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Abstract— In January 2004, NASA’s twin Mars Exploration

Rovers (MERs), Spirit and Opportunity, began searching the

surface of Mars for evidence of past water activity. In order

to localize and approach scientifically interesting targets, the

rovers employ an on-board navigation system. Given the la-

tency in sending commands from Earth to the Martian rovers

(and in receiving return data), a high level of navigational

autonomy is desirable. Autonomous navigation with haz-

ard avoidance (AutoNav) is currently performed using a lo-

cal path planner called GESTALT (Grid-based Estimation of

Surface Traversability Applied to Local Terrain). GESTALT

uses stereo cameras to evaluate terrain safety and avoid obsta-

cles. GESTALT works well to guide the rovers around nar-

row and isolated hazards, however, it is susceptible to failure

when clusters of closely spaced, non-traversable rocks form

extended obstacles. In May 2005, a new technology task was

initiated at the Jet Propulsion Laboratory to address this limi-

tation. A version of the Carnegie Mellon University Field D*

global path planner has been integrated into MER flight soft-

ware, enabling simultaneous local and global planning during

AutoNav. A revised version of AutoNav was uploaded to the

rovers during the summer of 2006. This paper describes how

global planning was integrated into the MER flight software,

and presents results of testing the improved AutoNav system

using the MER Surface System TestBed rover.
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Figure 1. Artist’s rendition of a Mars Exploration Rover.

Courtesy NASA/JPL-Caltech.

1. INTRODUCTION

In January 2004, two robotic vehicles landed on Mars as part

of NASA’s Mars Exploration Rover (MER) mission (see Fig-

ure 1). Since that time, these two rovers, Spirit [1] and Op-

portunity, [2], have been searching the Martian surface for ev-

idence of past water activity. Directing rover activities poses

an interesting challenge for scientists and engineers. It can

take as long as 26 minutes for a signal from Earth to reach

Mars (and vice-versa). This makes teleoperation of the rovers

infeasible. In addition, line-of-sight and power constraints

further complicate the situation. In order to overcome these

factors, each rover is sent a sequence of commands at the be-

ginning of each Martian day (sol). This command sequence

lays out all activities to be performed by the rover during the

sol. The rover then executes the command sequence without

any human intervention. In general, before the rover shuts

down for the night, it will send data back to Earth. This data

is then used to plan activities for the following sol. Due to

the fact that commands are received only once per sol, rover

autonomy is critical. The more autonomous the rover is, the

more activities it can accomplish each sol. Here we will focus

our attention on the navigation system, but this observation

applies to all rover behaviors.

The purpose of the navigation system is to move the rover

around the Martian surface in order to locate and approach

scientifically interesting targets. To begin the process, engi-
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neers on Earth identify a goal location that they would like

the rover to reach. Typically, images returned by the rover

are used to select this goal. There are two main methods that

can be used to reach this goal. The first and simplest is the

blind drive. During a blind drive, the rover does not attempt

to identify hazardous terrain and simply drives toward the

goal location. The second option is autonomous navigation

with hazard avoidance (AutoNav). In this case, the rover au-

tonomously identifies hazards, such as large rocks, and steers

around them on its way to the goal.

There are advantages and disadvantages to each approach.

During a blind drive, the rover can cover a larger distance

in a given time period since it does not have to process im-

agery of the surrounding terrain. However, this means that

the engineers on Earth must verify that the terrain between

the rover and the goal is free from hazards before command-

ing the drive. On the other hand, AutoNav is slower, but can

keep the rover safe even in regions unseen by engineers on

Earth. Often, the two methods are utilized in tandem. First a

blind drive is commanded as far out as engineers can be sure

of safety. Then AutoNav is used to make additional progress

through unknown terrain. Thus, the increased autonomy pro-

vided by AutoNav allows much more forward progress to be

made during a sol.

Although AutoNav is usually able to guide the rover to the

goal, there are known circumstances where it is susceptible

to failure, and the rover does not reach the goal. In July 2006,

a new version of the MER flight software was successfully

uploaded to the rovers. Due to the complexity and number

of changes, a software patch was infeasible and a full flight

software load was necessary [3]. In addition to bug fixes and

other improvements, four new technologies were included.

These new technologies were visual target tracking, on-board

dust devil and cloud detection, autonomous placement of the

instrument deployment device, and a global path planner de-

signed to overcome some of the shortcomings of AutoNav

[4]. This planner and its integration into the flight software

are described below.

2. AUTONOMOUS NAVIGATION SYSTEM

Overview

The purpose of AutoNav is to enable the rover to safely tra-

verse unknown terrain. AutoNav is based on the GESTALT

(Grid-based Estimation of Surface Traversability Applied to

Local Terrain) algorithm [5], [6]. AutoNav uses stereo im-

age pairs captured by the rover’s on-board camera system to

gather geometric information about the surrounding terrain.

These images are processed to create a model of the local

terrain. Part of this model is a goodness map. This goodness

map is grid based and represents an overhead view of a model

of the terrain. Each grid cell in the map contains a goodness

value. High goodness values indicate easily traversable ter-

rain, and low goodness values indicate hazardous areas. The

map is constructed in configuration space, meaning that haz-

Figure 2. On sol 108, Spirit was unable to autonomously

navigate to a goal location on the other side of this cluster of

rocks. This image was captured by one of the front hazard

avoidance cameras mounted on the body of the rover. Cour-

tesy NASA/JPL-Caltech.

ards are expanded by the rover radius in all directions before

their representations are included the goodness map. This al-

lows the rover to be treated as a point in future computations.

Once the terrain has been evaluated, a set of candidate arcs

(short paths from the current rover location) is considered.

Nominally, the arc set consists of forward and backward arcs

of varying curvature, as well as point turns to a variety of

headings. Each arc is evaluated based on three criteria. These

are avoiding hazards, minimizing steering time, and reaching

the goal. For each arc, a vote based on each of these crite-

ria is generated. The goodness map is used to generate the

hazard avoidance vote. Arcs that travel through cells that are

difficult or dangerous to traverse receive low votes. Steering

bias votes are constructed based on the amount of time that

is needed to turn the wheels from the current heading to the

heading required to execute the candidate arc. Arcs requiring

less steering time receive higher votes. Waypoint votes are

constructed based upon the final criteria: reaching the goal.

Arcs that move the rover closer to the goal location receive

higher waypoint votes. The three votes are then weighted and

merged to generate a final vote for each arc. Once votes have

been generated, the best arc is selected for execution. The

rover then drives a short, predetermined distance along the

selected arc . This process is repeated (evaluate terrain, se-

lect arc, drive) until the goal is reached, a prescribed timeout

period expires, or a fault is encountered.

Shortcomings

AutoNav is very good at keeping the rover safe and usually

gets the rover to the goal location. However, in some in-
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Figure 3. (a) The typical transitions (in blue) allowed from a

node (shown at the center) in a uniform grid. Notice that only

headings of 45 degree increments are available. (b) Using

linear interpolation, the path cost of any point s′ on an edge

between two grid nodes s1 and s2 can be approximated. This

can be used to plan paths through grids that are not restricted

to just the 45 degree heading transitions.

stances AutoNav is not able to reach the goal. Figure 2 il-

lustrates one such situation. In this case, Spirit spent approx-

imately 105 minutes trying to get around a cluster of rocks,

but was unable autonomously do so. Forty-seven drive steps

were taken during the attempt. The simple method used to

construct the waypoint votes leads to this problem. Arcs

that decrease the Euclidean distance between the rover and

the goal always receive higher votes. Therefore the rover

will attempt to take a straight-line path to the goal. When

the waypoint votes are merged with hazard avoidance votes,

some deviation to get around small hazards can occur. How-

ever, the amount of deviation that can occur is fairly mini-

mal. When the rover encounters a large hazard in its path, the

waypoint votes and hazard avoidance votes conflict severely.

The hazard avoidance votes will not allow the rover to drive

through the unsafe area, and the waypoint votes will not allow

enough deviation from the straight-line path for the rover to

get around the hazard. The rover becomes stuck and is unable

to reach the goal.

3. GLOBAL PATH PLANNING

For improved performance, a better waypoint vote metric is

needed; something that is more accurate than Euclidean dis-

tance. A better metric can be produced by planning paths to

the goal that take into account all of the obstacles in the en-

vironment. Typically, the environment will be only partially-

known to the rover, and thus complete information regarding

the obstacles will not be available. However, incorporating

obstacle information that is available into these global plans

typically provides much better estimates than Euclidean dis-

tance, and these estimates only improve in accuracy as more

information is acquired during the rover’s traverse.

The AutoNav system has been extended to use the Field D*

algorithm to generate these global paths. Field D* is a plan-

ning algorithm that uses interpolation to provide direct, low-

cost paths through two-dimensional, grid-based representa-

tions of an environment [7]. Each grid cell is assigned a cost

Figure 4. Paths produced by classic grid-based planners

(red/top) and Field D* (blue/bottom) in a 150 × 60 uniform

resolution grid. Darker cells represent higher-cost areas.

of traversal. Based upon these costs, the algorithm generates

a path between two locations, with the aim of minimizing the

cost of traversing that path.

Although two-dimensional grids present an easy and compu-

tationally efficient way to represent the environment, a major

limitation of classic grid-based planning algorithms is the re-

stricted nature of the paths produced. For example, classic

grid-based planners usually restrict paths to transitioning be-

tween adjacent grid cell centers or corners, resulting in paths

that are suboptimal in length and involve unnecessary turn-

ing. Figure 3(a) shows the typical transitions allowed from a

particular grid cell.

The Field D* algorithm removes this restriction and allows

paths to transition through any point on any neighboring grid

cell edge, rather than just the neighboring grid cell corners or

centers. To do this efficiently, it uses linear interpolation to

approximate the path cost to any point along a grid cell edge,

given the path costs to the endpoints. Equation 1 and Figure

3(b) illustrate how linear interpolation is used to provide an

estimate of the path cost to an edge node s′ given the path

costs to end nodes s1 and s2. Here y is the distance between

s1 and s′, measured as a fraction of the length of a grid cell

side.

PathCost(s′) ≈ y · PathCost(s2) +

(1 − y) · PathCost(s1) (1)

As a result, Field D* is able to provide much more direct,

less-costly paths than standard grid-based planners without

sacrificing real-time performance. It is also able to efficiently

repair its solutions as new information is received, for exam-

ple through onboard sensors. Figure 4 shows a path planned

by Field D* along with the classic grid-based path.

4. INTEGRATION

At the highest level, using Field D* to improve AutoNav in-

volves two main tasks. The first is providing terrain informa-

tion to Field D* in a form it can utilize. The second is using
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Figure 5. The left image is an overhead view of the rover. The middle image is the corresponding goodness map, and the Field

D* cost map is shown in the right image. Blue cells have unknown traversability. All other cells are colored based on a gradient

between green (high goodness/low cost) and red (low goodness/high cost). Note that the entire goodness map is presented, but

only a small portion of the cost map is shown in here.

Field D* to generate steering recommendations in a form that

AutoNav can understand.

Cost Map

Field D* uses a uniform grid as the basis of its world model.

Each grid cell contains a value which represents the cost of

traversing the width of the cell. Fortuitously, this is very sim-

ilar to the goodness map representation of the world main-

tained by AutoNav. However, the goodness map is always

centered on the rover location, and stores only information

about the local terrain. Field D* plans on a global scale and

must therefore store a much larger map. In addition, the Field

D* map is fixed to the environment and does not move along

with the rover. There are several other key differences be-

tween the two representations as well. Field D* operates on

cost values, where more easily traversable terrain has a lower

cost, but AutoNav stores a goodness map, where more easily

traversable terrain has a higher goodness. In addition, grid

cells in the goodness map can have “unknown” goodness.

This indicates that there is not enough information about that

cell location to determine its traversability. The Field D* cost

map has no such value. All cells must be assigned a cost of

traversal from the start.

Using the goodness map to update the cost map is fairly

straightforward. First, because there is no notion of unknown

cost, the entire cost map must be initialized to a given cost

value. Initializing all cells to a low cost means the rover will

be much more inclined to explore unseen regions. On the

other hand, initializing to a high cost means that the rover will

prefer to stay in regions it has already seen. Here, a midrange

cost value was chosen. Next, at each step of the traverse, the

position of the goodness map inside the larger cost map is

determined. Then each goodness cell that is not unknown is

merely translated into a cost value, and placed into the cor-

responding cost grid cell. For this to operate correctly, the

goodness grid cells and cost grid cells must be the same size.

In addition, grid cell boundaries in the goodness map must

align with those in the cost map. These issues are addressed

when the maps are created. Each goodness value is translated

into a cost value as follows. Cells with very low goodness are

set to a special cost value representing obstacle. Field D* will

not plan paths through these cells. All other goodness values

are inverted and then scaled to the range of cost values to pro-

duce corresponding costs. By virtue of its much larger map,

Field D* tracks everything the rover has seen, even when it

has been long forgotten by the local goodness map. Figure 5

shows a goodness map and the corresponding portion of the

Field D* cost map.

Votes

Once the cost map has been populated, a method is needed to

use Field D* to influence arc selection. The output of Field

D* is the cost of traversing the optimal path from any query

point to the goal location. However, the easiest way to pro-

vide steering recommendations to the rest of the system is

through arc votes. Therefore, a way to convert costs of tra-

versal to arc votes is necessary.

To begin this process, Field D* is used to compute the cost

of traversal from the end of each candidate arc to the goal.

Taken individually, these traversal costs mean very little. If

the rover is 50 meters from the goal, the traversal cost for a

given arc will be much higher than if the rover is 10 meters

from the goal. This is merely due to the fact that there is much

more ground to cover in the first case. Fundamentally, arc

votes are just a way of ranking the candidate arcs from best to

worst. When taken relative to each other, the traversal costs

provide a similar ranking mechanism. The arc with the lowest

cost of traversal to the goal is the best and the one with the

highest cost is the worst. Numerical vote values are assigned

using a weighted sum of vscale and vclose, which are given in
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Equations 2 and 3. vmax is the maximum possible vote, cmax

and cmin are the maximum and minimum traversal costs for

the current arc set evaluation, and ci is the traversal cost for a

given arc. The minimum vote value is zero.

vscalei
= vmax ∗ (cmax − ci)/(cmax − cmin) (2)

vclosei
= vmax ∗ cmin/ci (3)

vscale is a standard linear scaling of the cost values into vote

values. vclose bases vote values upon how close the rover is

to the goal. The closer the rover is to the goal, the greater the

range of vote values that is generated. When the rover is far

from the goal, cmin/cmax will be close to one and all votes

will be close to vmax. On the other hand, when the rover is

close to the goal, cmin/cmax will be close to zero, and the

votes will be spread from zero to vmax. Alone, vclose is not

particularly useful (especially when the rover is far from the

goal), but when combined with vscale it can be helpful. When

combined with vscale, vclose serves to reduce the range of

vote values when the rover is far from the goal. This means

the preference for one arc over another is less pronounced.

When the rover is far from the goal, it is not critical exactly

which arc is taken (as long as the rover is moving in generally

the right direction). In this case it may be advantageous to let

the other voting modules (steering bias and hazard avoidance)

have more influence over the final arc selection. However,

as the rover gets closer to the goal, the exact arc selected is

more important and thus the entire range of vote values is uti-

lized. Generally when combining the two vote values, vscale

receives a significantly higher weight than vclose.

Once these votes have been constructed, they replace the way-

point votes constructed by GESTALT. They are then com-

bined with steering bias and hazard avoidance votes in order

to select the arc that will be followed. When constructing

Field D* votes, it is possible that several arcs may have iden-

tical costs of traversal. Nothing special need occur to handle

this situation. These arcs are merely assigned equal Field D*

vote values. The GESTALT arc selection algorithm handles

combining these votes with steering bias and hazard avoid-

ance votes, as well as breaking any ties that might occur in

the final combined vote values. Once the naive waypoint

votes are replaced with those generated using Field D*, the

autonomous navigation system becomes much more robust.

Limitations

It should be noted that AutoNav (both with and without Field

D*) assumes that the rover position is known, and that can-

didate arcs can be executed nominally. There are cases in

which these assumptions are violated. For instance, on sandy

slopes the wheels may slip significantly, causing the esti-

mated rover position to be erroneous. In addition, mechan-

ical failure of wheel actuators can cause arcs to be executed

abnormally. In these cases, AutoNav performance may be

degraded. Although AutoNav makes no attempt to directly

address these issues, other technologies can often be used to

overcome them. For instance, visual odometery can be used

in conjunction with AutoNav in order to maintain an accurate

estimate of rover position, regardless of wheel slip [8].

5. RESOURCE LIMITATIONS

The Mars rovers are constrained by very limited computa-

tional resources. The onboard computer uses a radiation hard-

ened RAD6K processor running at 20 MHz, and has 128

Mbytes of DRAM [6]. To make matters worse, these already

limited resources must be shared among the 97 tasks (includ-

ing AutoNav) that make up the on-board flight software [9].

In light of these constraints, optimizations were made to the

Field D* algorithm to improve efficiency. Specifically, the

path cost minimization step of the algorithm is pre-computed,

and the results are stored in a lookup table that is then ac-

cessed at runtime. This significantly decreases the computa-

tion time required for planning. See [7] for more details on

how this is performed.

Another constraint is the limited bandwidth available to send

data back to Earth. This data can be grouped into two broad

categories: engineering data and science data. Science data

contains information about Mars that is of interest to scien-

tists. Engineering data is used to monitor the status of the

rover, and contains information that is useful should an anom-

aly occur. Telemetry generated by Field D* falls into this

category. Since the main purpose of the mission is to better

understand Mars, it is desirable to limit the engineering data

to a minimum in order to maximize the amount of science

data that can be downlinked.

In the case of Field D*, CPU utilization, memory usage, and

telemetry volume are all tied to the size of the Field D* cost

map. Larger maps mean more resource usage. Therefore, it is

advantageous to find ways to reduce the map size while still

obtaining good path planning results.

Automatic Recentering

In order for Field D* to plan a path between some start lo-

cation and a goal, both the start location and goal location

must be located within the cost map. Therefore, the further

the rover is from the selected goal, the larger the map must

be. In order to allow long traverses that would be infeasible

due to memory constraints, a scheme was developed to over-

come this limitation. The constraint that the user selected

goal must be within the bounds of the cost map is lifted, and

any arbitrary goal location is allowed. If the goal happens to

be outside of the cost map, an intermediate goal is selected

that resides on the boundary of the cost map. The intermedi-

ate goal is placed at the point where the straight line between

the current rover location and user selected goal intersects the

boundary of the cost map. However, this does not completely

solve the problem. Now the rover is being guided to a point

on the edge of the map and not the real goal. In order for the

rover to reach the real goal, map recentering is needed. Dur-
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(a) (b) (c)

Figure 6. Field D* cost map and the recentering process. The rover is represented by a purple diamond and the goal is shown

as a blue diamond. Recentering is needed for the map shown in (a). Cells common to the old and new map are copied to their

new location in the lower right of (b). Shown in (c) is the final map after cells not common to both the old and new maps have

been cleared, the cost map has been updated from the most recent goodness map, and the goal location has been recalculated.

ing the map update phase, if any portion of the local goodness

map falls outside the cost map, the cost map is recentered on

the current rover position.

Recentering does not alter any memory allocations, but in-

stead merely adjusts the world coordinates of the map center.

In order to make the map consistent with the new coordinates,

grid cells that are common to both the old map and new map

are copied across the map to their new location. All other ar-

eas are cleared to the nominal cost value. Once this is done,

a new goal is placed within the cost map. If the user selected

goal is within the new map bounds, the goal is placed there.

If not, another intermediate goal is placed using the proce-

dure outlined earlier. This recentering and intermediate goal

placement is repeated until the user selected goal is reached.

Figure 6 illustrates the recentering process.

This approach has some limitations. There is a performance

penalty whenever the map is recentered. Field D* is efficient

because it does not have to replan from scratch when new

costs are discovered. Instead, it is able to reuse the results

of previous planning and repair the needed paths. However,

because Field D* begins its search at the goal, whenever the

goal is moved, all planning information is reset and the next

path must be planned from scratch. In order to minimize this

effect, the intermediate goal is not updated every time the

rover moves. Instead, a new goal is placed only when the

map is recentered. Map recentering is an infrequent event

and therefore the overall performance impact is minor.

There is another limitation to this approach. It is possible

that the intermediate goal could be placed inside an obstacle.

When the goal is inside an obstacle, Field D* is unable to plan

any paths and will fail. However, this problem is unlikely to

be encountered in practice. Usually, the intermediate goal is

ahead of the rover, in an area not yet visited. Because the

rover has not seen the terrain around the intermediate goal,

that location cannot be obstacle in the cost map until the rover

is close enough to evaluate that terrain. The map is recen-

tered slightly before the rover can see the edge of the map.

Therefore, in general, the rover has never evaluated the ter-

rain under any current intermediate goal. The exception is if

the rover in the process of backtracking a significant distance

in order to navigate around a very large hazard. In this case,

the goal is behind the rover and the rover is driving away

from it. Therefore, when the map is recentered, the rover

may have already seen the region where the new intermedi-

ate goal is placed, and it is possible that there is an obstacle

in this region. However, for this problem to occur, the rover

must be attempting to navigate around a very large hazard,

and must drive large distances. Due to power and time con-

straints, the distance that the rover can traverse in a single sol

using AutoNav is limited. This limitation drastically reduces

the chances of encountering the problem.

Coarse Resolution Cost Maps

Another way to manage limited memory resources is to

change the resolution of the cost map grid cells. Instead of

constraining the cost map grid cells be the same size as the

goodness map grid cells, the cost map cells are allowed to be

larger. This allows fewer grid cells to cover the same area,

and thus for smaller cost maps in terms of grid cells, which is

what dictates resource usage. Further, because the Field D*

planner is able to compute paths that are not restricted to tran-

sitioning between grid cell centers or corners, it can be used

to plan direct, low-cost paths even in very coarse resolution

grids.

Allowing for larger cost map grid cells does present some

complications. Updating the cost map from the goodness map

is now more difficult. Before, there was a one-to-one cor-

respondence between cost and goodness grid cells, meaning
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Figure 7. Goodness map overlain on a cost map. Goodness

grid cells are outlined in grey. Cost cells are shown in white

and blue. In addition to a complete goodness cell, each cost

cell contains pieces of 3, 5, or even 8 other goodness cells.

that the goodness map could essentially be copied directly

into the cost map. With larger cost cells, there are multiple

goodness cells in each cost cell. In fact, there could even

be fractional goodness cells in a given cost cell as shown in

Figure 7. In order to simplify matters somewhat, the size of

the cost cells are constrained to be an integer multiple of the

goodness cells. This avoids splitting single goodness cells

across multiple cost cells. Instead, each cost cell contains

a fixed number of whole goodness cells. In this way, the

complication of dealing with fractional cells can be avoided.

However, a method is still needed to convert multiple good-

ness values into a single cost value.

One simple and safe method would be to use the minimum

goodness value in a given cost cell to set the cost. In some

cases this is not necessarily the best approach. Figure 8 il-

lustrates what can happen when a narrow corridor is encoun-

tered. By using the minimum goodness value to update the

cost value, narrow corridors in the goodness map can become

completely blocked in the cost map. One way to mitigate this

problem is to employ a more lenient standard when updating

cost cells containing obstacles. Cost cells that are less than

half obstacle are set to the maximum traversable cost. Cost

cells that are half obstacle or more are set to obstacle. This

greatly reduces the chances of closing off narrow corridors.

Larger cost map grid cells also require a new strategy for han-

dling unknown goodness cells. There is no traversability in-

formation in these cells, and previously they could just be

ignored. The situation is more complicated when there are

multiple goodness cells in each cost cell. One option for han-

dling unknown goodness cells is to not update cost cells con-

taining any unknown goodness cells. This is a less than ideal

solution. A cost cell could contain many goodness cells with

known values, but if there is one unknown value, all this in-

formation will be ignored. This situation happens frequently

at the edge of the field of view. In order to fully utilize the ter-

rain assessment, the unknown goodness cells could merely be

(a) (b) (c)

Figure 8. Here, each cost cell contains nine goodness cells

(cost cells are outlined in blue). Red represents obstacle, yel-

low is traversable, and orange is the maximum traversable

cost. Coloring is by goodness value in (a) and cost value in

(b) and (c). The cost map in (b) is produced by using the min-

imum goodness value in each cost cell. The cost map in (c)

is produced using a more lenient update rule. If the cost cell

is less than half obstacle it is set to the maximum traversable

cost instead of obstacle. Note that the corridor is blocked in

(b), but not in (c).

ignored, and the minimum goodness of the populated good-

ness cells used to update the cost cell. This approach presents

a more subtle problem which is illustrated in Figure 9. Dur-

ing each step the rover takes, an area around the edge of the

goodness map is set to unknown. This erases old data be-

hind the rover in order to make room for new data in front

of it. The problem arises when obstacle goodness cells be-

hind the rover are set to unknown, but there are still some

goodness cells in a given cost cell that have not been cleared

and are not obstacle. The minimum goodness is therefore no

longer obstacle, and if the minimum goodness is used to up-

date the cost cell, the cost will be changed from obstacle to

traversable. This causes Field D* to forget about obstacles,

which is highly undesirable.

The solution to these problems is to make use of another value

that is stored as part of the local terrain map. In addition to a

goodness value, each goodness cell contains a certainty value

as well. If the certainty is not zero, then the grid cell is in

the current field of view and was just updated. It acts as a

sort of new data flag. Therefore, if there is no certainty in

a given cost cell, it is probably an old cell that is behind the

rover. In this case, the first approach is utilized, which is

to not update the cell if it has any unknown goodness. This

avoids forgetting data in the cost map. On the other hand, if

there is certainty in a given cost cell, it contains new data and

is probably in an area that hasn’t been seen before. For these

cells the second approach is used, and the cost is updated

using the minimum goodness value. In this way, new terrain

assessments are added to the cost map as early as possible.

Map Filtering

In certain situations, the planning process for a given drive

step can take more than an order of magnitude longer than

usual. Recall that Field D* is used to plan a path from each

arc endpoint to the goal. Also recall that Field D* will not

plan paths through obstacle cells. If an arc endpoint happens
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(a) (b)

(c) (d)

Figure 9. Here, each cost cell contains nine goodness cells

(cost cells are outlined in blue). Red represents obstacle, yel-

low and orange are traversable, and blue is unknown. The

goodness and cost maps for one step are shown in (a) and

(b) respectively. Similarly, (c) and (d) are for the next step.

Between steps, the rover has moved up to the left. The cost

maps are produced using the minimum goodness value that is

not unknown. Note that as the rover moves, obstacles are for-

gotten from the goodness map, and using this update strategy

these obstacle cells are set to traversable in the cost map.

to fall in an obstacle cell, the algorithm immediately returns,

indicating that there is no path to the goal. However, planning

time can swell if an arc endpoint falls in a non-obstacle region

completely surrounded by obstacle cells, as shown in Figure

10(a). This is an artifact of how the planning process is car-

ried out. The search begins at the goal location and expands

outward. When the start state (the arc endpoint in our case) is

reached, the search terminates and the path cost is returned.

Unfortunately, when an arc endpoint falls into a small region

completely surrounded by obstacles, it is in fact unreachable.

In order for Field D* to make this determination, every reach-

able state in the cost map must be expanded. Usually rela-

tively few states need to be expanded, and thus expanding the

entire map leads to a significant increase in planning time.

This explosion in usage of already limited CPU resources is

very undesirable.

In order to solve this problem, the goodness map is filtered

before it is used to update the Field D* cost map. A flood

fill algorithm is used to identify all cells in the goodness

map reachable from the current rover location. The rover

location is first marked as reachable. Then each adjacent

(eight-connected), non-obstacle cell is added to a list for later

processing. Next, a cell is removed from the list, marked as

reachable, and its new non-obstacle neighbors are added to

(a) (b)

Figure 10. Goodness map filtering. Obstacle cells are shown

in red. The goodness map in (a) contains regions completely

surrounded by obstacle cells. Planning time is greatly in-

creased when arc endpoints fall in these regions. All cells

reachable from the rover location are shaded pink in (b). Note

that the regions surrounded by obstacle are not marked as

reachable.

the list. This repeats until the list is empty, indicating that all

cells reachable from the rover location have been identified,

as shown in Figure 10(b). Finally, all non-reachable, non-

obstacle cells are set to obstacle. By doing this, arc endpoints

that would have been problematic now end in obstacle cells.

In this case, no planning is necessary to determine that no

path to the goal exists.

Even though map filtering is done during every map update,

in the long run it still saves time. As an added benefit, it

also allows for much more consistent and predictable plan-

ning times. There are a couple of reasons why map filtering

at every step is much faster than letting Field D* occasionally

expand the entire cost map. First, map filtering is done on

the goodness map, which is much smaller than the Field D*

cost map. In addition, the simple flood fill check for reach-

ability takes much less time than the full Field D* planning

process. In fact, the time necessary to filter the goodness map

is negligible when compared even to the nominal planning

time necessary for each drive step.

6. RESULTS

The MER Surface System TestBed (SSTB) was used to exten-

sively test flight software modifications. The SSTB is a high-

fidelity engineering model of the Mars Exploration Rovers.

It is essentially identical in form and electromechanical func-

tion to Spirit and Opportunity, with a few minor exceptions.

The SSTB has no solar panels, and some of its electronics are

housed in an adjacent clean room. A physical tether provides

a link between the rover and these electronics. The tether

also provides power to the rover. The SSTB is housed in an

indoor sandbox approximately 9 meters wide and 22 meters

long [10]. A ramp tilted at 25 degrees occupies one end. The

SSTB is shown in Figure 11.

GESTALT alone performs well in simple situations, includ-

ing navigation in areas free from hazards and navigating

around small discrete obstacles. However, the real strength

8



Figure 11. MER Surface System TestBed rover.

of Field D* is navigation in much more complex situations.

Unfortunately, the relatively small size of the sandbox makes

constructing complex obstacle arrangements difficult. Test-

ing was limited to this environment for several reasons. The

SSTB was the only available system with enough fidelity to

perform flight software testing requiring imaging and driving,

with the driving decisions based upon imaging results. It was

infeasible to move the rover to a larger outdoor environment

due to the tremendous effort that would be necessary to move

all the support equipment needed to run the rover (remem-

ber that most of the rover electronics are actually housed in

a clean room adjacent to the sandbox). However, even in

the limited sandbox environment, constructing situations for

which GESTALT alone fails to reach the goal is not difficult.

For instance, navigating around a cul-de-sac obstacle arrange-

ment is nearly impossible for GESTALT alone. Figure 12 il-

lustrates a situation with not one, but two cul-de-sacs. Due

to the limited size of the sandbox, the goal is placed outside

the sandbox and is not actually reachable. Figure 12(a) shows

the initial position of the rover. The rover begins by driving

straight into the first cul-de-sac. The rover reaches the bottom

of the cul-de-sac in Figure 12(b). Up to this point, behavior

with and without Field D* was roughly equivalent. However,

with GESTALT alone the rover became stuck here. Field D*

on the other hand, plans a path around the first cul-de-sac and

into the second. The rover is then guided into the second cul-

de-sac as shown in Figure 12(c). Once the determination is

made that there is no route through the second cul-de-sac, the

rover drives back toward the only unexplored region of the

sandbox as shown in Figure 12(d). Eventually Field D* fails,

indicating that no paths to the goal exist.

Over the course of testing, Field D* was used to guide the

SSTB toward roughly 100 different goal locations. Initially,

a variety of simple tests were completed. In an obstacle free

setting, the rover was placed at a variety of different initial

headings relative to the straight line to the goal. Navigation

through a field of traversable rocks was tested. Navigation

around a single rock in various positions relative to the path

between the rover and the goal, and navigation between two

rocks separated by a variety of distances were also tested.

More complex obstacle arrangements in which GESTALT

alone would almost certainly fail to guide the rover to the goal

were tested as well. Situations were constructed necessitating

navigation into and out of single or multiple cul-de-sacs. In

addition, lines of rocks were used to produce an arrangement

similar to the one shown in Figure 2. Overall, the perfor-

mance was extremely good. In the vast majority of cases the

rover was able to reach the goal when Field D* was used, and

performance in the simple test cases was at least as good as

with GESTALT alone. Surprisingly, one of the biggest prob-

lems faced during testing was goal placement. If the goal

is placed in an obstacle cell, Field D* is unable to plan any

paths. When the rover gets close enough to the goal to deter-

mine it is in an obstacle cell, Field D* will fail. Although the

rover does not reach the goal, this should not necessarily be

considered an AutoNav failure. In these situations the goal

location is not safe, and the rover should not drive onto it.

Due to the very limited space in the sandbox, squeezing the

goal location into a safe area (after all obstacles have been

expanded by the rover radius) was sometimes a challenging

proposition.

With Field D*, the rover is able to explore the environment

much more fully when attempting to locate a path to the goal.

This allows the rover to almost always arrive at reachable

goals. The downside, of course, is the increased resource uti-

lization required. For Field D*, the additional CPU time and

memory usage are fairly minimal. Much of the testing was

done using 50 m x 50 m cost maps. The cost cells were 40

cm x 40 cm, which is twice as big as the goodness cells. Al-

most no difference was noticed in rover behavior when mov-

ing from 20 cm to 40 cm cost cells. With these settings, Field

D* utilizes less than 1 Mbyte of memory. In addition, each

drive step takes only about 3 percent longer when Field D* is

enabled. Even with these very modest requirements, Field D*

is able to significantly improve on-board autonomous naviga-

tion capability.

7. CONCLUSIONS

Autonomous hazard avoidance using GESTALT keeps the

rovers safe and works well in the presence of simple discrete

obstacles. However, it is susceptible to failure when more

complex hazard arrangements are encountered. In order to

address this shortcoming, the hazard avoidance system was

augmented with a global path planner. Field D* was inte-

grated into the MER flight software and uploaded in the sum-

mer of 2006 as part of a significant software upgrade. Field

D* assisted hazard avoidance was extensively tested using the

SSTB before the upload. Obstacle avoidance was at least as

good as with GESTALT alone, and in many cases much bet-

ter. Field D* allows the rover to much more robustly navigate

around hazards. With Field D*, the rover is less prone to get-

ting stuck and reaches the goal even when faced with complex

hazards.
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Figure 12. Field D* assisted hazard avoidance using the SSTB. The left image is an overhead view of the sandbox. The middle

image is the local goodness map, and the image on the right is the Field D* cost map. Note that the entire goodness map is

shown, but only a portion of the cost map is included. Blue cells have unknown traversability. All other cells are colored based

on a gradient between green (high goodness/low cost) and red (low goodness/high cost). The blue line on the cost map is the

path planned between the rover and the goal. The size of each goodness cell is 20 cm x 20 cm. Each cost cell is 40 cm x 40 cm.
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