gate is used to update
the Q-bits. 	e update rule of a Q-bit is as follows:

[��+1��

��+1��
] = S (.�) [�

�
������] (25)

where [����, ����] represents the probability amplitude of the

Q-bits in the *th iteration. S(.�) is the quantum rotation gate
in the *th iteration

S(.�) = [cos .� − sin .�
sin .� cos .� ] (26)

where .� is the rotation angle in the *th iteration. In a previous
paper [13], the rotation angle was obtained by looking it up in
a table. In another paper [26], the local and global updates of
the pheromone concentration increments in the ACA were
added to the rotation angle step function. In the IQACA, an
adaptive adjustment strategy for the rotation angle is obtained
by comparing the current solution and the global optimal
solution currently being searched. 	us, the rotation angle .�
in the *th iteration is

.� = − sgn (� �) ⋅ Δ.� (27)

where − sgn(� �) is the direction of the rotation angle and Δ.�
is the size of the rotation angle. � � is

� � =
%%%%%%%%%%
�0 �1�0 �1

%%%%%%%%%% (28)

where �0 and �0 are the probability amplitudes of the
quantum pheromone corresponding to the global optimal
solution currently searched and �1 and �1 are the probability
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amplitudes of the quantum pheromone corresponding to the
current solution. Δ.� is

Δ.� = ;� − ;� − ;�<max

⋅ * (29)

where ;� is the cost value of ant ? in the current solution,;� is the cost value of the global optimal solution currently
searched, and<max is the maximum number of iterations.

3.3. Transfer Rule and Transition Probability. 	e ant colony
optimization algorithm is a bionic intelligent algorithm
inspired by the foraging behavior of ant colonies [27]. During
the foraging, ants produce a substance called a pheromone.
	e concentration of the pheromone, which is related to the
path length, will determine the movement of other ants. If the
path is shorter, the concentration of the pheromone le� on the
path is larger.

To achieve multiobjective path planning, multiple pieces
of heuristic information are used to determine the ant’s
transfer rules and transition probabilities. 	e transfer rule
of ant ? from point � to point P is

� = {{{
argmax

�∈�
{[���� (*)]� [X��� (*)]� [Y�� (*)]�} \ ≤ \0

�̃ \ > \0 (30)

where \ is a random number in the range [0, 1]. \0 is a
constant within [0, 1]. _ is the set of points that ant ? may
reach by point �. �̃ is the target waypoint selected by the
following equation:

���� (*) = [���� (*)]� [X��� (*)]� [`��� (*)]�
∑�∈
�����	(�) [���� (*)]� [X��� (*)]� [`��� (*)]�

(31)

where ����(*) is the pheromone on the path from point � to
point P in the *th iteration and � (� > 0) is the pheromone

index. X���(*) is the multiple inspiration information on the

path from point � to point P in the *th iteration, � (� > 0)
is the index of multiple inspiration information, `���(*) is the
quantum information strength on the path from point � to
point P in the *th iteration, which is expressed as `���(*) =1/|����(*)|2, and b (b > 0) is the index of the quantum

information strength.
	e multiple pieces of heuristic information include the

path length heuristic information c���(*), energy consumption

heuristic information Y���(*), path smoothness heuristic infor-

mation I���(*), and path safety heuristic information d���(*).

[X��� (*)]� = [c��� (*)]
 [Y��� (*)] [I��� (*)]� [d��� (*)]	 (32)

c�� (*) = 1� ��

Y�� (*) = 1$��
I�� (*) = 1

;�������ℎ

d�� (*) = 1
;���
��

(33)

where � ��, $��, ;�������ℎ, and ;���
�� are obtained by (8), (9), (16),

and (19), respectively. 9, :, e, and � are the indices of the path
length heuristic information, energy consumption heuristic
information, path smoothness heuristic information, and
path safety heuristic information, respectively.

3.4. Update Rules of Pheromone. A�er every ant completes a
one-transfer, the pheromone on the path it passes is locally
updated to avoid falling into a local optimum. When the
current point of the ant is �� and the next point is ��, the
pheromone local updating rule is

� (��) = (1 − �1) ⋅ � (��) + �1 ⋅ Δ��� (34)

where �(��) is the pheromone of the current point, �(��)
is the pheromone of the next point, �1 (0 < �1 < 1) is
the pheromone local updating coe
cient, and Δ��� is the
pheromone that every ant leaves on the path from �� to ��
in this iteration, expressed as follows:

Δ��� = �∑
�=1
Δ���� (35)

Δ���� = {{{
h;� , the path segment of the ?th ant

0, else
(36)

where h is a constant and ;� is the cost value of the ?th ant’s
path.

A�er all the ants complete an iteration, the pheromone
is globally updated to increase the pheromone concentration
on the optimized path. 	e rules are as follows:

� (��) = {{{
(1 − �2) ⋅ � (��) + �2 ⋅ Δ� ���, �� = �̃
(1 − �2) ⋅ � (��) , �� ̸= �̃ (37)

Δ� ���
= {{{

h;� , if (�, P) belongs to the optimal path in this cycle

0, else

(38)

whereh is a constant, ;� is the cost value of the optimal path
in this iteration, �2 (0 < �2 < 1) is the pheromone global
updating coe
cient, and �̃ is the global optimal solution
currently being searched.
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Initialization parameters.

Start

Place n ants at the starting point.

Determine the transfer rule of the ants
by Eq. (30), and select the target

waypoint by Eq. (31).

Update the phases of Q-bits by
Eq. (25).

Update the pheromone locally by
Eq. (34).

Whether all n ants
completed the search

Update the pheromone globally by
Eq. (37).

t = t + 1

Output the waypoints and cost value of
the optimal path. 

End

Yes

No

Yes

No

Output the candidate solution selected
by the ants and calculate the path cost. 

t ⩾ Nmax

Figure 4:	e �owchart of the global path planning algorithm based
on the IQACA.

3.5. Global Path Planning Algorithm Based on IQACA. 	e
�owchart of global path planning algorithm based on the
IQACA is shown in Figure 4.

	e main steps are as follows:

Step 1 (initialize the parameters). 	e number of the ants in
the colony is L. 	e maximum number of iterations is <max.
	e initial quantum pheromone concentration value of the�th ant on the Pth waypoint is expressed as ���� = [����, ����] =[1/√2, 1/√2], where * = 0;
Step 2. 	e ants are placed at the starting point. 	e transfer
rule of the ants is determined by (30), and the target waypoint
is selected by (31).

Step 3. 	e phases of the Q-bits are updated by (25).

Table 1: 	e obtained values from the simulations.

Algorithm Length Iteration

ACA 8447 167

QACA 8062 142

IQACA 7891 126

Step 4. 	e pheromone is locally updated by (34).

Step 5. A�er all the ants have passed by all the points in an
iteration, the pheromone is globally updated by (37).

Step 6. 	e candidate solution selected by the ants is output
and the path cost is calculated.

Step 7. If the iteration * > <max, the algorithm moves to
Step 8; otherwise, it returns to Step 2.

Step 8. 	ewaypoints of the optimized solution and the cost
value of the path are output. 	e global optimized path is
obtained by the waypoints of the optimized solution.

Step 9. 	e algorithm ends.

4. Simulation Studies

In this section, the e�ectiveness and e
ciency of the IQACA
are validated. 	e section consists of two parts. 	e �rst
subsection compares the performance of the ACA, QACA,
and IQACAwith the Traveling Salesman Problem (TSP).	e
second subsection deals with the USV global path planning
based on the IQACA. To validate the proposed algorithm,
simulations were conducted.

4.1. Performance Evaluation of IQACA. To validate the e�ec-
tiveness of the IQACA presented in this paper, we com-
pared the algorithm performance between ACA, QACA, and
IQACA with the TSP. In this paper, RAND100 was selected
from the TSPLIB standard library for the simulations. 	e
maximum number of iterations <max = 200, the number of
the ants L = 100, � = 3, � = 1, b = 2, and �1 = �2 = 0.8.
	e obtained values are shown in Table 1, and the iterations
are shown in Figure 5.

	e known optimal value of RAND100 is 7891. From
Table 1, it was concluded that the path length of RAND100
obtained by the IQACA was 2.12% lower than that obtained
by the QACA and 6.58% lower than that obtained by the
ACA. 	e number of iterations required for the IQACA to
converge to the minimum was 11.27% lower than the QACA
and 24.55% lower than the ACA. 	e results show that the
IQACA was superior to the QACA and the ACA in both the
path length and iteration number. Since the algorithm uses
the pheromone local and global updates, and the phases of
the Q-bits are updated by the adaptive quantum rotation gate,
the IQACA can avoid the local optimal solution. Because the
pheromone is encoded by Q-bits, the search space is doubled,
and the convergence speed is faster. 	us, the IQACA is an
e�ective and e
cient algorithm.



8 Mathematical Problems in Engineering

20 40 60 80 100 120 140 160 180 2000

Iteration

7500

8000

8500

9000

9500

10000

10500

L
en

gt
h

IQACA
QACA
ACA

Figure 5: Convergence of the IQACA, QACA, and ACA.

Table 2: Coe
cients of USV.

Property Value

Length overall (#) 80.8

Breadth (#) 18.2

Draught (#) 5.0

Area of frontal projection above the waterline (#2) 330.9

Area of lateral projection above the waterline (#2) 874.8

Area of frontal projection below the waterline (#2) 91.0

Area of lateral projection below the waterline (#2) 323.4

4.2. USV Global Path Planning Based on IQACA. In this
subsection, we will show a simulation of USV global path
planning based on the proposed algorithm. Obstacles are
black-colored. 	e coordinates of the starting point are(0.5, 24.5), and the coordinates of the destination point are(29.5, 0.5). 	e length of the side of a grid is 1 ?#. We
assumed that the wind, waves, and ocean current act on the
vessel from the same direction, since in most cases the ocean
current is the most signi�cant environmental disturbance on
the vessel. In this simulation, the direction of the disturbances
is assumed as 240∘ in the Northeast coordinate system. 	e
relative wind speed was 7.5 #/�. 	e wave height was 2.5 #.
	e relative ocean current was 2.0 #/�.	e thrust of the USV
propulsion system was 500?<.	e coe
cients of the USV in
this simulation are shown in Table 2. 	e maximum number
of iterations was 500, the number of the ants was 100, � = 3,b = 2, and �1 = �2 = 0.8. 	e safety boundary of the obstacle
was represented by a dotted red circle whose radius was 1.3
times the distance between the vertex and the center of the
obstacle. 	e optimal path is represented by a solid blue line.
	e objectives of the global path planning were determined
based on their respective weights. We considered four scenar-
ios in this simulation. In the �rst scenario, we highly weighted
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Figure 6: Planned path focusing on the path length.
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Figure 7: Planned path focusing on the energy consumption.

the path length, so that the weights [�1, �2, �3, �4] in the
cost function (20) were [0.5, 0.1, 0.3, 0.1]. In the other three
scenario, weweighted the energy consumption, path smooth-
ness, and path safety, respectively, such that the weights[�1, �2, �3, �4]were [0.1, 0.5, 0.1, 0.3], [0.3, 0.1, 0.5, 0.1], and[0.1, 0.3, 0.1, 0.5], respectively.

Figures 6–9 show the planned paths in the four scenarios.
	e path length, energy consumption, path smoothness,
and path safety index for each planned path are listed in
Table 3. 	e results indicate that the proposed algorithm
can plan feasible paths for the USV considering di�erent
objectives simultaneously.Moreover, by adjusting theweights
of di�erent objectives, the proposed algorithm can generate
paths for di�erent purposes.
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Table 3: Path data for di�erent objectives.

Objective
Path length(?#) Energy consumption(1 × 107 ?;) Path smoothness(
9�) Path safety index

Path length 41.87 12.38 18.85 26.89

Energy consumption 48.31 10.81 28.27 27.12

Path smoothness 43.63 11.95 14.14 15.51

Path safety 46.80 11.96 28.27 7.61
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Figure 8: Planned path focusing on the path smoothness.
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Figure 9: Planned path focusing on the path safety.

5. Conclusion

	is paper proposed a global path planning algorithm for the
USV based on an improved quantum ant colony algorithm
(IQACA).

	e IQACA is an optimization algorithm that combines
quantum computing with the ACA. In IQACA, using Q-bits
to encode the pheromone of the ants, the search space is

doubled when the number of the ants is the same. 	e sim-
ulation results show that the proposed algorithm’s obtained
minimum was 2.1–6.5% lower than those of the quantum ant
colony algorithm (QACA) and ant colony algorithm (ACA),
and the number of iterations required to converge to the
minimum was 11.2–24.5% lower than those of the QACA
and ACA. Based on the model of the kinetics of the USV
and the marine environment, we de�ned the objectives of
the path planning: the path length, energy consumption,
path smoothness, and path safety. 	e simulation results
showed that the proposed algorithm can consider several
optimization objectives and generate paths satisfying these
requirements.

In the future, the following studies should be con-
ducted in depth. First, the correlation between the multiple
objectives should be calculated to determine the weight
of each objective in the cost function to meet the actual
mission requirements. Moreover, the kinetic and kinematic
constraints of the USV should be added to the cost function.
Finally,more practical environmental loads should be applied
to calculate their e�ects on the path energy consumption of
the USV.
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