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Abstract

Earth system models (ESMs) use photosynthetic capacity, indexed by the maximum Rubisco car-

boxylation rate (Vcmax), to simulate carbon assimilation and typically rely on empirical estimates,

including an assumed dependence on leaf nitrogen determined from soil fertility. In contrast, new

theory, based on biochemical coordination and co-optimization of carboxylation and water costs

for photosynthesis, suggests that optimal Vcmax can be predicted from climate alone, irrespective

of soil fertility. Here, we develop this theory and find it captures 64% of observed variability in a

global, field-measured Vcmax dataset for C3 plants. Soil fertility indices explained substantially less

variation (32%). These results indicate that environmentally regulated biophysical constraints and

light availability are the first-order drivers of global photosynthetic capacity. Through acclimation

and adaptation, plants efficiently utilize resources at the leaf level, thus maximizing potential

resource use for growth and reproduction. Our theory offers a robust strategy for dynamically

predicting photosynthetic capacity in ESMs.
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INTRODUCTION

Ecosystem and Earth system models are highly sensitive to

the representation of photosynthetic processes (Rogers

et al. 2017a). In the majority of these models, C3 photo-

synthesis is simulated using well-established biochemical

theory (Farquhar et al. 1980). The applicability of the the-

ory relies on knowledge of photosynthetic capacity, which

varies both among species and over time and space, in

response to environmental conditions (Ali et al. 2015;

Smith & Dukes 2018).

Photosynthetic capacity is also known to correlate with leaf

nitrogen (N) across plant types as a result of the N used to

build photosynthetic machinery (Walker et al. 2014). Many

global models use these empirical relationships to predict the

maximum rate of Rubisco carboxylation (Vcmax; lmol

m�2 s�1), a primary determinant of photosynthetic capacity

(Rogers 2014). This approach inherently assumes that varia-

tion in Vcmax is driven by variation in N allocated to leaves,

which is itself prescribed or calculated from N availability in

soils. This leads to a positive relationship between Vcmax and
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soil N availability. This approach was shown to perform well

in a comparison of several model formulations (Walker et al.

2017). However, there are several important limitations to the

N-supply approach for predicting Vcmax. First, observed rela-

tionships between field-measured Vcmax and leaf N per leaf

area (Na) are often only weak (e.g. r2 = 0.3; Niinemets et al.

2009). Second, an increase in Vcmax per leaf Na at lower soil

N availability (Ainsworth & Rogers 2007; Kattge et al. 2009;

Maire et al. 2012) suggests that high Vcmax can be achieved

under low soil N. Third, the N-supply approach is necessarily

empirical, yet it is only with mechanistic models that we stand

to reliably predict responses to future, novel conditions.

Photosynthetic coordination theory provides an approach

to predict dynamic responses of photosynthetic capacity to

environmental constraints. Originally proposed by Von Caem-

merer & Farquhar (1981) and further developed by Chen

et al. (1993), Maire et al. (2012) and Wang et al. (2017c), it

states that photosynthesis tends to be equally limited by elec-

tron transport and carboxylation under average environmen-

tal conditions. Notably, while this implicitly assumes dynamic

nutrient partitioning within leaves, it does not assume any

nutrient availability constraint on carboxylation rates, electron

transport rates or the partitioning of nitrogen between the

two. While this response may be possible under any given

amount of N availability, here, we present a ‘strong’ form of

the coordination theory, which assumes that plants are able to

acquire the N necessary to build leaves that can photosynthe-

size at the fastest possible rate given light availability and bio-

physical constraints, for example, through increased

belowground allocation (Drake et al. 2011; Terrer et al.

2016). This is quite different, in formulation and conse-

quences, from other interpretations that focus on the parti-

tioning of a fixed amount of N to Vcmax versus Jmax (e.g. Ali

et al. 2016).

In this study, we tested a theoretical framework for predict-

ing Vcmax from first principles at the global scale. Building on

work from Dong et al. (2017), Wang et al. (2017b) and Toga-

shi et al. (2018b), our approach works by combining photo-

synthetic coordination theory with ‘least-cost’ theory for

understanding investments in carboxylation and water trans-

port capacities for photosynthesis (Wright et al. 2003; Prentice

et al. 2014). The least-cost hypothesis posits that these invest-

ments are co-optimized in relation to environmental properties

such that a given photosynthetic rate is achieved at the lowest

total cost (i.e. respiration). From this principle, one can pre-

dict the optimal CO2 drawdown during photosynthesis (i.e.

intercellular to atmospheric CO2 or Ci:Ca) as a function of

site temperature, vapour pressure deficit and atmospheric

pressure (Prentice et al. 2014; Wang et al. 2017c). By drawing

together the least-cost and coordination theory, an important

step forward is possible: as outlined in the Methods, Vcmax

can in theory be predicted as a function of light availability

(I), temperature (T), vapour pressure deficit (D) and atmo-

spheric pressure (as indexed by elevation, z).

Here, we test this proposition, using a dataset of 3672 val-

ues of Vcmax from 201 sites from across the globe. First, we

tested our quantitative predictions for individual effects of I,

T, D and z on Vcmax and compared model-predicted Vcmax to

observed Vcmax values. Second, we examined the sensitivity of

our Vcmax predictions to I, T, D and z as well as leaf traits

not included in the model, namely leaf nitrogen per leaf area

(Na) and leaf mass per area (LMA). Finally, we used six soil

indices to explore the relative influence of soil N and water

supply and environmental constraints on Vcmax. Using these

data, we indirectly tested the proposition that leaf N concen-

trations more strongly reflect ‘demand’ for N (the need to

support a given Vcmax, itself optimized to climate) rather than

‘supply’ of N (from the soil).

MATERIALS AND METHODS

Observational Vcmax dataset

An observational dataset of Vcmax values was built by com-

bining independent data reported to be from top canopy, nat-

ural vegetation from Bahar et al. (2017), Carswell et al.

(2000), De Kauwe et al. (2016), Domingues et al. (2010,

2015), Ellsworth & Crous (2016), Keenan & Niinemets (2016),

Maire et al. (2015), Meir et al. (2002), Niinemets et al. (2015),

Rogers et al. (2017b), Serbin et al. (2015), Smith & Dukes

(2017a), Tarvainen et al. (2013), Togashi et al. (2018a,b), the

TRY plant trait database (Kattge et al. 2011), Wang et al.

(2017a) and Wohlfahrt et al. (1999) (Figure S1 and S2). Vcmax

values in the dataset were derived from either net photosyn-

thesis (Anet) to intercellular CO2 (Ci; 56% of the total dataset)

curves or from point measurements of Anet and Ci using the

one-point method (44%; method presented in De Kauwe

et al. (2016); see discussion of the limitations of this method

in the Supplementary Information). The dataset includes lati-

tude, longitude and leaf temperature at the time of measure-

ment for each point and, for a subset of the data, leaf

nitrogen content per unit leaf area (Na; gN m�2; 57% of the

dataset) and leaf mass per unit leaf area (LMA; g m�2; 60%

of the dataset). Latitude and longitude were used to extract

effective growing season mean temperature (Tg; °C), atmo-

spheric vapour pressure deficit (Dg; Pa) and incoming photo-

synthetically active radiation (Ig; lmol m�2 s�1) for each site

from monthly, 1901–2015, 0.5° resolution data provided by

the Climatic Research Unit (CRU TS3.24.01) (Harris et al.

2014). Growing season was operationally defined as months

with mean temperatures greater than 0 °C. The elevation (z;

m) at each site at 0.5° resolution was obtained from the

WFDEI meteorological forcing dataset (Weedon et al. 2014).

The ratio of actual evapotranspiration to equilibrium evapo-

transpiration (Priestley-Taylor coefficient, a), which represents

the plant-available surface moisture, was calculated at each

0.5° resolution site using the SPLASH model run at a

monthly timescale (Davis et al. 2017). Soil cation exchange

capacity (CEC; cmolc kg�1), soil pH, soil C:N ratio, soil silt

content (%) and soil clay content (%) at 0–40 cm depth were

extracted from 1 km global data provided by ISRIC SoilGrids

database (www.soilgrids.org). These soil data were available

for 97% of the total dataset.

Theoretical model of Vcmax

The theoretical model of Vcmax was developed from the theory

presented by Wang et al. (2017c) and Dong et al. (2017) by

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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combining the coordination theory of photosynthesis (Maire

et al. 2012) with the least-cost hypothesis (Wright et al.

2003; Prentice et al. 2014). The combination of the two theo-

ries is done by calculating an optimal intercellular CO2 con-

centration under average environmental conditions (C0
i),

which is then used to calculate optimal Vcmax under the

same conditions (V0
cmax). These calculations were made using

light, temperature, vapour pressure deficit, elevation and

atmospheric CO2 as inputs. We first present the formulations

for calculating the C0
i values used in the optimal V0

cmax pre-

diction following Prentice et al. (2014). We then describe

how we use coordination theory to predict optimal V0
cmax

(equation 20 below).

Optimal Ci calculation

The optimal intercellular CO2 concentration under average

environmental conditions (C0
i; Pa) was calculated using a theo-

retical derivation of the optimal ratio (v) of C0
i to atmospheric

CO2 partial pressure (Ca; Pa), based on least-cost theory from

Prentice et al. (2014):

v ¼
C�

Ca

þ 1�
C�

Ca

� �

n

nþ
ffiffiffiffiffiffi

Dg

p ð1Þ

where

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
Kþ C�

1:6g�

s

ð2Þ

where n defines the sensitivity of v to Dg and is related to the

carbon cost of water (Medlyn et al. 2011; Prentice et al.

2014), C� (Pa) is the CO2 compensation point in the absence

of mitochondrial respiration, and K (Pa) is as follows:

K ¼ Kc 1þ
Oi

Ko

� �

ð3Þ

where Kc (Pa) and Ko (Pa) are Michaelis–Menten coeffi-

cients of Rubisco activity for CO2 and O2, respectively,

and Oi (Pa) is the intercellular O2 concentration. A consid-

eration of O2 concentrations is included to account for

declines in carboxylation that occur as a result of Rubisco

oxygenation. Values of K and C� are temperature depen-

dent and were calculated using the equations and parame-

ters of Bernacchi et al. (2001) using Tg. The term b

(unitless) in equation 2 is the ratio (b/a) of dimensionless

cost factors describing the carbon cost of maintaining pho-

tosynthetic proteins to support assimilation at a given rate

under normal daytime conditions (b) and the carbon cost

of maintaining a transpiration stream to support assimila-

tion at the same rate (a) (Prentice et al. 2014). We used a

constant b; estimated as 146, calculated under standard

conditions (Tg = 25 °C, Dg = 1 kPa, z = 0) from v values

derived from leaf stable carbon isotope data (Cornwell

2017) and equations 1 and 2, as in Wang et al. (2017c).g�

is the viscosity of water relative to its value at 25 °C, cal-

culated using temperature and elevation as in Huber et al.

(2009). In cases where Ca was unknown, we used the year

of measurement to estimate Ca from global estimates used

by the NASA GISS model, which utilizes a combination of

measurements and modelling techniques to estimate a glo-

bal average Ca (https://data.giss.nasa.gov/modelforce/gh-

gases/Fig 1A.ext.txt).

Figure 1 Sensitivity of the theoretical model to environmental drivers. Sensitivity of the theoretical maximum rate of Rubisco carboxylation (V0
cmax; black,

solid lines) and ratio of intercellular to atmospheric CO2 concentration (v; grey dotted lines, panels f, g and h) to the main environmental parameters

within the model: growing season mean for irradiance (Ig, panels a and e), air temperature (Tg, panels b and f) and vapour pressure deficit (Dg, panels c

and g), as well as elevation (z, panels d and h). In panels a, b, c and d, V0
cmax values were mean centred to aid in comparison across environmental

parameters. In panels e, f, g and h, values were mean centred and scaled (divided by the standard deviation) to aid comparison of V0
cmaxand v sensitivities.

Sensitivity analyses were done while keeping all other environmental variables at standard levels: Ig = 800 lmol m�2 s�1, Tg = 25 °C, Dg = 1 kPa, z = 0

km. Note: v is insensitive to Ig, and as such, no dashed grey line was plotted.

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Optimal Vcmax calculation

We calculated the optimal maximum rate of Rubisco carboxy-

lation under average environmental conditions (V0
cmax) by

assuming that, optimally, plants will coordinate the allocation

of resources to photosynthesis such that under typical envi-

ronmental conditions:

Ac ¼ Aj ð4Þ

where Ac (lmol m�2 s�1) is the photosynthetic rate limited by

the maximum rate of Rubisco carboxylation (Vcmax; lmol

m�2 s�1):

Ac ¼ Vcmaxmc ð5Þ

where

mc ¼
C0

i � C�

C0
i þ K

ð6Þ

where C0
i(Pa), C

� (Pa) and K (Pa) are calculated as in the pre-

vious section.

Aj (lmol m�2 s�1) is the photosynthetic rate limited by the

electron transport rate for the regeneration of ribulose-1,5,-

bisphosphate (RuBP; J; lmol m�2 s�1):

Aj ¼
J

4

� �

m ð7Þ

where

m ¼
C0

i � C�

C0
i þ 2C� ð8Þ

J is a saturating function of irradiance, converging on Jmax

(lmol m�2 s�1) at high levels:

hJ2 � uIþ Jmaxð ÞJþ uIJmax ¼ 0 ð9Þ

where I is the incident photosynthetically active photon flux

density (lmol m�2 s�1), h (unitless) is the curvature of the

light response curve, and u is the realized quantum yield of

photosynthetic electron transport (mol mol�1) (Farquhar &

Wong 1984). We adopted a value of u of 0.257 mol mol�1,

which yielded a slope between the measured and predicted

V0
cmax values near 1. This u value is within the range of

values observed by independent, leaf-level studies (0.26 in

soya bean (June 2005), 0.23 in soya bean (Harley et al.

1985), 0.28 in Eucalyptus pauciflora (Kirschbaum & Far-

quhar 1987), and 0.26 in a seven-species analysis (Ehleringer

& Bj€orkman 1977)). The curvature term, h, is related to the

distribution of light intensity relative to the distribution of

photosynthetic capacity, assumed to be 0.85, consistent with

observations (June 2005). Eqn 9 can be substituted into

eqn 7 to yield

Aj ¼
m

4

� �uIþ Jmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uIþ Jmaxð Þ2 � 4huIJmax

q

2h
ð10Þ

from which the smaller root is used to derive Aj.

To derive optimal Jmax, we assumed that Aj changes in pro-

portion to Jmax, as proposed by Farquhar (1989). As such, we

took the derivative of Aj (Eqn 10) with respect to Jmax and

equated this to c:

c ¼
@Aj

@Jmax

ð11Þ

c is then given by

c ¼
m

4

� � @

@Jmax

uIþ Jmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uIþ Jmaxð Þ2 � 4huIJmax

q

2h

0

@

1

A

ð12Þ

which simplifies to

c ¼
m

8h
1�

@

@Jmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uIþ Jmaxð Þ2 � 4huIJmax

q
� �

ð13Þ

which can be solved as

c ¼
m

8h
1�

uIþ Jmax � 2huI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uIþ Jmaxð Þ2 � 4huIJmax

q

0

B

@

1

C

A
ð14Þ

Equation 14 can be rearranged to:

Jmax ¼ uI- ð15Þ

where

- ¼ � 1� 2hð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hð Þ
1

4c
m

1� h 4c
m

� �� 4h

 !

v

u

u

t ð16Þ

For the calculation of -, c was assumed to be non-varying

and derived as 0.053 under standard conditions (see Supple-

mentary Information). We then inserted the solution for Jmax

into eqn 10 and solved for Aj:

Aj ¼
uIm-�

8h
ð17Þ

where

-� ¼ 1þ -�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ -ð Þ2 � 4h-

q

ð18Þ

Finally, eqns 5 and 17 were used to replace Ac and Aj in

equation 4 and solve for an intermediate rate of Vcmax, which

we term Vcmax
*:

Vcmax
� ¼ uI

m

mc

� �

-�

8h

� �

ð19Þ

Equation 19 incorporates the temperature response of m

and mc. However, Vcmax itself (i.e. the saturation point of the

Michaelis–Menten curve) is also sensitive to temperature. As

such, we used a formulation from Kattge & Knorr (2007) to

incorporate this temperature response, which yielded

V0
cmax pred½ � or predicted Vcmax acclimated to varying environ-

mental conditions):

V0
cmax pred½ � ¼ ðVcmax

�Þe
Ha Tg�Toð Þ

RTgTo
1þ e

ToðDSÞ�Hd
RTo

1þ e
TgðDSÞ�Hd

RTg

ð20Þ

where Hd is the deactivation energy (200 000 J mol�1), Ha is

the activation energy (71,513 J mol�1), R is the universal gas

constant (8.314 J mol�1 K�1), ∆S is an entropy term

(J mol�1 K�1), Tg is the growing season temperature in K,

© 2019 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
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and To is the optimum temperature in K, assumed to be the

temperature at which Vcmax
* is operating. To was estimated

based on its relationship to growth temperature (Kattge &

Knorr 2007):

To ¼ 177:884þ 0:44Tg ð21Þ

∆S was calculated based on a linear relationship with Tg from

Kattge & Knorr (2007), with a slope of �1.07 J mol�1 K�1

and intercept of 668.39 J mol�1 K�1 (Kattge & Knorr 2007).

In addition to C0
i, the resulting theoretical prediction of opti-

mal Vcmax (Eq. 20) requires only two free parameters: h (unit-

less), the curvature of the light response curve, and u, the

quantum yield of photosynthetic electron transport (mol mol�1).

Model-data comparison

To perform the model-data comparison, we standardized each

observed Vcmax value (Vcmax meas½ �) to its Tg (i.e. V
0
cmax obs½ �) using

temperature response formulations from Kattge & Knorr

(2007):

V0
cmax obs½ � ¼ Vcmax meas½ �e

Ha Tg�Tmeasð Þ
RTgTmeas

1þ e
TmeasðDSÞ�Hd

RTmeas

1þ e
TgðDSÞ�Hd

RTg

ð22Þ

where Tmeas is the leaf temperature at which the measurement

was taken (K), Vcmax[meas] is the measured Vcmax, and ∆S was

calculated as in eqn. 20 from Tg following Kattge & Knorr

(2007). Next, we used the theoretical model described above

to predict Vcmax values at the Tg for each observation (i.e.

V0
cmax obs½ �). We then aggregated the predicted and V0

cmax obs½ �

values by latitude and longitude at a resolution of 0.5 °C to

match the climatological data. Finally, we used Model II

Reduced Major Axis slope-fitting (R package ‘lmodel20

(Legendre 2014)) to compare predicted and observed rates of

V0
cmax at each site. To examine the ability of our model to

simulate the ratio of J0max to V0
cmax (J0max/V

0
cmax), we ran a simi-

lar comparison of predicted and observed J0max/V
0
cmax at each

of the 90 sites where J0max obs½ � data were available. Note, that

due to the similarity between Eqns. 20 and 22 necessarily

applied to predicted and observed data for comparison, we

explored the potential for a spurious correlation between

modelled and observed data due to a common element

(Chayes 1971) (Supplementary Information). Additionally,

because some Vcmax values in the observational dataset were

derived using the one-point method (method presented in De

Kauwe et al. 2016), we ran a similar model-data comparison

as above using only data derived using Anet-Ci curves (Supple-

mentary Information).

Following direct comparison, we calculated the model bias

(B) in V0
cmax predictions at each site as

B ¼
V0

cmax pred½ � � V0
cmax obs½ �

V0
cmax obs½ �

� 100 ð23Þ

We then explored B as a function of the primary environ-

mental drivers in the model, Tg, Ig, Dg and z, as well as sec-

ondary environmental variables soil cation exchange capacity,

soil pH, soil C:N ratio, soil silt content, soil clay content, a

soil water content index (a), leaf mass per area (LMA) and

leaf nitrogen content (Na) using multiple linear regression. A

single regression model was first fit using the four primary dri-

vers. Following this, a second model was fit that included the

four primary drivers and each of the six soil variables, which

were available for 193 of 201 sites (97%).

Two additional models were fit that included all primary

drivers and one of LMA or Na, which were available for 112

(56%) and 98 (49%) of 201 sites, respectively. All analyses

were performed in R version 3.5.0.

As a further examination of the influence of soil variables

on V0
cmax obs½ �, we fit three separate models using the 193 sites

for which soil data were available. The first model, similar to

above, only included V0
cmax pred½ �. The second model only

included the six soil variables: soil cation exchange capacity,

soil pH, soil C:N ratio, soil silt content, soil clay content and

a. The third model included both V0
cmax pred½ � and all six soil

variables. The three models were compared using Akaike

information criteria (AIC). We also performed a similar com-

parison using leaf Na values for the 98 sites that had Na data.

For comparisons of models with and without soil variables,

each model was fit using only the 193 sites where soil data

were available. Similarly, for comparisons of models with and

without Na, each model was fit using only the 98 sites where

Na data were available. This ensured that model comparisons

were done using identical datasets. For all models, we visually

examined residual plots following model fitting to ensure that

necessary assumptions for model comparisons were met (Zuur

et al. 2009). We also calculated the variance inflation factor

(VIF) for each model predictor to assess the degree of

collinearity. In all cases, VIF values were less than 5 and, in

the case of all discussed significant predictors (i.e. P < 0.05),

values were less than 3, indicating that collinearity did not

have a large impact on our interpretations (Zuur et al. 2009).

Comparison to CANTRIP database

To examine the potential influence of canopy position on our

model-data comparison, we examined a subset of the

V0
cmax obs½ �values in the dataset (CANTRIP) (Keenan & Niine-

mets 2016) that were standardized to top of the canopy light

values (Qint = 40 mol m�2 d�1). These values were determined

using individual canopy scaling relationships, which were

applied to 109 individual plant canopies (Niinemets et al.

2015). Separate model-data comparisons, as described above,

were performed for the full dataset without the CANTRIP data

and with only the CANTRIP data. We used Student’s t-test to

examine whether the difference between modelled and observed

data differed between the non-CANTRIP and the CANTRIP

data. Both the CANTRIP and non-CANTRIP datasets were

normally distributed and had similar standard deviations.

RESULTS

Predicted response of optimal V 0
cmax to environmental drivers

In response to increased light availability, our model predicted

a positive, linear response of optimal V0
cmax (i.e. V0

cmax). This

effect was driven by increases in electron transport under

increased light, which led to a necessary increase in V0
cmax for

carboxylation rate-limited photosynthesis to match electron
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transport rate-limited photosynthesis. Similarly, our model

predicted a nonlinear increase in V0
cmax with temperature

(Fig. 1). This was the result of an increase in electron trans-

port with temperature as well as an increased affinity of

Rubisco for O2, which also caused an increase in v. As a

consequence, the predicted ratio of J0max to V0
cmax decreased

with increasing temperatures (Figure S5). The model

predicted slight increases in V0
cmax with increased vapour

pressure deficit and elevation due to reduced stomatal con-

ductance (Fig. 1).

Model-data comparison

When compared to the global database, our theoretical model

captured 64% of the total variation in V0
cmax obs½ � values (Fig. 2).

After tuning the model to have a slope near 1, the intercept of

the relationship between observed and predicted values had a

95% confidence interval (CI) that bracketed 0 (mean = �2.01,

95% CI: -5.49, 1.12). The model performed similarly well using

only data derived from Anet-Ci curves (r
2
= 0.68; Supplementary

Information). Our theoretical model was also able to capture

61% of the variation in J0max obs½ �/V
0
cmax obs½ � at the 90 sites that

contained J0max obs½ � data (Figure S3). The slope and intercept of

the relationship between observed and predicted

J0max obs½ �/V
0
cmax obs½ � values had 95% confidence intervals (CI) that

bracket 1 and 0, respectively (slope = 0.94, 95% CI: 0.79, 1.12;

intercept =�0.44, 95% CI: �0.99, 0.02). In both cases, there

was a slight overprediction of values on average across sites

(Fig. 2 and Figure S3).

Model biases – environmental drivers

Our theoretical model showed a positive bias with growing

season mean irradiance (Fig. 3 and Table S1; F1,196 = 11.54,

P < 0.01). This was driven by an overprediction in wet, tropi-

cal regions (Fig. 2), potentially due to an overestimation of

incoming light in dense tropical forests. To explore whether

this was due to an overestimation of light availability, we

compared the accuracy of our theory using high-light

V0
cmax obs½ � estimates from the CANTRIP database (Keenan &

Niinemets 2016), which are not influenced by canopy shading.

The model tended to underpredict the CANTRIP V0
cmax obs½ �

rates to a greater degree than non-CANTRIP rates (Figure S4;

t76.2=-2.912, P < 0.01). This result suggests that some data in

the observational dataset may have been collected from leaves

growing under non-maximum light conditions.

The warmest and driest environments in our dataset (Dg >

1.5 kPa) showed the greatest underestimation of V0
cmax obs½ �,

leading to a slight negative bias overall (Fig. 3; F1,196 = 7.66,

P < 0.01). Our model also tended to overpredict V0
cmax obs½ � at

elevations above c. 1500 m (Fig. 3), which led to a significant

positive bias in our model with elevation (F1,196 = 11.62,

P < 0.01). There was no systematic bias in our model related

to Tg (Fig. 3; F1,196 = 2.19, P = 0.14).

Model biases – leaf traits

When evaluated across variation in Na our theory showed a

negative bias, indicating an overestimation of V0
cmax obs½ � among

low Na sites and underestimation at high Na sites (Fig. 4 and

Table S2; F1,92 = 29.67, P < 0.01). To explore the relative

impact of Na versus climate and environmental variables driv-

ing the optimality model, we fit three linear regression models

predicting V0
cmax obs½ �: one with V0

cmax pred½ �, a second with Na,

and a third with V0
cmax pred½ � and Na, each using the same subset

of the dataset where Na was reported (n = 98 sites). The fit of

the model that included both V0
cmax pred½ � and Na (AIC = 724.5,

r2 = 0.67) was slightly better than the model that included just

V0
cmax pred½ � (AIC = 741.7, r2 = 0.60) and substantially better

than the model that included Na (AIC = 828.4, r2 = 0.03),

suggesting that, while Na did add significant predictive value,

environmental constraints and light availability (indexed by

V0
cmax pred½ �) are the dominant drivers of photosynthetic capac-

ity. Our theory showed no bias in response to LMA (Fig. 4

and Table S3; F1,106 = 0.09, P = 0.76).

Figure 2 Comparison of observed to optimal V0
cmax. Observed mean

maximum rate of Rubisco carboxylation (V0
cmax) at 201 global sites

plotted against the predicted V0
cmaxvalue at that site from the theoretical

model. Sites are coloured by K€oppen climate classification. Tropical (first

letter A), arid (first letter B), temperate (first letter C), boreal (first letter

D) and polar (first letter E) regions are represented by red, yellow, green,

blue and grey colours. Error bars represent standard errors of the mean.

The solid black line is the best fit line from the reduced major axis

regression. The grey-shaded area represents a 95% confidence interval.

The dotted black line is a 1:1 line. K€oppen climate classification key: Af=

tropical rainforest, Am= tropical monsoon, Aw= tropical wet savannah,

BSh= hot arid steppe, BSk= cold arid steppe, BWh= hot arid desert,

BWk= cold arid desert, Cfa= temperate hot summer without dry season,

Cfb= temperate warm summer without dry season, Cfc= temperate cold

summer without dry season, Csa= temperate hot summer with dry

summer, Csb= temperate warm summer with dry summer, Cwa=

temperate hot summer with dry winter, Cwb= temperate warm summer

with dry winter, Dfa= boreal hot summer without dry season, Dfb=

boreal warm summer without dry season, Dfc= boreal cold summer

without dry season, Dsc= boreal cold summer with dry summer, Dwc=

boreal cold summer with dry winter, EF= eternal winter, ET= tundra. A

version of this figure with individual points can be found in the

Supplementary Information (Figure S8).
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Model biases – soil characteristics

For the 193 sites with soil data, we used a linear model to

explore the relative influence of soil nutrient and water supply

on bias in our theory. Of six indices of soil nutrient and water

availability (soil cation exchange capacity (CEC), soil C:N

ratio, soil pH, soil silt content, soil clay content and a), only

soil pH had a significant influence (Fig. 5 and Table S4; pH:

F1,182 = 10.14, P < 0.01; all others: P > 0.05). The negative

relationship between model bias and pH indicated that our

theoretical model tended to overpredict V0
cmax obs½ � as soil acid-

ity increased. To assess the relative influence of climate and

Figure 3 Partial residuals of the observed bias (%) in maximum rate of Rubisco carboxylation (V0
cmax) predicted by the theoretical model at each of the 201

sites plotted against growing season light (Ig), growing season temperature (Tg), growing season leaf-to-air vapour pressure deficit (Dg), and elevation (z)

(grey circles). Model bias was defined as
V0
cmax pred½ �

�V0
cmax obs½ �

V0
cmax obs½ �

� 100, where V0
cmax pred½ � is the predicted optimal V0

cmax and V0
cmax obs½ � is the observed V0

cmax. Data

points are sized logarithmically by V0
cmax obs½ �. Lines indicate the modelled response from the multiple linear regression models. Shading indicates 95%

confidence intervals for regression lines. Only significant trends (P < 0.05) are shown. Colours are as in Figure 2.

Figure 4 Partial residuals of the observed bias (%) in maximum rate of Rubisco carboxylation (V0
cmax) predicted by the theoretical model by site plotted

against leaf nitrogen per leaf area (Na; n = 98) and leaf mass per leaf area (LMA; n = 112) (grey circles). Model bias was defined as
V0

cmax pred½ �
�V0

cmax obs½ �

V0
cmax obs½ �

� 100,

where V0
cmax pred½ � is the predicted optimal V0

cmax and V0
cmax obs½ � is the observed V0

cmax. Data points are sized logarithmically by V0
cmax obs½ �. Lines indicate the

modelled response from the multiple linear regression models. Shading indicates 95% confidence intervals for regression lines. Only significant trends

(P < 0.05) are shown. Colours are as in Figure 2.
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soil on V0
cmax obs½ �, we quantified the influence of the soil met-

rics on model predictive ability by comparing three models

for predicting V0
cmax obs½ �: one based on site climate and eleva-

tion (indexed by V0
cmax pred½ �), a second model with the six met-

rics of soil nutrient and water availability only, and a third

model based on both climate and soils. The fit of the model

that included both V0
cmax pred½ � and soil variables (AIC = 1529.3;

r2 = 0.68) was slightly better than the model that only

included V0
cmax pred½ � (AIC = 1536.4; r2 = 0.64) and substantially

better than the model that only included the soil variables

(AIC = 1669.1; r2 = 0.32). These results suggest that soil vari-

ables (pH in particular) add statistically significant greater

ability to predict V0
cmax obs½ � over biophysical constraints and

light availability alone, but that the dominant drivers of

V0
cmax obs½ � are captured by our theory.

DISCUSSION

The broad fidelity of our theory to observations suggests that,

across large spatial and phylogenetic scales, realized V0
cmax is

principally determined by the optimization of photosynthetic

processes in response to environmental conditions. Predicted

carboxylation capacity is largest in tropical and subtropical

regions of the world (Fig. 6), where temperatures and incoming

solar radiation are highest. This effect not only follows from the

observations presented here (Fig. 2), but also results from tem-

perature (e.g. Smith & Dukes 2017b) and light (e.g. Meir et al.

2007) gradient studies. These results suggest that future, warmer

conditions may favour increased photosynthetic potential,

although this may be balanced by decreases in Vcmax as a result

of elevated CO2 (Ainsworth & Rogers 2007).

Figure 5 Model bias in relation to soil variables. Partial residuals of the observed bias (%) in the maximum rate of Rubisco carboxylation predicted by the

theoretical model (V0
cmax) by site plotted against soil cation exchange capacity (CEC, panel a), pH (panel b), carbon-to-nitrogen ratio (C:N, panel c), silt

content (panel d), clay content (panel e), and an index of soil water availability (a; panel f) (black transparent circles). Model bias was defined as
V0

cmax pred½ �
�V0

cmax obs½ �

V0
cmax obs½ �

� 100, where V0
cmax pred½ � is the predicted optimal V0

cmax and V0
cmax obs½ � is the observed V0

cmax. Data points are sized logarithmically by V0
cmax obs½ �.

Lines indicate the modelled response from the multiple linear regression models. Shading indicates 95% confidence intervals for regression lines. Only

significant trends (P < 0.05) are shown. Data are plotted for each of the 193 sites that had available soil data. Colours are as in Figure 2.
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Nonetheless, there were some significant biases in our model

predictions that warrant further discussion. The linear model

results indicated a positive bias with light availability, suggest-

ing that the observational data were less sensitive to light

availability than predicted by the theory. It is possible that

this was driven by individual variation in the realized quan-

tum yield of photosynthetic electron transport (φ), which is

the product of the intrinsic quantum efficiency and leaf

absorptance of incoming radiation. Previous studies have sug-

gested that intrinsic quantum efficiency and leaf absorptance

are not driven by light availability (Evans & Poorter 2001)

and, for intrinsic quantum efficiency, that observed variability

may be due to measurement technique rather than meaningful

biological variation (Skillman 2008). This suggests that the

bias in the light response may be due to variability in leaf

position and angle, which influence the actual light reaching

the leaf surface. Our comparison to the CANTRIP dataset

(Keenan & Niinemets 2016) indeed suggests that measured

leaves likely were not receiving full sunlight, which would

have contributed to the model overestimation that we

observed. The combined impact of light availability, leaf posi-

tion and canopy architecture is a major research need for scal-

ing from leaf to whole-plant responses at large scales.

Unlike with light availability, there was no bias in our

model related to temperature, indicating that the temperature

response predicted tends to follow similar responses seen in

the global dataset. Notably, the response is also similar to

that seen in meta-analytical (Kattge & Knorr 2007) and con-

trolled-environment (Scafaro et al. 2017; Smith & Dukes

2017b) studies. Nonetheless, temperature was an important

determinant of optimal V0
cmax rates (Figure 1). Our theory

suggests that as temperature increases, higher V0
cmax is neces-

sary to support increased electron transport up to their

optima. This effect is amplified by a greater stimulation of Kc

compared to the CO2 compensation point, Γ*, with tempera-

ture (Bernacchi et al. 2001). This phenomenon is also observ-

able as a reduction in the optimal ratio of J0max to V0
cmax at

higher temperatures (Figure S5), an effect consistent with pre-

vious studies (e.g. Medlyn et al. 2002; Kattge & Knorr 2007;

Crous et al. 2013; Smith & Dukes 2017b).

It is worth noting that our theory predicts Vcmax rates at

the average growing season temperature (i.e. V0
cmax), rather

than at a standardized temperature. Indeed, Vcmax at a stan-

dardized temperature is likely to be better correlated to Na

than V0
cmax is to Na because Vcmax at a standardized tempera-

ture is a proxy for Rubisco content rather than a realized

rate. This possibly explains the relatively weaker trend seen

here compared to other studies (e.g. Kattge et al. 2009;

Walker et al. 2014). Nonetheless, our strategy allows for a

prediction of V0
cmax that is as good or better than a recent

approach for estimating Vcmax at a standardized temperature

from dynamic allocation of leaf N (Ali et al. 2016). Predicting

Vcmax under typical growth conditions is likely more useful

for vegetation modelling because it allows for predictions of

Vcmax at temperatures near to the temperatures regularly expe-

rienced by plants in a given environment, rather than at a

common temperature (e.g. 25 °C), which may be atypical for

that environment. Thus, V0
cmax would vary temporally owing

to comparatively modest diurnal or day-to-day temperature

variation rather than across large temperature gradients,

which will minimize potential predictive errors due to the

choice of temperature response functions used to scale V0
cmax.

Our approach could be extended to examine the influence

of temporal variation in environmental conditions on optimal

V0
cmax predictions. Due to the scale of our analyses and a lack

of consistent, high-resolution environmental data, we used

monthly mean data (Harris et al. 2014) to create our predic-

tions. While our predictions were able to pick up large spatial

trends, the ability of our model to simulate temporal variation

is untested here. Better temporal data, coupled with a firmer

understanding of the timescale of photosynthetic acclimation,

should lead to better temporal predictions.

Our model showed a bias with soil pH, a proxy for soil fer-

tility and leaf Na. The soil pH effect may be due to the

Figure 6 Globally predicted optimal rates of V0
cmax. Global ‘present-day’ optimal rates of maximum Rubisco carboxylation (V0

cmax) computed using mean

growing season irradiance, air temperature, vapour pressure deficit and elevation. Values were calculated at 0.5° resolution using effective growing season

mean temperature (Tg; °C), atmospheric vapour pressure deficit (Dg; Pa) and incoming photosynthetically active radiation (Ig; lmol m�2 s�1) for each

location from monthly data provided by the Climatic Research Unit (CRU TS3.24.01) (Harris et al. 2014). Growing season was defined as months having

temperatures greater than 0 °C. Elevation (z; m) at each location was obtained from the WFDEI meteorological forcing dataset (Weedon et al. 2014).

Atmospheric CO2 was assumed to be 400 lmol mol�1 at z = 0 m and converted to Pa for each location based on z.
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negative effect of soil acidity on nutrient availability, which

has been linked to lower rates of photosynthesis (Maire et al.

2015). However, because soil acidity tends to correlate with

rainfall (Slessarev et al. 2016), the overprediction may partly

be the result of an overestimation of light availability in wet,

tropical regions, as mentioned above. The leaf Na effect indi-

cated that the model underestimated V0
cmax in high Na leaves.

This is not surprising, as a substantial amount of leaf Na is

used for Rubisco (Evans 1989). However, neither soil pH

nor leaf Na, although significant, provided substantial addi-

tional explanatory power over climate. By contrast, a sub-

stantial portion of global V0
cmax is explained by climate

alone.

One possible downside to our approach to predicting V0
cmax

is that our theory, as presented here, does not explicitly

include an index of soil moisture and only implements mois-

ture influences through vapour pressure deficit impacts on C0
i.

While it is still uncertain how soil moisture influences V0
cmax

(Smith et al. 2014), models that include soil water stress

impacts on Vcmax tend to match observations better than

those that do not (Keenan et al. 2010). Nonetheless, our

model did not show any bias in relation to an index of soil

water availability, a. The least-cost theory, as originally pre-

sented (Wright et al. 2003), does implicitly assume soil mois-

ture costs to photosynthesis and future work devoted to

including these costs explicitly into the quantitative theory

could improve model predictions. Optimality based plant

hydraulic transport models (e.g. Sperry et al. 2017) could be

used for this purpose.

Our findings are consistent with the hypothesis that photo-

synthetic demand drives leaf nitrogen content, rather than

the other way around. This was previously suggested by

Evans (1989), after which photosynthetic theory has been

used to successfully predict leaf nitrogen concentrations

(Dong et al. 2017). However, most current carbon cycle

models utilize leaf N content to predict Vcmax, even those

that do not include an interactive N cycle (Smith & Dukes

2013). Our data suggest that leaf N concentration is more

likely a consequence of demand for Vcmax. Even so, our the-

ory presents an avenue for reliably predicting V0
cmax at global

scales without needing to predict Na, which would reduce

model uncertainty.

While we found that collinearity of our data likely had no

effect on the results presented here (see VIF analysis in Meth-

ods), some degree of collinearity in climate and environmental

variables is unavoidable when using natural gradient data. A

potential next step in testing our theory is to tailor controlled-

environment studies to assess the individual response of each

input of the theoretical model, as well as the influence of soil

nutrient availability.

In conclusion, we have developed and tested a theory for pre-

dicting environment-dependent optimal rates of V0
cmax against an

observational dataset. The agreement between data and theory

suggests that plants, through acclimation, adaptation or some

combination of the two, are assimilating carbon in an efficient

manner by preferentially allocating resources to rate-limiting

processes. This allows for greater resources to be used for non-

photosynthetic processes, such as growth, storage and reproduc-

tion, which are important in competitive environments.
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