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Microbes are difficult to culture. Consequently, the primary source
of information about a fundamental evolutionary topic, life’s
diversity, is the environmental distribution of gene sequences. We
report the most comprehensive analysis of the environmental
distribution of bacteria to date, based on 21,752 16S rRNA se-
quences compiled from 111 studies of diverse physical environ-
ments. We clustered the samples based on similarities in the
phylogenetic lineages that they contain and found that, surpris-
ingly, the major environmental determinant of microbial commu-
nity composition is salinity rather than extremes of temperature,
pH, or other physical and chemical factors represented in our
samples. We find that sediments are more phylogenetically diverse
than any other environment type. Surprisingly, soil, which has high
species-level diversity, has below-average phylogenetic diversity.
This work provides a framework for understanding the impact of
environmental factors on bacterial evolution and for the direction
of future sequencing efforts to discover new lineages.

environmental distribution � microbial ecology � phylogenetic diversity �
UniFrac

A global picture of microbial diversity has remained elusive,
yet it is critical to understanding microbial adaptation to

different environments and their function in those environ-
ments. Sequencing of 16S rRNA genes from environmental
samples has revolutionized our understanding of microbial
systematics and diversity, revealing how far we are from cata-
loguing the vast diversity of microorganisms on Earth (1–4).
Integrating information from these environmental surveys, how-
ever, has thus far been a formidable obstacle to a global
understanding of microbial ecology. Determining physical and
chemical factors, such as temperature, pH, or geography, that
correlate with differences between diverse microbial communi-
ties will reveal how easily microbes tolerate different kinds of
environmental change and will increase our understanding of
microbial ecology and evolution. In addition, determining the
environment types that contain the most phylogenetic diversity
will reveal where new sequencing efforts to catalog global
bacterial diversity will be most efficient at uncovering deep-
branching lineages. Because of inconsistencies in how diversity
is measured in individual studies, e.g., how operational taxo-
nomic units (OTUs) are selected or which region of the rRNA
gene is sequenced, it is only by integrating information from
these studies into a single phylogenetic context that these
important questions can be addressed.

Results
Toward a Global Survey of Natural Environments. We created an
environmentally annotated tree of the bacteria including 21,752
sequences from 202 environmental samples compiled from 111
studies of diverse, globally distributed natural environments. We
chose published studies that sequenced the most 16S rRNA
clones, surveyed natural environments, and used primers suffi-
ciently general to amplify all bacteria. The samples represent a
vast diversity of environments, ranging from ‘‘normal’’ environ-
ments such as soil, seawater, and sediments to environments at
the extremes of temperature (hot springs, hydrothermal vents,
marine ice), salinity (hypersaline basins, lakes and mats), acidity
(acidic springs and rocks, alkaline lakes), and nutrient availabil-

ity (oligotrophic caves) [Table 1 and supporting information (SI)
Data Set 1]. To normalize sampling effort across studies that
used different techniques [e.g., by using restriction fragment
length polymorphism (RFLP) patterns to screen for unique
clones], we chose OTUs from each sample using a 97% identity
threshold (5), including one sequence from each OTU in the
analysis (see Materials and Methods).

Salinity Is the Major Factor Relating Microbial Communities. We
clustered the environmental samples by the phylogenetic lin-
eages that they contain by applying principal coordinates analysis
(PCoA) (6, 7) (Figs. 1 and 2) and hierarchical clustering (8, 9)
(and see SI Fig. 4) to a matrix of UniFrac distances by using the
UniFrac web interface (10). UniFrac measures the distance
between two communities as the fraction of branch length in a
phylogenetic tree that leads to descendants of members of either
community but not both (11). It thus captures the amount of
environment-specific evolution in a single phylogenetic tree.
Surprisingly, the major division is by salinity (Fig. 1 and SI Fig.
4). Almost all nonsaline environments (Fig. 1, pink circles), even
those with extreme temperature and pH such as hot springs and
acidic endolithic communities, cluster to the left of the diverse
saline environments (Fig. 1, green triangles) along principal
coordinate (PC) 1. Samples where saline and nonsaline water
mix (blue squares) have intermediate values. The saline envi-
ronments include marine samples, lakes, and springs: note that
determinations of salinity in this study are qualitative and based
on the habitat descriptions rather than on direct measurements
of salt concentration. Remarkably few samples deviate from this
trend, and those that do are illustrative. Two nonsaline samples
cluster with the saline group: one is a microbial mat from a
chemautolithotrophic cave community involved in mineral dep-
osition, which may be locally saline (12); the other is from an
anoxic rice paddy soil (13), where salinization is a common
agricultural problem. One saline sample clusters with nonsaline:
this is a coastal ocean sample from a study that also sampled
the adjacent river and estuary (14), raising the possibility of
contamination.

Environments of the same type also cluster together, in both
the hierarchical cluster (SI Fig. 4) and PCoA plots (Fig. 2), even
though each type includes diverse environments (Table 1). For
example, nonsaline water samples (blue pentagons, Fig. 2) have
high PC2 values, and surface soils (Fig. 2, purple inverted
triangles) and sediments (Fig. 2, yellow sidewise triangles) have
low PC2 values, indicating that substrate type (water vs. sedi-
ment) is the second most important factor for explaining com-
munity differences. Soils and sediments cluster separately, and
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submerged soils and aquifers (Fig. 2, gray diamonds) generally
cluster with sediments. Interestingly, even hot springs (Fig. 2,
cyan sidewise triangles) partition by substrate type along PC2.
Hot spring sediments (Nsp�1, Nsp�7: see SI Data Set 1 for label
descriptions) cluster with nonsaline sediments along PC2, and
communities that colonized glass slides placed in the microbial
mats (Nsp�93, Nsp�94) cluster near nonsaline water.

As we showed previously in marine environments (11), cul-
tured samples from different environments (Fig. 2, pink circles
and hexagons) generally cluster together rather than with their

environment types. Cultured samples separate by salinity, how-
ever, both in the hierarchical cluster (SI Fig. 4) and along PC1
(Fig. 1). Although cultured samples do not separate from other
water samples when PC1 and PC2 alone are used, PC3 clearly
separates these groups (Fig. 2B). A few samples still do not
separate from the cultured isolates when the first three principal
components are used. These samples include both uncultured
marine ice samples (Fig. 2B, green circles), about half of the
endolithic communities (Fig. 2B, green triangles), and a small
proportion of the other environment types. We have previously

Table 1. Summary of the 15 groups into which we binned the 202 samples

Group name Description #S #O G Resid PD Resid SN ET

Nonsaline cultured (Nc) Cultured from diverse nonsaline environments
including soil, lake water, lake sediment, and air

11 545 �0.88** �1.87**

Soil surface (Nso) Soils of diverse types (agricultural, rainforest,
temperate forest, grass pasture, and desert) and
geographical regions; some polluted (PCB, HC)

31 3,560 �0.76** �0.61

Nonsaline submerged (Nsu) Soils that are submerged and potentially anoxic
including subsurface soils, a rice paddy, and
polluted and pristine wetland soils, aquifers, and
sediments from a cave

10 490 0.41 0.30

Nonsaline sediment (Nse) Sediment from nonsaline lakes and reservoirs 7 708 0.60* 1.77**

Nonsaline water (Nw) Rivers and lakes from diverse geographical regions
and trophic level. Samples taken from various
depths

28 1,208 �0.34 0.26

Nonsaline endolithic (Nen) Scraped from cave walls with and without artificial
lighting, epi and endolithic limestone in Mexico,
and an acidic endolithic community in Yellowstone
National Park

7 239 0.20 0.03

Nonsaline springs (Nsp) Thermophilic springs from Yellowstone National
Park and Thailand (sediment and growth slide) and
a microbial mat in a cave sulfidic spring

5 150 0.56* 0.02

Saline cultured (Sc) Cultured from diverse saline environments including
marine ice, sediment, and coastal water, a salt
marsh, and a hypersaline stromatolite

9 279 �0.23 �1.0

Saline sediment (Sse) Sediment from diverse saline environments
including meromictic lakes, coastal and deep sea
sediments, brackish to hypersaline water, active and
inactive hydrothermal vent sites, gas hydrate
mounds, salterns, and springs

38 1,979 0.54** 0.70**

Saline water-anoxic (Swa) Water from anoxic saline environments including
meromictic Mono Lake (California), the anoxic zone
of the Cariaco Basin, and deep hypersaline basins in
the Mediterranean Sea

8 402 0.19 0.69*

Saline water-subsurface (Swb) Water from subsurface samples between 10 and
4,000 M depth, from diverse geographical locations
and mostly open ocean

16 999 �0.057 �0.08

Saline water-surface (Sws) Water from surface saline water, mostly from
coastal samples of diverse geographical location but
also the Sargasso Sea

10 713 �0.15 �0.77

Saline ice (Smi) Marine ice from the Arctic and Antarctic. 2 78 �0.002 �0.30

Saline-misc (So) Miscellaneous saline environments including within
gas hydrate mounds, salt marsh grasses,
stromatolites, hypersaline mats, basalt, and
hydrothermal vent colonizers

16 1,464 0.83** 0.14

Mixed (M) Environments with mixing of water from saline and
nonsaline sources including estuaries and an
intertidal hotspring

4 170 �0.33 0.29

#S is the number of samples representing each group, #O is the number of OTUs represented in the samples, and G Resid and PD Resid are the average residuals
for regression of G and PD values against sampling effort (Fig.3 and SI Fig. 5). A negative/positive residual means that the point fell below/above the overall
regression line, and is indicative of low/high comparative diversity. Significantly different residual averages are marked with ‘‘**’’ (‘‘*’’ indicates that the value
is sufficiently different that it would likely become significant with a larger sample size). The symbols that represents the samples in Fig. 1 (SN) and Fig. 2 (ET)
are also indicated. Detailed information on the samples in each group is in SI Data Set 1.
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noted the similarity between uncultured marine ice communi-
ties and cultured isolates (11) and related it to the observa-
tion that most bacteria in marine ice can be cultured (15). The
results suggest that the same may be true for many endolithic
communities.

The saline environments separated along PC2 according to the
same properties as the nonsaline environments, although clus-
tering within each saline environment was looser. Hierarchical
clustering (SI Fig. 4) and PCoA (Fig. 2) divided saline water
samples into three subgroups: surface water, mostly in coastal
regions (Fig. 2, blue inverted triangles); subsurface water, mostly
in the open ocean (Fig. 2, gray sidewise triangles); and anoxic
water from many locations (Fig. 2, cyan triangles; Table 1). The
saline sediments (Fig. 2, purple circles) clustered together but
overlapped other saline environments, including hypersaline
mats, stromatolites, hydrothermal vent colonizers (Table 1,
Saline–misc; Fig. 2, yellow squares), and anoxic saline water
samples. Like nonsaline water and cultured isolates, surface/
coastal water and cultures from saline environments separated
from saline sediments along PC2. These results reinforce the
suggestion that substrate type (water vs. sediment) is the second
most important property for structuring diversity, perhaps be-
cause of differences in lineages adapted to planktonic vs. sessile
lifestyles. However, because anoxic water samples cluster with
sediments, oxygenation may also be important. For instance,
clades of obligate anaerobes, such as the Clostridia, and clades
with many planktonic representatives, such as filamentous
�-proteobacteria, probably account for some of these commu-
nity differences.

Environment Types Differ Substantially in Phylogenetic Diversity (PD).
We also determined the PD of each sample, which is the branch
length that remains when all other sequences are removed from
the tree (16), and the PD gain (G), which is the branch length a
sample adds to a tree containing sequences from all other
samples (16). For example, if a new sample contained only
sequences already found in other studies, adding that sample’s

sequences to the tree would add no new branch length, and the
G value would be 0. Environments with high G values are
promising sites for discovering new, diverse microbial lineages.
Samples with high PD and low G values have many phylogenetic
lineages that are also found in other environments.

Because sequencing effort influences diversity estimates, we
regressed both G (Fig. 3) and PD (SI Fig. 5) values on the
number of OTUs in each sample. The relationships between
sequencing effort and both PD and G are approximately linear
(R2 of 0.76 and 0.91, respectively), suggesting that deep sequenc-
ing of one environment uncovers as much new diversity as
shallow sequencing of many related environments. Regressions
for individual environment types indicated substantial differ-
ences in their contributions to known diversity (Fig. 3). We
quantified these differences by calculating the residual of each
sample from the regression of all samples (Fig. 3, blue line).
Highly positive or negative residuals indicate high or low diver-
sity respectively (Table 1; see Data Set 1 for individual sample
results).

Fig. 1. Results of PCoA colored by salinity. Results of PCoA with a UniFrac
distance matrix comparing the 202 samples summarized in Table 1 and SI Data
Set 1. The scatterplot is of principal coordinate 1 (PC1) vs. principal coordinate
2 (PC2). The symbols are as described in Table 1: red circles indicate nonsaline
environments, green triangles indicate saline environments, and blue squares
indicate mixed environments. The percentage of the variation in the samples
described by the plotted principal coordinates is indicated on the axes.

Fig. 2. Results of PCoA colored by environment type. A scatterplot of PC1 vs.
PC2 (A) and PC3 vs. PC2 (B). The symbols represent the 202 samples and are as
described in Table 1. A file of this scatterplot in which pop-up windows
indicate which point corresponds to which sample name is available; see SI
Text.
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Soils Are Less Diverse Than Expected and Sediments and Hypersaline
Mats Are More Diverse. Surprisingly, surface soils had significantly
lower G values than other environments and negative average
PD residuals (Table 1), even though soil is often described as one
of the most diverse environment types on earth (17, 18). High
estimates for soil diversity are based on the number of OTUs
found in each sample (18) and reassociation kinetics (19) and not
phylogenetic diversity. The high species diversity in soil may
result from more closely related species persisting in the same
sample, perhaps adapting to different niches by horizontal gene
transfer (which would not affect phylogenetic relatedness mea-
sured by 16S rRNA).

The nonsaline cultured group also had significantly lower
average PD and G residual values than the other environments
(Table 1). This result is consistent with the observation that few
lineages in these environments can be cultured (2). The saline-
cultured environments also had negative average residuals for
both total PD and G.

Saline sediment and saline-misc (Table 1) have significantly
higher G values than other environment types. Nonsaline sedi-
ments and springs resembled saline sediments, but the sample
sizes were too low for statistical significance (Table 1). Saline and
nonsaline sediments also had high average PD residuals (Table
1). High diversity in sediments is consistent with previous
observations and may stem from their highly stratified nature
and chemical gradients (17). Nonsaline sediments are less thor-
oughly sampled than saline sediments and are thus especially
good targets for future sequencing efforts. Interestingly, the
miscellaneous saline and nonsaline spring groups had high G and
low PD values, indicating that they, on average, contain relatively
few, but highly divergent, lineages.

Some environment types clustered poorly, suggesting that they
may not form natural groups. Residuals for individual samples
are thus of interest (see SI Data Set 1 for values). The sample
with the lowest G residual (Sws�M�163; �3.64 standard devia-
tions from the mean) was from the Sargasso Sea (20), an
environment known to have low diversity because of nutrient
limitation and little spatial heterogeneity. The samples with the
highest G residuals (So�Mm��166 and So�Mm��168; 5.08 and
3.71 standard deviations from the mean, respectively) were from
different layers of the Guerrero Negro hypersaline mat, the
molecular analysis of which introduced 15 previously unidenti-

fied candidate phyla, an unprecedented number for a single
environment (21).

Discussion
The comprehensive analysis of the environmental distribution of
bacteria has provided insights that were not apparent in the
original studies. Because the analysis relies on a phylogeny of 16S
rRNA sequences, the clear grouping of samples by environment
type indicates a direct relationship between 16S rRNA lineages
and environmental distribution. Thus, although processes such
as horizontal gene transfer can be important factors for adap-
tation to new environments, they cannot obscure the overall
evolutionary pattern, suggesting that bacteria make genomic
trade-offs that prevent major changes in lifestyle simply through
new gene acquisition. Some factors, such as salinity, seem
especially to encourage such lineage-specific adaptations.

The results also add an interesting perspective to the study of
extreme environments. Although organisms in environments at
the extremes of temperature and pH are presumably under
strong selective pressures, they still cluster by salinity and
substrate type, indicating that the general properties of these
environments still primarily determine which lineages can sur-
vive there.

The ability of comparisons of 16S rRNA data to reveal the
effects of specific chemical and physical factors on microbial
communities depends on the quality of information that has
been measured for the source environments and the accessibility
of this information in the public databases. Although we found
clear patterns of variation between environment types, such as
the split between saline and nonsaline environments, testing
whether this split stems from ionic strength, osmolarity, avail-
ability of sulfate for reduction, or other factors remains unre-
solved, in part because detailed measurements were not avail-
able for many of the environmental samples. Another limitation
is that, because the records do not include information on how
many times each sequence was observed in each sample, it is not
possible to compare samples by using quantitative measures of
� diversity such as weighted UniFrac (22). Information about
relative abundances is also required for almost all measurements
of � diversity (total diversity of a sample) including Chao1, ACE,
rarefaction analysis, and the Shannon and Simpson indices
(reviewed in ref. 23). Thus, improved availability of environment
information within structured, machine-readable fields in the
database is a key requirement for future large-scale analyses of
the factors influencing microbial diversity.

The overview that this analysis provides is useful for evalu-
ating where to direct new sequencing efforts. The environmental
clustering patterns allow us, at least in some cases, to define
environment types based on the occurrence of similar bacterial
lineages rather than arbitrary criteria. For instance, nonsaline
lakes and rivers behave as a cohesive group but saline water does
not. Evaluation of these environment types, as well as of
individual environments, allows us to identify optimal targets for
finding new diversity.

Materials and Methods
Selecting Relevant Environmental Samples. We extracted GenBank
records from the April 15, 2006 release and identified small
subunit (SSU) rRNA sequences and their associated publication
titles. We identified SSU rRNA sequences as records that had
any of the terms (‘‘SSU,’’ ‘‘16S,’’ ‘‘18S,’’ or ‘‘small subunit’’ and
‘‘rRNA,’’ ‘‘rDNA,’’ or ‘‘ribosomal RNA’’) (the search was case-
insensitive). We extracted reference information for each record
using a custom parser, and grouped the sequences that had the
same title. The Excel spreadsheet that summarizes these large
SSU rRNA surveys is available; see SI Text. The 267,731 putative
SSU rRNA sequences were associated with 17,836 unique titles.
Of these, 1,032 titles were associated with at least 50 sequences.

Fig. 3. Unique diversity (G) regression analysis. Plot of the amount of branch
length that is added to the phylogenetic tree (G value) by each of the 202
samples, vs. the number of OTUs that represents each sample. The main
regression line is shown in blue. Bacteria that were cultured from nonsaline
environments (pink circles) generally fell below the main regression line (i.e.,
they had negative residuals for G), thus contributing less unique diversity.
Samples in the saline–misc group (yellow squares) generally fell above the
main regression line (i.e., they had positive residuals for G), thus contributing
more unique diversity.
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Surprisingly, fewer than half of all of the studies were associated
with any publication, (485 of the 1,032 studies associated with at
least 50 16S rRNA sequences). This underscores the importance
of generating a standardized form for annotating sequences in
the public databases with detailed information on the environ-
ments from which the sequences came.

Making the Phylogenetic Tree. We used NAST (24) to add se-
quences from the 111 selected studies to the standard Arb
alignment (25). We then added the 21,752 sequences from the
studies to a guide tree with �110,000 sequences using the Arb
parsimony insertion tool. The guide tree was initially described
in ref. 26 but was subsequently enhanced by the Pace lab (J. K.
Harris and N. R. Pace, personal communication). We used a
lanemask (‘‘lanemaskPH’’) that is provided with the Hugenholz
Arb database (27) available at the Ribosomal Database Project
II (28), to exclude hypervariable regions from consideration
while generating the tree. We chose a parsimony insertion
algorithm rather than a de novo method such as neighbor joining
(NJ) because it can relate sequences from different parts of the
16S rRNA molecule. This is essential because there is very little
overlap in sequenced 16S rRNA regions when comparing all of
the studies. For instance, only 6,552 of the 21,752 sequences
(30%) were complete between positions homologous to 300 and
700 in Escherichia coli 16S rRNA and only 7,102 (33%) were
complete for the region between E. coli positions 700 and 1,100.
To test whether the Arb parsimony insertion tree gave similar
results to a tree built de novo, we performed PCoA clustering on
NJ trees of sequences from the 82 and 90 environments that had
�15 sequences in the 300–700 region and the 700–1,100 region,
respectively. The NJ trees were also made in Arb, by using the
Jukes–Cantor model of nucleotide substitution. We compared
the results to those from Arb parsimony insertion trees with the
same set of sequences. For both regions, the results of PCoA
clustering with the parsimony insertion and NJ trees were almost
identical (data not shown). Clustering by using only the portion
of the data that could be incorporated into the NJ trees
recovered the saline/nonsaline split as the most important
division in the data for both regions, although the coordinate
axes were rotated slightly.

Selecting OTUs and Annotating the Tree with Environment Informa-
tion. We divided the sequences into 225 environmental samples
using annotations from the associated publications. By excluding
23 samples with �15 OTUs each, we produced a tree with 12,984
OTUs representing 202 samples. For each environmental sam-
ple, we chose OTUs with a 97% identity threshold using our
Divergent Set software (5). We decided to dereplicate the

sequence data for several reasons. First, dereplication of the data
has little effect on clustering with UniFrac, because inclusion of
near similar sequences will not change the amount of unique
branch length in the tree. Removing near similar sequences thus
produces a smaller tree that is more easily manipulated, without
affecting the results. Second, because the inclusion of very small
samples in a UniFrac analysis can produce spurious results, we
wanted to exclude small environmental samples. Because some
studies deposit near-identical sequences in GenBank, and others
deposit sequences only after choosing OTUs, we needed to
remove near-identical sequences from all studies to evaluate our
sampling effort fairly. Finally, when we corrected the raw PD and
G values for sampling effort, it was again essential to ensure that
the results would be robust to the methodology used to choose
OTUs in the original studies. We chose the 97% threshold
because this is the most common threshold used for dereplica-
tion at the species level. Repetition of the analysis with all
available sequences, i.e., without choosing OTUs at all, provided
almost identical UniFrac clustering results (data not shown).

Statistical Analyses. We performed PCoA and hierarchical clus-
tering in the UniFrac web interface (10), using the Arb tree and
a file mapping sequence labels to environmental samples as
input. PCoA is similar to principal coordinates analysis (PCA),
except that the starting point is a matrix of distances between
samples rather than a matrix of observations about each sample.
We used the unweighted pair group method with arithmetic
mean (UPGMA) hierarchical clustering algorithm, which pro-
duces clusters by finding the nearest pair of neighbors at each
step, finding the midpoint between these neighbors, and adding
a cluster consisting of the neighbors to a growing tree.

We also used the Arb tree for diversity analyses. We calculated
PD for each sample by removing all sequences not from the
sample from the tree and summing the remaining branch length.
We determined G by removing only the sequences from that
sample from the tree and summing the remaining branch length.
We corrected each PD and G value for sampling effort by
calculating the residual from the regression of PD and G vs.
OTU count for all of the samples. We determined whether the
average G and PD residuals for each environment type were
significantly different from samples not in that environment type
with a two-tailed Student’s t test. These statistical analyses were
performed by using custom code written in the Python language.
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