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Abstract

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions
worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was
employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and
export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to
88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass
and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of
benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic
carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the
poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial
divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of
biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than
abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps
are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide
fundamental information that can be incorporated into evidence-based management.
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Introduction

Rationale
A ‘census’, according to our dictionaries, was originally a

counting of individuals for the purpose of taxation. The Census of

Marine Life (CoML) is on the other hand an attempt to make a

comprehensive assessment of what lives in the world’s oceans.

CoML is attempting to document, describe, list, archive and map

as many species of organisms as possible in all marine ecosystems,

independent of an individual species’ population size. A natural

by-product of CoML however has been new tabulations of animal

abundances and biomass by CoML field projects. The purpose of

this CoML biomass synthesis has been to capture all the new

information on biomass that has been uncovered during CoML

into a single data base, independent of species composition. This

project has thus archived and mapped a broad spectrum of

PLoS ONE | www.plosone.org 1 December 2010 | Volume 5 | Issue 12 | e15323



biomass data from CoML projects from around the world, added

data from a number of previous comprehensive reviews, and, as a

result, produced maps of biomass of a limited number of size

groups living on the sea floor on a world wide basis.

While the causes of biodiversity remain obscure to a large

degree, there is general agreement that biomass is a function of

food supply to or within any particular habitat. As a result,

standing stock biomass has been used as a surrogate for biomass

production and carbon flow to and through an ecosystem, without

necessarily defining the taxa contributing to the biomass. On the

other hand, by analyzing the statistical relationships of diversity to

biomass, it might be possible to make some practical inferences

about the effects that productivity might have on diversity [1], as

this is an open question that has generated considerable conjecture

[2]. While the biomass census is not related to ‘taxation’ in the

classic sense, it directly links marine populations to carbon as an

ecosystem model currency. Inorganic carbon is fixed into organic-

rich compounds by photosynthesis and then transferred through

food webs where it has a variety of fates, usually a return to CO2.

However, it is also harvested by fishers and it thus ends up in

markets around the world. A biomass census therefore has

relevance to societies because human populations are putting a

‘tax’ on the ocean biota in the form of valuable protein in fisheries

products.

Historical background
The earliest quantitative sampling of the sea floor began at the

beginning of the 20th century as an attempt to determine food

resources available to bottom-dwelling fish in European waters

[3,4]. A good review of the mechanical instruments developed for

the early shallow-water surveys [5] pictures a wide variety of grab-

like samplers, many still in use today. By the middle of the 20th

century, the macrofauna of many continental shelves and estuaries

had been sampled quantitatively by a relatively standard set of

instruments. For demersal fishes and vagile megafaunal inverte-

brates, the most common sampling methods are trawling and

photography. Both methods have weaknesses: for example,

trawling tends to capture only surface-dwelling and slow species.

It may be impossible to positively identify animals to species from

photographs. However, to this day neither is fool proof. With

smaller forms (meiofauna, microfauna, bacteria and viruses),

sampling problems are solved seemingly easily by utilizing small-

diameter cores, but care has to be taken not to lose organisms by

either washing or bow-wake of sampling devices. For these groups,

the problem is that they have not yet been sampled comprehen-

sively on global or ocean-basin scales.

Generalizations about the controls of sea floor biomass began to

emerge by the middle of the 20th century. Expeditions sponsored

by Union of Soviet Socialist Republics (USSR: dissolved in 1991)

reached every corner of the globe. This large body of work

concluded that biomass declines sharply with depth and with

distance from land. They observed that high latitudes tended to

have higher biomass than low latitudes. The major food supply to

both pelagic and sea floor communities was the rain of particulate

detritus, enhanced by a ladder of vertical migration [6]. Sea floor

biomass likewise declines precipitously with depth, but is also

tightly coupled to primary production in surface layers. Regression

equations of the variation in benthic biomass as a function of

depth and primary production established in the 1970’s initially

(reviewed in [7]) are still reasonable estimates of deep benthic

biomass today [8]. The slopes of the biomass regressions have been

equated to the rate at which the delivery of POC to the sea floor

declines, but the height or zero intercept of the regression line is a

function of the mean primary production in the photic zone.

Previous reviews of seafloor standing stocks focused on

bathymetric standing stock patterns in which the distribution of

biomass and abundance was fitted to a linear function of water

depth or direct measurement of sinking particle flux [7,8,9,10].

Applying such equations is conceptually intuitive but the

relationships tend sometimes to fall apart in large scale predictive

mapping. In this paper, we explore a novel machine-learning

algorithm, Random Forests [11], to model the complex and

potentially non-linear relationships between oceanic properties

and seafloor standing stocks. Random Forests (RF) is a data

mining method widely used in the fields of bioinformatics [12],

speech recognition [13], and drug design and development [14].

Recently RF is gaining popularity in terrestrial ecology [15,16,17];

however, so far, only a handful of studies have applied RF in

marine ecosystems [18,19]. In short, RF, as the name suggested, is

an ensemble of many decision trees with binary divisions. Each

tree is grown from a bootstrap sample of response variable and

each node is guided by a predictor value to maximize differences

in offspring branches. The fit of the tree is examined using the data

not in the bootstrap selection; hence, cross-validation with external

data is not necessary. Predictive accuracy requires low bias and

low correlation between decision trees [11]. RF achieves these by

growing a large number of trees and then averaging the

predictions. At the same time, the node decision is chosen from

a random subset of predictors to make the trees look as different as

possible. RF does not assume any data distribution and does not

require formal selection of predictors. RF is robust to outlier and

unbalanced data, making it a better choice than traditional

statistical methods [12].

Materials and Methods

Response Variables
Biomass and abundance of bacteria, meiofauna, macrofauna,

megafauna (invertebrates+fishes), invertebrates, and fishes were

assembled from literature and the Census of Marine Life (CoML)

field projects (Figure 1 and Appendix S1). The ‘‘CoML Fresh

Biomass Database’’ includes 4872 biomass records, 5511 abun-

dance records, and 4196 records with both biomass and

abundance from 175 studies. Additional datasets include nema-

todes (230 records from 10 studies) and pelagic decapods (17

records from 1 study); however, they were not included in this

analysis. The complete list of references and detailed data

information are available in Appendix S1 and File S1.

Categories of benthic fauna are usually defined by size classes.

In this paper, we refer to the term ‘‘bacteria’’ to include both

bacterial and archaeal domains. We have not included viruses.

The metazoan meiofauna and macrofauna are small infauna

invertebrates sampled by core or grab devices and retained on 20

to 74-mm and 250 to 520-mm sieves, respectively. Megafauna

refers to large epibenthic invertebrates and demersal fishes (usually

larger than 1 cm) caught or recorded by bottom trawling and

photographic survey. Many studies deal with trawl invertebrates

and fishes separately; hence, 3 categories were created for the

megafauna, including the invertebrates plus fishes, invertebrates,

and fishes. Here the ‘‘megafauna’’ dataset includes both

invertebrates and fishes. Estimates of meiofaunal and macrofaunal

standing stocks are affected by the gear design, sampling area, and

sieve sizes [7,20,21,22]. These factors however have been

suggested to be minor compared to water depth at a global scale

and do not significantly affect the overall level and pattern of stock-

depth relationships [2,8]. Only studies reporting standing stocks

for the whole assemblage of a size category were used in these

analyses. Benthic foraminiferans were not included due to

Patterns and Predictions of Seafloor Biomass
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difficulty differentiating between living biomass from empty tests

or shells [8,9]. Throughout this analysis, the abundance was

standardized to cells (for bacteria) or individuals (for meiofauna,

macrofauna, and megafauna) per square meter. The biomass was

standardized to milligrams carbon per square meter using

appropriate conversion factors from wet or dry weight to organic

carbon weight [7,9].

Environmental Predictors
Environmental variables with global coverage were utilized to

characterize 1) the surface ocean climate relating to phytoplankton

production, 2) water column processes associated with export

POC flux, 3) bottom water properties characterizing the seafloor

habitats, and 4) seafloor relief (water depth) as a proxy of declining

export POC flux arriving at the ocean floor (Table 1 and Figure

S1). Contemporaneous environmental and standing stocks data

were not always available; therefore, mean and standard deviation

(S.D.) of the predictors were calculated for the longest time periods

possible. The variables are listed as:

1) Primary productivity variables: Decadal mean and standard

deviation (S.D.) of monthly net primary production (NPP)

models (cbpm, vgpm), and the data inputs for the NPP

models [23,24] including chlorophyll concentration (chl), sea

surface temperature (sst), photosynthetic available irradiance

(par), mixed layer depth (mld), particle backscatter (bbp),

phytoplankton growth rate (growth), and carbon concentra-

tion (carbon), all calculated between years of 1998 and 2007.

The monthly data were obtained from the Ocean

Productivity Group, Oregon State University, as products

of the Sea Viewing Wide Field-of-view Sensor (SeaWiFS

r2009.1) and Advanced Very High Resolution Radiometer

(AVHRR).

2) Water column processes: Decadal mean of water-column

integrated total carbon (int.c) and nitrogen (int.n), detrital

carbon (det.c) and nitrogen (det.n), phytoplankton (phyt) and

zooplankton (zoop), as well as export flux of detrital carbon

(det.flx.c) and nitrogen (det.flx.n), obtained from a 10-year

simulation of monthly model outputs from 1995 to 2004

using Ocean Circulation and Climate Advanced Model

(OCCAM) driven by a nitrogen based Nutrient Phytoplank-

ton Zooplankton Detritus (NPZD) Model [25].

3) Bottom water properties: Annual mean and seasonal

standard deviation (S.D.) of bottom water temperature,

salinity, oxygen, nitrate, phosphate, and silicate concentra-

tion were obtained from World Ocean Atlas 2009, NOAA

National Oceanographic Data Center.

4) Global ocean depths were obtained from the ETOPO1

Global Relief Model, NOAA National Geophysical Data

Center [26].

Data Analyses and Modeling
We used partial regression analysis to examine the relationships

between standing stocks and depth when the latitude and

longitude are held constant. The multiple regression residuals of

stocks against latitude and longitude were used as dependent

variables to regress against depth. To bring the dependent variable

back to an appropriate scale, the y-intercept from the multiple

regression was added to the residuals. The partial regression was

also used in the pre-treatment of the depth-integrated bacteria

data to standardize sediment penetration depths (from 0.5 to

29.5 cm; .83% are between 5 and 15 cm). Similar approaches

has been developed and tested in Rex et al. [8].

A stochastic model between standing stocks and 39 environ-

mental predictors (Table 1 and Figure S1) was constructed using

Random Forests (RF) [11]. RF is a member of Regression Tree

Analyses (RTA) [27]. In RTA, the response variable (standing

stocks) is recursively partitioned into small successive binary splits.

Each split is based on a single value of predictor from an

Figure 1. Distribution of abundance and biomass records in the ‘‘CoML Fresh Biomass Database’’. References and locations for each size
class are given in Appendix S1 and File S1. Bathymetric layer uses NOAA ETOPO 1 Global Relief Model [26].
doi:10.1371/journal.pone.0015323.g001

Patterns and Predictions of Seafloor Biomass
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exhaustive search of all available predictors to maximize the

differences between the offspring branches. In RF, the response

variable was bootstrap resampled before conducting RTA to

generate large numbers of un-pruned decision trees (1000 trees in

this study). Unlike traditional RTA, the RF algorithm searches the

best split from a random subset of predictors (1/3 of all variables)

and the prediction can be made from new data (environmental) by

averaging the model outputs of all trees. At each bootstrap

resampling step, 2/3 of the data (in-bag) were selected to build the

decision tree. The other 1/3 of the data (out-of-bag, or OOB) were

used to carry out an internal examination of model (decision tree)

prediction error and estimate variable importance. The OOB data

can generate predictions using the tree grown from the in-bag

data. These OOB predictions were aggregated (by averaging the

outputs of all trees) to compare with the observations and

estimated the prediction error. The performance of the RF model

was examined as percent variance explained: R2=1– MSEOOB/

observed variance, where MSEOOB is the mean square error

between observations and OOB predictions. Predictor Importance

was determined by how much worse the OOB predictions can be

if the data for that predictor are randomly permuted. This

essentially mimicked what would happen with or without the help

of that predictor. The increase of prediction error (MSEOOB) after

the permutation was used to measure its contribution to the

prediction accuracy. This accuracy importance measure (increase

of MSEOOB) was computed for each tree and averaged over the

forest (1000 trees).

Construction of Random Forest Models
Standing stocks (biomass and abundance) were logarithm (base

10) transformed before conducting RF analysis. Environmental

data were extracted based on the latitude and longitude of the

stock records by averaging a box of size 363 or 161 cells (Table 1).

Mean value of the box was matched to the corresponding stocks

record. RF algorithm was then run independently on each of the

12 datasets. Most primary productivity predictors have declining

temporal coverage at the high latitudes between years of 1998 and

2007 due to prolonged winter darkness or cloud cover preventing

SeaWiFS ocean color measurements (Figure S2). This can be a

source of error during the RF modeling, because decadal mean

and standard deviation of the predictors was only calculated from

the available monthly data. In order to evaluate the model

Table 1. Global datasets of environmental predictors.

Data Type Data Source Res. Cell Abbrev. Variable Unit

Primary Production Ocean Productivity, OSU 5 minutes 363 chl Chlorophyll a concentration (SeaWiFS r2009.1) mg m23

Decadal mean & standard deviation of monthly data
from January 1998 to December 2007

5.3 minutes 363 sst Sea Surface Temperature (AVHRR) uC

5 minutes 363 par Photosynthetically available radiation
(SeaWiFS r2009.1)

Einstein m22

day21

5 minutes 363 bbp Particulate backscatter (SeaWiFS r2009.1) m21

10 minutes 161 mld Mixed layed depth m

5 minutes 363 growth Phytoplankton growth rate divisions day21

5 minutes 363 carbon Carbon concentration mg m23

5 minutes 363 vgpm Chlorophyll based net primary production mg C m22 day21

5 minutes 363 cbpm Carbon based net primary production mg C m22 day21

Water column Yool et al. [25] 1 degree 161 int.c Integrate C to 500 m above seafloor mg C m22

Decadal mean of monthly model simulation from
January 1995 to December 2004

1 degree 161 int.n Integrate N to 500 m above seafloor mg N m22

1 degree 161 det.c Integrate detrital C to 500 m above seafloor mg C m22

1 degree 161 det.n Integrate detrital N to 500 m above seafloor mg N m22

1 degree 161 phyt Integrate phytoplankton to 500 m above seafloor mg N m22

1 degree 161 zoop Integrate zooplankton to 500 m above seafloor mg N m22

1 degree 161 det.c.flx Detrital C flux at 500 m above seafloor mg C m22 day21

1 degree 161 det.n.flx Detrital N flux at 500 m above seafloor mg N m22 day21

Bottom Water World Ocean Atlas 2009 1 degree 161 temp Temperature uC

Annual mean & seasonal standard deviation 1 degree 161 salin Salinity ppm

1 degree 161 oxyg Oxygen concentration milliters liter21

1 degree 161 nitra Nitrate concentration micromoles
liter21

1 degree 161 phos Phosphate concentration micromoles
liter21

1 degree 161 si Silicate concentration micromoles
liter21

Water Depth ETOPO1 Global Relief 1 minute N.A. depth Water depth m

The mean value was extracted for abundance and biomass records with catchment area of 363 or 161 cells. The datasets are divided into 4 categories, including 1)
primary productivity variables, 2) water column variables, 3) bottom water properties, and 4) water depth. The table abbreviations follow: Res. = data resolution, Cell =
cell size for extraction, Abbrev. = variable abbreviation.
doi:10.1371/journal.pone.0015323.t001

Patterns and Predictions of Seafloor Biomass

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15323



stability, we conducted 4 RF simulations for each dataset. The

simulations were based on different data selection scenarios,

including: 1) all standing stocks and environmental data were

included; 2) only data calculated from .30 months of SeaWiFS

measurements were included; 3) only data calculated from .60

months of SeaWiFS measurements were included; 4) only data

calculated from .90 months of SeaWiFS measurements were

included. In other words, Scenario 1 retained all the data and

Scenario 4 excluded much of the high latitude data (.50uN or S,

see Figure S2). The mean and standard deviation (S.D.) of the

model performance (R2) and variable importance were calculated

to evaluate the model sensitivity. In the following text, the

‘‘simulations’’ refer to the RF runs under the 4 data selection

scenarios.

Global Prediction of Seafloor Standing Stocks
Environmental data were averaged to the same grid resolution

(1 arc degree grids) before using them as model inputs for global

standing stocks predictions (Figure S1). For each dataset, 4 global

predictions were generated from RF simulations. The mean and

coefficient of variation (S.D./mean * 100%) were calculated for

each grid to optimize the predictions and examine the output

stability. In order to produce a smooth predicted surface, the

predictions were interpolated to 0.1 degree cell resolution using

Inverse Distance Weighting (IDW). The predicted map of standing

stocks is displayed in color classes using Jenks Natural Breaks

Optimization method to maximize the differences between the

classes. The global integral of benthic biomass was integrated from

each cell value multipling the cell area on predicted map based on

equidistant cylindrical projection. The calculations were based on

the formula: Global integral =S map cell value (in per unit area) *

cell area at equator (,12343 km2) * cosine (latitude). Statistical

analyses and RF modeling used R 2.11.0 [28] and R package

randomForest [29]. Geostatistical analyses and mapping used

ESRIH ArcMapTM 9.2 and R package sp [30].

Results

Partial linear regressions
Our results confirmed the conclusions of Rex et al. [8] and

suggested significantly negative log-linear relationships of biomass,

abundance, and body size for 3 large size classes with depth;

however, none of these parameters showed statistically significant

depth dependency for bacteria (Table 2). We adapted figure

legends from Rex et al. [8] and raised the y-intercepts of their

regression equations 3 orders of magnitude (converting the unit

from g C m22 to mg C m22) for comparison with our current

results. Our regression y-intercepts were slightly lower than the

previous synthesis (2.4 vs. 2.5 for bacteria; 2.2 vs. 2.3 for

meiofauna; 3.1 vs. 3.2 for macrofauna; 1.8 vs. 2.3 for megafauna.),

while the rate of decline biomass with depth was steeper for

meiofauna (22.461024 vs. 21.761024) and macrofauna

(25.261024 vs. 24.561024), but more gradual for megafauna

(23.161024 vs. 23.961024, Table 2). The biomass hierarchy

among size groups was similar between the 2 studies: macrofauna

dominated the shelves and bacteria and meiofauna dominated the

abyssal plains (Figure 2). The only apparent difference was a cross

of the regression lines between macrofauna and megafauna at

,6000 m depth, or a reversal of their biomass hierarchies. The

lower y-intercepts and steeper slopes for the meiofauna and

macrofauna suggested that the biomass levels were lower in this

study than in the previous synthesis. The rate of declining biomass

with depth was highest for macrofauna, followed by megafauna

and meiofauna. Except for meiofauna, the y-intercept of the

abundance-depth regressions were slightly lower in this study (13.3

vs. 14.1 for bacteria; 3.5 vs. 3.6 for macrofauna; 20.7 vs. 20.3 for

megafauna.) while the slopes were more gradual (2261024 vs.

22.861024 for macrofauna; 22.861024 vs. 23.761024 for

megafauna, Table 2). The rate of declining abundance with depth

was sharpest for megafauna, followed by macrofauna and

meiofauna (Figure 3, Table 2). Average body size for each size

class was calculated as biomass divided by abundance. The

average sizes of all 3 large groups showed significant depth

dependency with the rates of declining mean size with depth being

the most rapid for macrofauna, followed by megafauna and

meiofauna (Table 2 and Figure 4). The rapid decline in average

macrofaunal size was likely overestimated at abyssal depths,

because the regression line was apparently higher at shelf depths

due to extremely large values (.10 mg C individual21) at high

latitude areas.

Random Forests
On average, RF models explained 78% to 81% of total variance

(R2) for bacteria, meiofauna, and macrofauna biomass (Figure 5a).

Compared to the small size classes, the RF performance was

subordinate for megafauna, invertebrates, and fishes, in which the

models only explained 63% to 68% of the observed biomass

variance. The RF algorithm appears to perform better for

abundance with the models explaining 77% to 88% of total

variance for each size class. The RF performance among different

simulation scenarios was generally stable (S.D #1%). The

variability was only slightly higher for macrofauna and inverte-

brates with S.D. between 2% to 3%. A scatter plot between

observed and predicted biomass (Figure 5b) suggests that the OOB

predictions were in proper scale (regression slopes =,1) with

modest deviations from the observations.

Table 2. Regression analyses of biomass, abundance, and
body size against depth for bacteria, meiofauna, macrofauna,
and megafauna.

Regression Equations N F

Log10 Biomass (mg C m22)

Bacteria Y = 2.42(1.22e206) X 525 ,0.01 n.s.

Meiofauna Y= 2.182(2.39e204) X 689 244.1***

Macrofauna Y= 3.052(5.15e204) X 2552 1885***

Megafauna Y= 1.812(3.07e204) X 282 136.2***

Log 10 Abundance (individual m21)

Bacteria Y = 13.272(3.58e205) X 515 2.82 n.s.

Meiofauna Y= 5.732(1.25e204) X 1148 184.7***

Macrofauna Y= 3.52(1.95e204) X 2734 618.2***

Megafauna Y=20.682(2.82e204) X 253 32.92***

Log 10 Body Size(mg C individual21)

Bacteria Y =27.79+(1.35e205) X 451 2.28 n.s.

Meiofauna Y=20.612(6.81e205) X 616 27.6***

Macrofauna Y= 2.622(3.63e204) X 2393 637.3***

Megafauna Y= 6.172(1.57e204) X 136 43.58***

Response variables are log10 transformed biomass (mg C m22), abundance
(individual m21), and body size (mg C individual21). Predictor is depth (m).
Scatter plots of the response variables against predictor and regression lines are
given in Figures 2, 3, 4. Abbreviations: N = number of samples;
***denotes P,0.001; n.s. = not significant.
doi:10.1371/journal.pone.0015323.t002
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We combined predictor importance from bacteria, meiofauna,

macrofauna, and megafauna (Figure S3) to examine the predictor

importance on total benthic biomass. This was only done for the

biomass datasets because they were converted to a unified

currency in mg C per square meter. With the exception of

bacteria, depth was ranked highly important for the 3 larger size

classes (Figure 6). To our surprise, neither net primary production

(vgpm, cbpm) nor flux of detrital organic matter to seafloor

(det.c.flx, det.n.flx) was considered the most important for the total

benthic biomass. Instead, water depth and the data inputs for the

NPP models (carbon, bbp, sst, par, mld, chl) were among the top

10 most important variables. Nonetheless, when the predictor

importance was examined for the size classes, NPP models (vgpm,

cbpm) had considerable importance for bacterial, meiofaunal, and

macrofaunal biomass but appeared less important for megafaunal

biomass. Decadal mean and S.D. of the predictors generally

ranked in similar orders suggesting high correlation between them;

however, it may also suggest that overall levels and seasonal

fluctuations of the predictors were both important in predicting

the biomass. The predictors associated with water column

processes (Table 1) appeared not significant to the total biomass;

however, the decadal mean of water column-integrated zooplank-

ton (zoop.mean), total organic matter (int.c.mean, int.n.mean), and

detrital organic matter (det.c.mean, det.n.mean), were among the

most important predictors for megafaunal standing stocks,

especially for abundance (see Figure S3d and Figure S4d). Annual

mean salinity (salin.mean) was the only bottom water property

ranked within the top 10 most important predictors for the total

biomass (Figure 6).

Patterns of Predicted Biomass
No biomass predictions were given near the northern tip of the

Arctic Ocean and part of the Antarctic shores due to a lack of

SeaWiFS satellite data as a result of permanent sea ice cover

(Figure S2). The predictions of major size classes (Figure S5a, b, c,

d) were combined to estimate the total benthic biomass. The

maximum biomass of 2.6 to 10 g C per square meter occurred on

the shelves of the north frigid zones (e.g. Kara Sea, Siberian Sea,

and Chukchi/Bering Sea) and temperate areas (e.g. Yellow sea

and North Sea, see Figure 7, red color). These predictions however

were lower than the empirical maximum found in the Chukchi/

Bering Sea, where the infauna biomass as high as 40 to 100 g C

m22 were reported [31]. The discrepancy is probably associated

with high prediction uncertainty in the areas (C.V. = 15% to 22%,

Figure 8) or unexplained variability in the models (Figure 5a). The

weaker maximum (orange color) between 1.3 to 2.5 g C per

square meter occurred on the polar to temperate shelves and

subtropical coastal areas (e.g. East/South China Sea, Arabian Sea,

and Persian Gulf). The lowest biomass prediction between 30 and

80 mg C per square meter occurred on the abyssal plains of the

Pacific, Atlantic, and Indian Ocean; however, relatively higher

biomass was predicted on the seafloor of the east side of Pacific

and Atlantic basins under the productive equatorial divergence

and coastal upwelling areas [32]. For these largest ocean areas, the

model outputs were stable among 4 RF simulations with S.D. less

than 10% of the mean predictions (Figure 8, light blue to dark blue

colors). Any high uncertainties were usually associated with high

predicted biomass. The Southern Ocean for example had the

highest uncertainty with S.D. between 15% and 26% of the mean

Figure 2. Biomass as a function of depth for bacteria, meiofauna, macrofauna, and megafauna. Biomass was log10 transformed and the
effects of latitude and longitude were removed by partial regression. Figure legend follows Rex et al. [8] for comparison. References of data source are
available in Appendix S1 and File S1. Regression equations and test statistics for each size categories are available in Table 2.
doi:10.1371/journal.pone.0015323.g002
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(yellow to red class), where most of the uncertainty was derived

from the unstable predictions for macrofauna biomass (Figure S6).

The S.D. of some Arctic shelves were slightly lower than the

Southern Ocean, mostly between 11% and 18% of the mean

(green to yellow class, Figure 8). The log10 predictied biomass (mg

C m22) and abundance (individual m22) for each size class are

available in File S2 and File S3, respectively. Global maps showing

the mean of abundance prediction and coefficient of variation for

each size class are given in Figure S7 and Figure S8, respectively.

A total of 110.3648.2 (Mean 6 S.D. from 4 RF simulations)

megatons of living carbon biomass were estimated based on the

global integral of the predicted map cells (Figure 7), in which

bacteria, meiofauna, macrofauna, and megafauna contributed

31.4%, 12.9%, 50.7%, and 5% of the global integral, respectively.

Previous workers estimated that global POC flux to the seafloor

was 3.76 to 3.91 megaton C day21 [25,33] and carbon burial was

about 0.82 megaton C day21 [33]. By dividing the total mass by

the flux [34,35], we estimated that the mean residence time for the

seafloor living carbon was 36.6616 days (mean6S.D.). Generally,

the predictions were highest on the continental shelves, which

account for 21.1% of the global integral biomass but cover merely

5.9% of the total seafloor area (#200 m water depth, Figure 9a).

Water depths deeper than 3000 m harbor more then 50% of the

global benthic biomass due to their vast area (covering .75% of

seafloor). The predictions were also high at high latitudes (. 60uN

or S) and the tropical ocean (,23.5uN or S) of the northern and

southern hemisphere, in which the biomass contributed 25.4%

and 28.8% of the global integral on 13.4% and 40.7% of the ocean

area, respectively (Figure 9b). As a rule of thumb, the total biomass

of all size classes (except for bacteria) dissipates along the

continental margins to the abyssal plains (Figure 2) but this is

accompanied by a major shift in size classes in the predictions,

with the biomass composition changing from metazoan dominated

(meiofauna + macrofauna) for the first couple hundred-meter

zonal integrals to bacteria dominated on the abyssal plain

(Figure 9a). Along the latitudinal zonal integrals, the biomass

composition also shifted from the majority of large-size macro-

fauna at high latitudes to the small-size meiofauna and bacteria

dominated at the tropics (Figure 9b).

Regional variability among the major ocean basin is apparent

when predicted biomass was plotted against depth (Figure 10).

Generally, the declining trends of biomass with depth were similar

but the overall levels differed by basin, with the predictions

bounded between the higher end of the Southern Ocean and the

lower end of the Mediterranean Sea (Figure 10h). In the Atlantic

and Arctic Ocean, high density at bathyal depths near the upper

end of the biomass–depth distribution (Figure 10a, e) appeared

responsible for elevated biomass levels above the Pacific, Indian

Ocean, and Gulf of Mexico (Figure 10). These high values

corresponded to the high biomass predictions in the North

Atlantic to Arctic Ocean (Figure 7) under the productive subpolar

gyre north of the Gulf Stream [32]. The high density at the bottom

of the biomass-depth distribution for the Atlantic and Pacific

Oceans (Figure 10a, b) illustrates the low predicted biomass on the

vast abyssal plains. In the Indian Ocean, the extraordinary high

predicted values between ,1200 to 3000-m water depths

(Figure 10c) single out the Oman and Pakistan Margin, where

the benthic biomass between 1.3 and 2.5 g C per square meter is

as high as continental shelf values (Figure 7, orange color). We

believe that the high predictions derive mainly from the monsoon

Figure 3. Abundance as a function of depth for bacteria, meiofauna, macrofauna, and megafauna. Abundance was log10 transformed
and the effects of latitude and longitude were removed by partial regression. Figure legend follows Rex et al. [8] for comparison. References of data
source are available in Appendix S1 and File S1. Regression equations and test statistics for each size category are available in Table 2.
doi:10.1371/journal.pone.0015323.g003
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dynamics and seasonal fluctuation of export POC flux [36] rather

than the mid-water Oxygen Minimum Zones (OMZ), because

resolution of our bottom oxygen data (Table 1) is probably not

sufficient to detect OMZ influences. At hadal depths (.6000 m),

the biomass predictions were meager in general (,0.2 g C m22,

Figure 10a, b); however, relatively high values (0.5,0.7 g C m22)

were predicted near the Kurile-Kamchatka Trench of the

Northwest Pacific Basin (Figure 10b) and the South Sandwich

Trench near the southern tip of the South America and Antarctic

Peninsula (Figure 10d).

Discussion

Observed and Predicted Patterns
In this study, classic log-linear declines of seafloor biomass and

abundance with depth were demonstrated for meiofauna,

macrofauna, and megafauna [7,8,9]. These widely recognized

patterns have been attributed to the decreasing quantity and

quality of sinking phytodetritus with increasing depth and distance

from the productive coastal waters and river runoff [7,37].

Although the selection pressure (food limitation) may be the same,

responses differed among the size groups along the depth

gradients, showing disparate rates of declining biomass and shifts

of biomass hierarchy from macrofauna domination on the shelves

and upper slope to meiofauna and bacteria domination on the

abyssal plains [8,34,35,38]. Figure 4 suggests that these observed

biomass patterns among size groups are governed by the rate of

declining average body size rather than by the rate of declining

abundance with depth. The decrease of animal size in the deep-sea

has been explained by energy constraints and the need to maintain

viable density for successful reproduction [8,39]. Recent evidence

from terrestrial environments also suggests a potential link between

the animal body size and food quality [40]. It has been suggested

that the macrofauna may compete for fresh settled phytodetritus

with bacteria [41,42,43,44], while the meiofauna may prefer

bacterial carbon over phytodetitus [45]. Hence, the rapid decline

of macrofaual average size with depth could be related to the

exponential decrease of sinking detrital carbon or the refractory

organic matter in the deep-sea sediments. The meiofauna, on the

contrary, may be less affected by the deterioration of the food

influx and experienced a relatively gradual decline of average size

with depth; however, the actual causes of this discrepancy in size-

structure remain unclear.

Interestingly, our predicted biomass not only has captured the

shifts of dominant size groups with depth but also with latitude

(Figure 9), supporting the dominance of macrofaunal biomass

[31,46] and meager importance of bacteria at the high latitudes

[47] due, potentially, to strong benthic-pelagic coupling, short

food chain, and weaker microbial loop in the overlying water

[48,49]. Other intriguing features from our predictions include the

apparent increase of bacterial, meiofaunal, and decrease of

macrofaunal biomass integrals from high latitudes toward the

tropical oceans (Figure 9b). In fact, the increasing bacterial and

meiofaunal integrals were a function of the increasing cell areas

toward the equator due to the map projection, which in turn

makes the decrease of macrofaunal integrals seemingly even more

convincing. This cross-latitude comparison however could be

biased by a potential interaction with water depth, because the

Figure 4. Average body size as a function of depth for bacteria, meiofauna, macrofauna, and megafauna. The average size was
calculated by dividing biomass with abundance. The body size was log10 transformed and the effects of latitude and longitude were removed by
partial regression. Figure legend follows Rex et al. [8] for comparison. References of data source are available in Appendix S1 and File S1. Regression
equations and test statistics for each size categories are available in Table 2.
doi:10.1371/journal.pone.0015323.g004
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tropical oceans comprise many deep basins and the high latitudes,

such as Chukchi/Bering Sea, have extended shelf areas. We tested

this by using partial regression to statistically remove the effect of

water depth and longitude. When depth was held constant,

macrofaunal biomass could be fitted to a positive parabolic

function of latitude (R2=0.17, P,0.001), supporting the elevated

macrofaunal biomass at high latitudes [7].

From a global perspective, the results of regressions (Figures 2,

3, 4) reinforced the weak to no depth-dependency of bacterial

standing stocks [8,50,51]. Despite immense variation in declining

POC flux at depth, the surface sediments supported a remarkably

constant bacterial stock spanning only ,2 orders of magnitude

difference worldwide (30 to 2220 mg C m22 and 1.361012 to

1.961014 cells m22, 5th to 95th percentile, n = 525); nonetheless,

regional and local studies in our database do indicate dependency

of bacterial standing stocks with depth or POC flux [10,52,53].

The high bacterial stocks at the supposedly depauperate abyssal

depths have been attributed to their barophilic adaption [54,55].

As bacteria are transported with phytoditrital aggregates to the

deep sea [56], a large number of the bacteria could be dormant or

inactive because of the extreme pressure and frigid temperature

[57,58], while the active microbes are supported by carbon

deposition flux [43], viral lysis of the infected prokaryotes [59],

extracellular enzymatic activities [60,61], and benthic metazoan

sloppy feeding [44]. It is worth noting that many studies have

applied a uniformed conversion factor to estimate the biomass

from bacterial numbers, which may be the main reason that no

statistical relationship was detected between the bacterial cell size

and water depth (Figure 4). Based on direct measurements of the

cell volume over a wide range of water depths in the northern Gulf

of Mexico, Deming and Carpenter [52] concluded that the greater

ocean depths generally harbored smaller bacterial cells despite the

Figure 5. Random Forests (RF) performance on biomass and abundance of each size class. (a) Mean percent variance explained by the RF
model 6 S.D. (error bar) from 4 RF simulations. Abbreviations: Bact = bacteria, Meio = meiofauna, Macro = macrofauna, Mega = megafauna, and
invert = invertebrates. (b) Observed against OOB predicted biomass from the 4 RF simulations. Color legends indicate 4 major size classes.
doi:10.1371/journal.pone.0015323.g005

Figure 6. Mean predictor Importance on total seafloor
biomass. The predictor importance of major size classes were
combined (Figure S3) and mean 6 S.D. (error bar) was calculated from
4 RF simulations. The top 20 most important variables are shown in
descending order. Increase of mean square error (MSEOOB) indicates the
contribution to RF prediction accuracy for that variable.
doi:10.1371/journal.pone.0015323.g006
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abundance remaining constant. That is, the constancy of bacterial

biomass with depth that we observed here could be an artifact

because the cell volumes were not measured directly at all depths.

To our surprise, even though no depth-dependency was evident

for the bacterial standing stocks, the RF algorithm performed well

in predicting the bacterial biomass (R2=7960.6%) and abun-

dance (R2=8161.2%, mean6S.D, n = 4). High predictor impor-

tance of sea surface temperature (sst), irradiance (par), mixed layer

depth (mld), and carbon-based primary production model (cbpm)

support the idea that the sedimentary bacterial biomass may be

Figure 7. Distribution of seafloor biomass predictions. The total biomass was combined from predictions of bacteria, meiofauna, macrofauna,
and megafauna biomass (Figure S5a, b, c, d). Map was smoothed using Inverse Distance Weighting interpolation to 0.1 degree resolution and
displayed in logarithm scale (base of 10).
doi:10.1371/journal.pone.0015323.g007

Figure 8. Coefficient of variation (C.V.) for mean seafloor biomass prediction. The C.V. was computed as S.D./mean * 100% from 4 RF
simulations. Map was smoothed using Inverse Distance Weighting interpolation to 0.1 degree resolution.
doi:10.1371/journal.pone.0015323.g008
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imported in the form of sinking particles [54,56]. The high

bacterial biomass predictions on the abyssal plains of semi-

enclosed basins, such as the Gulf of Mexico, Arabian Sea, and East

Mediterranean (Figure S5a), supported potential lateral advection

of detritus from the margins due to relatively large area of shelves

and margins compared to basin volume [52].

Anomalies not explained by Random Forests
Although multiple predictors were obtained to cover as many

aspects and processes that could affect the distribution of benthic

standing stocks, around 19% to 36% of observed variances are still

unexplainable in the current RF models. Some important

predictors, such as sediment grain size [62], organic composition

[63], bioturbation [64,65], and community oxygen demand

[66,67], were not included due to sparse data availability; others

such as oxygen minimums [68,69] or abrupt changes in thermal

dynamic regimes [70], could also be left undetected due to the

coarse resolution in available hydrographic data. Nevertheless, the

largest unexplained variability was probably derived from our

non-contemporaneous predictors that do not account for the

seasonal or inter-annual changes of benthic standing stocks as a

result of climate-induced variations on productivity and export

POC flux [71,72]. The seafloor organisms depend on diverse

sources of energy [73], including large food falls [74], hydrocar-

bons from cold seeps and hydrothermal vents [75,76], lateral

resource advection from continental margins [77], accumulation

of organic matter in submarine canyons [78] and trenches [79],

and rapid energy transfers on seamounts [80]. In addition, benthic

foraminifera, sometimes accounting for more than 50% of

eukaryote biomass [81], are not included in our datasets. These

anomalies are not in the scope of this analysis and should be

estimated separately elsewhere in a global context. For example, at

the head of the New Zealand’s Kaikoura Canyon (data not in the

database), the extremely high macrofauna and megafauna biomass

(89 g C m22) was about 100-fold more than our total biomass

prediction (0.94 g C m22) [82]. Within the datasets, extraordinary

high ‘‘total biomass’’ was also reported at the head of the

Mississippi Submarine Canyon [35] due to dominance of a

‘‘carpet of worms’’ [83]. The observed biomass was still more than

4-fold higher than our prediction. This is partially because the

Gulf of Mexico basin had very high background bacterial biomass

[52]. When the bacteria component is removed, the prediction still

under estimates the observed biomass by about 50%. Hence, the

total living carbon prediction in this study (Figure 7) should be

considered as a conservative estimate for the soft bottom

communities solely reling on sinking phytodetritus, with the

anomalies causing the observed biomass to deviate from this

baseline (Figure 5b).

Predictor Importance
We tested the RF algorithm using only the primary productivity

predictors (decadal mean and S.D. of chl, sst, par, bbp, mld, growth,

carbon, vgpm, and cbpm) and depth (Table 1). We found that the

reduced models only experienced modest deterioration in perfor-

Figure 9. Global zonal integrals of benthic biomass (bars) in unit of megaton carbon based on 100-m bins (a) and 2-latitude-degree
bins (b). The blue line shows integrals of seafloor area in unit of square kilometer. Color legends indicate 4 major size classes.
doi:10.1371/journal.pone.0015323.g009
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mance (R2
reduced =75%–80.3% for biomass of 3 small size classes

and R2
reduced =63% for megafauna biomass; R2

reduced =76.3%–

80.6% for abundance of 4 major size classes), suggesting that these

productivity/depth predictors alone can explain much of the

observed stock variances. It is also evident that these satellite-based

ocean color parameters and depth are among the most important

predictors when the full RF models were constructed (Figure 6).

Their importance was even greater than the model estimates of

export phytodetritus flux (det.c.flx & det.n.flx, Table 1) that have

been considered important for benthic communities [43,56,84,85].

One possibility is that not all export flux is utilized by the benthos

[35] and the combination of productivity/depth predictors simply

explain the stock variances better; however, the spurious correla-

tions between these predictors could also make them all rank highly

important. Strobl et al. [86] recommended ‘‘Conditional Permu-

tation’’ while calculating the variable importance to reduce the

effect of spurious correlations. We did not attempt this analysis

because our focus was on prediction rather than pinpointing the

exact contribution of each predictor.

Conclusions
The fate of sinking phytodetritus flux to the ocean floor and the

energy transfer to the benthos is a complex biogeochemical

process. The combination of mechanistic primary productivity

models [23,24] and empirical relationship of export POC flux at

depth [87] may not properly reflect the actual benthic food influx

and consumption. In this study, we demonstrated that the

combination of multivariate predictors and machine-learning

algorithm was superior to conventional regression models using

only water depth or export POC flux to predict benthic standing

Figure 10. Seafloor biomass predictions against depths for the (a) Atlantic Ocean, (b) Pacific Ocean, (c) Indian Ocean, (d) Southern
Ocean, (e) Arctic Ocean, (f) Mediterranean Sea, and (g) Gulf of Mexico. Blue color gradient indicates kernel density estimates. Panel
(h) shows the regional predicted trends based on smoothing spline function. Color legend indicates the spline trends for each basin.
doi:10.1371/journal.pone.0015323.g010
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stocks [8,88]. Conceptually, the RF predicted biomass presented

here (Figure 7) can be seen as non-linear transformation of the

surface primary production through a sophisticated decision

network and is thus potentially a more realistic reflection of

benthic food supply or utilization. Benthic biomass is essential to

understand the dynamic processes of global carbon cycling [89]

and productivity-diversity relationship in the deep sea [1,2].

Predictive mapping of this kind can fill the gaps where critical

biomass information is lacking, since a true ‘census’ of global living

carbon is expensive and practically impossible. Accurate predic-

tion of benthic biomass can facilitate Ecosystem Based Manage-

ment (EBM) on socioeconomically important species [90]. It is also

extremely useful for generating and testing large scale hypotheses

(e.g. latitudinal and cross-basin comparison) and planning

shipboard surveys. Moreover, the reduced RF models mentioned

above can be used to perform fine-scale predictions with high

resolution ocean color images (5 arc minute grids) and the global

relief model (1 arc minute grids, Table 1), and potentially reveal

more heterogeneous biomass patterns at local scale than the

current coarse analysis framework. The ocean color/depth

predictors also make it possible to do contemporaneous modeling

with recent sampling (SeaWiFS data are only available since 1997)

or data collected in the future. This study presents an initial

framework for archiving the seafloor standing stock data. More

training datasets from diverse environments matched in space and

time are urgently needed to improve the model performance and

prediction accuracy, and perhaps, in due course, the seafloor

standing stocks can be now-casted using the current ocean climate

or even forecasted under the future climate scenarios [91].

Supporting Information

File S1 Google Earth file for the ‘‘CoML fresh biomass

database’’.

(KML)

File S2 Global seafloor biomass predictions. Predicted biomass

(mg C m-2) is in global 161 degree grids. Data fields include

latitude, longitude, depth, and biomass of each size class. The

biomass data are in logarithm scale (base 10).

(CSV)

File S3 Global seafloor abundance predictions. Predicted

abundance (individual m-2) is in global 161 degree grids. Data

fields include latitude, longitude, depth, and abundance of each

size class. The abundance data are in logarithm scale (base 10).

(CSV)

Appendix S1 The complete list of references for the ‘‘CoML

Fresh Biomass Database’’.

(DOC)

Figure S1 Environmental predictors for Random Forest models.

Data were logarithm transformed (base 10) and scaled to between

0 (minimum value) and 1 (maximum value). Detail description of

the variable is given in Table 1. Abbreviations: mean = decadal

or annual mean; sd = decadal or seasonal standard deviation.

(TIFF)

Figure S2 Temporal coverage of primary productivity predic-

tors between years of 1998 and 2007. Color ramp shows the

sample size from 0 to 120 months of measurements. Detail

description of the variable is given in Table 1. Abbreviations: n =

sample size.

(TIFF)

Figure S3 Mean predictor Importance for biomass of (a)

bacteria, (b) meiofauna, (c) macrofauna, and (d) megafauna. The

mean 6 S.D. (error bar) were calculated from 4 RF simulations.

The top 20 most important variables are shown in descending

order. Increase of mean square error (IncMSE) indicates the

contribution to RF prediction accuracy for that variable. Detail

description of the variable is given in Table 1. Abbreviations:

mean = decadal or annual mean; sd = decadal or seasonal

standard deviation.

(TIF)

Figure S4 Mean predictor Importance for abundance of (a)

bacteria, (b) meiofauna, (c) macrofauna, and (d) megafauna. The

mean 6 S.D. (error bar) were calculated from 4 RF simulations.

The top 20 most important variables are shown in descending

order. Increase of mean square error (IncMSE) indicates the

contribution to RF prediction accuracy for that variable. Detail

description of the variable is given in Table 1. Abbreviations:

mean = decadal or annual mean; sd = decadal or seasonal

standard deviation.

(TIF)

Figure S5 Distribution of mean biomass predictions for (a)

bacteria, (b) meiofauna, (c) macrofauna, (d) megafauna, (e)

invertebrates, and (f) fishes. The mean biomass was computed

from 4 RF simulations. Predictions were smoothed by Inverse

Distance Weighting interpolation to 0.1 degree resolution and

displayed in logarithm scale (base of 10).

(TIF)

Figure S6 Coefficient of variation (C.V.) for mean biomass

predictions of each size class. The C.V. was computed as S.D./

mean * 100% from 4 RF simulations. The abbreviations are: bact

= bacteria, meio = meiofauna, macro = macrofauna, mega =

megafauna, inv = invertebrates, fis = fishes.

(TIFF)

Figure S7 Distribution of mean abundance predictions for (a)

bacteria, (b) meiofauna, (c) macrofauna, (d) megafauna, (e)

invertebrates, and (f) fishes. The mean abundance was computed

from 4 RF simulations. Predictions were smoothed by Inverse

Distance Weighting interpolation to 0.1 degree resolution and

displayed in logarithm scale (base of 10).

(TIF)

Figure S8 Coefficient of variation (C.V.) for mean abundance

predictions of each size class. The C.V. was computed as S.D./

mean * 100% from 4 RF simulations. The abbreviations are:

bact = bacteria, meio = meiofauna, macro = macrofauna,

mega = megafauna, inv = invertebrates, fis = fishes.

(TIFF)
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