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Abstract 

Evolution entails the orchestration of cellular resources together with mutations to achieve 

fitter phenotypes. Here, we determined the system-wide pleiotropic effects that redress the 

significant perturbations caused by the deletion of global transcriptional regulator CRP in 

Escherichia coli when evolved in the presence of glucose. We elucidated that absence of CRP 

results in alterations in key metabolic pathways instrumental for the precise functioning of 

protein biosynthesis machinery that subsequently corroborated with intracellular metabolite 

profiles. Apart from acquiring mutations in the promoter of glucose transporter ptsG, the 

evolved populations recovered the metabolic pathways to their pre-perturbed state with 

amelioration of protein biosynthesis machinery coupled with fine-tuned proteome  

re-allocation that enabled growth recovery. However, ineffective utilization of carbon towards 

biomass as perceived from ATP maintenance flux and costly amino acid accumulations poses 

a limitation. Overall, we comprehensively illustrate the genetic and metabolic adjustments 

underlying adaptive evolvability, fundamental for understanding the growth physiology.  

 

Introduction 

Global transcriptional factors (TFs), represent a cornerstone in the transcriptional regulatory 

network (TRN), that facilitates system-wide changes in gene expression levels in response to 

alterations in its external or internal environment (Babu et al., 2004; Martínez-Antonio and 

Collado-Vides, 2003; Seshasayee et al., 2011). Considering the complex interactions existing 

within the TRN of an organism, the absence of global TFs results in direct or indirect cellular 

responses that incapacitate the ability to attain favourable phenotypic outcomes, even for a 

simple prokaryote like E. coli. Regulatory mechanisms of CRP (cAMP receptor protein), a 

global transcriptional regulator in E. coli, under diverse conditions has been an area of research 

over many decades. CRP, along with its cognate signalling molecule cAMP, activates 

transcription at more than 200 promoters as evidenced from the genome-wide binding studies 

(Hollands et al., 2007; Kolb et al., 1993). In vitro and in vivo binding assays have predicted 

and validated such genome-wide binding sites of CRP, wherein, its interactions with RNA 

polymerase at such promoters have been addressed (Grainger et al., 2005; Latif et al., 2018). 

Specifically, CRP has been shown to regulate, i) genes involved in the transport and 

metabolism of glucose and other carbon sources like mannose and galactose (Franchini et al., 

2015; Gosset et al., 2004; Kim et al., 2018; Shimada et al., 2011), ii) genes encoding enzymes 

of the TCA cycle and oxidative phosphorylation (Kim et al., 2018; Nam et al., 2005; Zheng et 
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al., 2004), and iii) genes of the stress response (Castanie-Cornet and Foster, 2001) under 

diverse nutritional conditions by classical approaches and microarray-based studies. Moreover, 

the physiological significance of its coactivator cAMP, in coordinating the carbon and nitrogen 

demands via carbon catabolites addressed the long-standing debate on carbon catabolite 

repression (You et al., 2013). 

Despite the huge repository of data available for CRP, several questions are still unanswered. 

Since, changes in glucose uptake rate can only in part explain the changes in growth rate, the 

underlying molecular mechanisms driven by CRP, which determine the detrimental shift in 

exponential growth profiles, remain obscure. Scarce knowledge of the fate of cAMP and 

downstream metabolite signatures propagated by gene expression changes in the absence of 

CRP limits our ability to link molecular consequences to growth. Further, in the absence of 

CRP, proteome allocation principles (O’Brien et al., 2016; Scott et al., 2010; You et al., 2013) 

that facilitate system-wide fine-tuning of the necessary and unnecessary proteome towards 

biomass synthesis, remains unexplored. Thus, a fundamental question that arises now is, 

whether these represent the major drivers that facilitate a system-level response to ensure 

growth fitness in the event of the evolution of such a dysregulated mutant.  

By exploiting such characteristics, we sought to investigate how an E. coli K-12 MG1655 strain 

lacking CRP, can cope up with this global disruption using adaptive laboratory evolution 

(ALE) under glucose minimal media conditions. ALE entails orchestration of genetic as well 

as phenotypic behaviour in response to mutations that provide growth fitness benefits to 

organisms under strict selection pressures (LaCroix et al., 2015; Mozhayskiy and Tagkopoulos, 

2013). While a majority of the ALEs have focussed on understanding the adaptive rewiring in 

response to the loss of metabolic genes (Charusanti et al., 2010; McCloskey et al., 2018a; 

Notley-McRobb and Ferenci, 2000), studies that focus on ALEs on the loss of global 

transcriptional regulators, are now emerging (Lamrabet et al., 2019; Srinivasan et al., 2015). A 

previous study on E. coli REL606 and its evolved clones lacking CRP had elucidated how the 

organism copes with the growth defect by accumulating mutations in the promoter of the 

glucose transporter gene, ptsG (Lamrabet et al., 2019). Their work highlighted that generation 

of new transcription start sites in the promoter of ptsG and manX resulted in growth recovery. 

However, the global pleiotropic effects of such mutations on cellular processes that enabled 

growth recovery in the evolved populations has not been examined earlier. Therefore, to 

decipher the underlying molecular bases of divergence of evolved strains away from their 

ancestor (Dragosits et al., 2013; Ostrowski et al., 2005; Utrilla et al., 2016; Zorraquino et al., 
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2017), examining the evolution of a crp mutant with integration of transcriptomics, 

metabolomics and proteome allocation aspects can be a study of great value. Moreover, the 

nature of mutations and its molecular consequences are largely influenced by the genotype of 

the ancestral organism and growth phase wherein the serial passages are carried out (LaCroix 

et al., 2017; Rodŕiguez-Verdugo et al., 2016; Sandberg et al., 2014).   

In this present study, using a multi-omics approach, we examine the global physiological 

significance of CRP for exponential growth in glucose minimal media conditions.  We 

elucidate its underlying direct or indirect regulatory mechanisms that coordinate metabolite 

profiles and the allocation of proteomic resources along with its congruent gene expression 

change towards its cellular objectives. Further, we examined the pleiotropic effect of beneficial 

mutations on cellular processes underlying growth fitness in an E. coli K-12 MG1655 strain 

lacking CRP, under glucose minimal media conditions. Overall, by evaluating such genotype-

phenotype relationships in the parent and evolved strains, we elucidate the inherent constraints 

of genetic and metabolic networks underlying evolvability in E. coli. 

Results 

Loss of CRP caused large shifts in the transcriptome of key metabolic pathways 

CRP occupies an apex node in the hierarchical transcriptional regulatory network (TRN) of E. 

coli regulating a myriad of genes under diverse nutritional conditions (Martínez-Antonio and 

Collado-Vides, 2003). Here, we determined the role of CRP in regulating key metabolic 

pathways with glucose as a carbon source. Towards this, we first addressed the systemic effect 

caused by the loss of CRP by performing high-coverage RNA sequencing of Δcrp mutant in 

glucose minimal media condition during the mid-exponential phase. The transcriptome of this 

strain when compared to its parent wild-type (WT) strain, showed ∼722 differentially 

expressed (DE) genes (Absolute Fold change (aFC) ≥ 2, Adjusted P-value (adj-P) < 0.05) of 

which ∼544 genes (75%) were downregulated and ∼178 genes (25%) were upregulated in the 

mutant (fig. 1A), indicating a large upset of the global transcriptome (supplementary file 1). 

This reiterated the role of CRP as a transcriptional activator, that was in good agreement with 

previous gene expression studies (Gosset et al., 2004; Latif et al., 2018; Zheng et al., 2004) 

(supplementary file 1). 
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Figure 1. Severe perturbation of gene expression in ∆crp compared to WT. (A) Volcano 

plot of the DE genes ∆crp compared to WT depicted as Adj-P value (log10 scale) vs Fold 

change (log2 scale). The brown dots indicate downregulated genes and the cyan dots indicate 

upregulated genes. (B) The Voronoi treemaps showing the downregulated metabolic pathways 

enriched by KEGG classification. Transport (adj-P < 0.05), tRNA loading (adj-P < 10-4) and 

TCA cycle (adj-P < 0.05) were found to be significantly downregulated. (C) The Voronoi 

treemaps showing the upregulated metabolic pathways enriched by KEGG classification. 

Ribosome (adj-P < 10-5), Chaperone and folding catalysts (adj-P < 10-2) and TCA cycle (adj-P 

< 0.05) were found to be significantly upregulated. The genes enriched within each pathway 

are shown in supplementary fig. S1. Note: The size of the hexagon within each pathway is 

directly proportional to the absolute fold change observed for the genes. The colour of the 

hexagon denotes the specific pathways classified by KEGG. (D) Enrichment of genes under 

regulation of sigma factors; the brown bars and the cyan bars indicate the fraction of 

downregulated and upregulated genes in ∆crp vs to WT respectively. Significant increase or 

decrease is denoted by asterisks: one asterisk indicates P < 0.05, two asterisks indicate P < 10−4 

and three asterisks indicate P < 10−10. 

 

We examined the KEGG pathways that were significantly enriched among these DE genes and 

represented these pathways as Voronoi treemaps (fig. 1B-C and supplementary fig. S1). Our 

data indicated downregulated genes significantly associated with pathways such as 

transporters, tricarboxylic acid (TCA) cycle and anaplerotic enzymes needed for aerobic 
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respiration, and tRNA loading pathways involved in for proper channelling of amino acids 

towards protein translation. Downregulation of transporters pathway was associated with the 

major glucose transporter (ptsG), secondary glucose transporters (manXYZ, malEFGKX, and 

lamB that function under glucose limitation), transport of amino acids (tdcC, proVXW, hisJ, 

livJKH, lysP, leuE), and nucleotides (tsx, uraA, nupCGX), as well as alternate carbon 

transporters (glpF, fruB). Moreover, we observed the upregulated genes to be significantly 

associated with pathways such as ribosomes, and chaperone and folding catalysts. These are 

responsible for the general stress response of the cell, required to maintain proper protein 

turnover and integrity (Jozefczuk et al., 2010). Owing to the huge investment of proteomic 

resources for the synthesis of ribosomes (Scott et al., 2010; Zhu and Dai, 2019), such an 

increase in ribosome transcript levels might indicate an increase in unnecessary ribosomal 

proteins, thereby reducing the proteome share for metabolic proteins. Further, we found 

upregulated genes enriched in the TCA cycle and anaplerotic enzymes pathway to be primarily 

involved in glycolate and glyoxylate degradation (glcDEF, aceA), which might indicate an 

increase in hedging mechanism related to alternate carbon metabolism (Solopova et al., 2014; 

Utrilla et al., 2016). Overall, the considerable shifts in the transcriptome of these pathways, 

emphasize the metabolic dysregulation coupled to impaired functioning of protein biosynthesis 

machinery caused by the loss of a global regulator.  

We identified a significant fraction of enriched downregulated genes (~35%, P < 10-14) that 

were found to be regulated by CRP as opposed to the upregulated genes (~9%, P > 0.1). Such 

gene expression patterns could be attributed to the direct effect of loss of CRP regulation as 

well as to indirect effects, mediated by global physiological factors (RNA polymerase, 

ribosome, and metabolites) (Berthoumieux et al., 2013; Klumpp et al., 2009) or ppGpp, the 

stringent response regulator (Traxler et al., 2008). However, studies have shown that 

upregulation in ribosomes could be independent of the effects of ppGpp due to a simple 

activation program driven by cellular demands (Scott et al., 2014). Additionally, ~66%  

(P < 10-6) of enriched downregulated genes, were found to be regulated by sigma 70, the major 

growth-related sigma factor associated with RNA Polymerase (fig. 1D), corroborating the 

association of CRP with sigma 70 reported previously (Grainger et al., 2005; Latif et al., 2018). 

A significant fraction of enriched upregulated genes was regulated by stress-related sigma 

factor, sigma 38 (~28%, P < 10-2) and sigma 32 (~22%, P < 10-13). Presumably, this suggested 

the reallocation of RNA Polymerase away from growth and towards stress-related genes as an 

indirect consequence of the loss of a global regulator.  
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Adaptive evolution recapitulates mutations in the ptsG intergenic region but with altered 

binding profiles 

To decipher how Δcrp copes with the perturbations in its global gene expression, we adaptively 

evolved five independent replicates of the mutant with multiple passages in batch culture with 

non-limiting glucose, strictly during the mid-exponential phase (supplementary fig. S2). We 

observed that the growth defect in Δcrp was rapidly recovered within ~100 generations of 

adaptive evolution (supplementary fig. S3) and the endpoint populations (EvoCrp) 

(Supplementary table S1) were further characterized in this study.  

We performed whole-genome resequencing (WGS) to identify the causal mutations in all the 

EvoCrp endpoint populations (supplementary table S2). Out of eleven unique mutations 

detected across all the EvoCrp strains (described in greater detail in supplementary text), six 

were in the upstream promoter sequence of the ptsG gene, a component of the 

Phosphotransferase System (PTS) responsible for ATP-independent glucose uptake in E. coli. 

The intergenic mutations were mostly SNPs specifically in the operator sites of the repressors 

namely Fis (Cho et al., 2008; Shin et al., 2003), Mlc (Plumbridge, 2002; Plumbridge and Upr, 

1998), and ArcA (Jeong et al., 2004), reported to repress ptsG gene expression (supplementary 

fig. S4). We, therefore, hypothesized that these mutations in the ptsG promoter region are 

responsible for altered binding affinity, resulting in the de-repression of the ptsG gene. 

First, to examine the adaptive role of the mutations, we introduced the IG116 promoter 

mutation (as annotated in supplementary table S2) in the Δcrp background. The introduction 

of the mutation resulted in 85% recovery to the WT growth rate thereby confirming the 

adaptive nature of the promoter mutations in the EvoCrp strains (supplementary fig. S5A and 

S5B). Next, to test our altered binding hypothesis, we characterized the in-vivo binding affinity 

of Fis in IG116-Δcrp mutant strain using CHIP-qPCR. We did not observe any significant 

enrichment for Fis binding to the promoter neither in IG116 Δcrp strain nor in WT and Δcrp 

strain (supplementary fig. S6A-C), that was in agreement to a previous study in E. coli K-12 

MG1655 (Cho et al., 2008). Also, as operator sequence encompassing IG116 mutation is also 

known to possess a binding affinity for Mlc (Plumbridge, 2002; Plumbridge and Upr, 1998), 

we characterized the binding affinity of Mlc in IG116 Δcrp strain, which also revealed similar 

results as in the case of Fis (supplementary fig. S6D). This emphasized the fact that the 

regulation of ptsG is not dependent on the interplay of the regulators Fis and Mlc. Besides, a 

detailed analysis of the WGS data indicated that most of the mutations in the ptsG promoter 

resulted in new transcriptional start sites (TSS) with “Pribnow” box-like consensus sequence, 
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thereby reiterating that these ptsG promoter mutations augment the affinity of RNA 

Polymerase sigma 70 as previously observed in a recent study albeit in a different genetic 

background (Lamrabet et al., 2019). However, the mutation profile and the binding profile of 

negative regulators on the ptsG promoter in our study were markedly different from the 

previous study that can be attributed to the underlying differences in the genetic background 

of the parent strains used for evolution in both the studies. 

 

Adaptive rewiring of gene expression of metabolic pathways in EvoCrp strains 

To understand the gene expression changes that enabled higher growth of the evolved strains, 

we first characterized the transcriptome of the EvoCrp strains by comparing it to Δcrp parent 

strain and identified the statistically significant DE genes (aFC ≥ 2, adj-P < 0.05) 

(supplementary file 1). Broadly, all EvoCrp strains compared to Δcrp showed fewer DE genes 

(ranging from ~75 to ~300 DE genes) as opposed to ~700 DE genes observed in Δcrp compared 

to WT (fig. 2A). A higher proportion of DE genes in EvoCrp showed an upregulation and a 

higher median expression level (P < 10-6, Mann Whitney test, fig. 2B and supplementary fig. 

S7 and S8) relative to Δcrp, implying a shift in transcriptome towards that align with increased 

growth. To understand the adaptive response of EvoCrp, we computed the correlation between 

the fold-change of gene expression in Δcrp vs WT and EvoCrp vs WT (fig. 2C and 

supplementary fig. S9) and observed a strong positive correlation (Pearson correlation 

coefficient, r = 0.74, P < 10-15). Also, the magnitude of the difference of fold change between 

EvoCrp and WT was lesser compared to Δcrp vs WT (P < 10-15, Mann Whitney test). Both of 

these observations indicated a partial restoration in EvoCrp gene expression states towards WT 

levels. 

Next, we investigated the metabolic pathways enrichment in EvoCrp strains. We observed that 

majority of the pathways that were affected in Δcrp were reverted in the EvoCrp strains 

(supplementary fig. S10) to the pre-perturbed state. For instance, across a majority of EvoCrp 

strains (fig. 3A-3B and supplementary fig. S11-S15), we observed upregulated genes 

significantly associated with transporters and tRNA loading pathways, and downregulated 

genes significantly associated with ribosome, and chaperone and folding catalyst related 

pathways. This indicated the restoration of protein turnover and folding machinery in EvoCrp 

strains. However, the number of genes belonging to the restored pathways agrees well with the 

partial restoration seen from the correlation plot (fig. 2C and supplementary fig. S10). The 

restoration in the gene expression in EvoCrp also suggested a reallocation of RNA polymerase,  
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Figure 2. Transcriptome comparison of the EvoCrp compared to ∆crp. (A) Stacked plots 

showing the number of DE genes across all the EvoCrp strains. The downregulated genes are 

shown in brown and the upregulated genes are shown in cyan. (B) Volcano plot of the DE 

genes for one of the representative evolved strain, EvoCrp3 vs ∆crp depicted as Adj-P value 

(log10 scale) vs Fold change (log2 scale). See supplementary fig. S7 for volcano plots of DE 

genes for other EvoCrp strains. (C) A correlation plot between EvoCrp3 vs WT and ∆crp vs 

WT (Pearson correlation coefficient, r = 0.74, P < 10-15). See supplementary fig. S9 for 

correlation plots of DE genes for other EvoCrp strains. 

 

as indicated by the large fraction of the upregulated genes regulated by RNA polymerase sigma 

70 (~76%, P < 10-5) and the downregulated genes regulated by stress-related sigma factor, 

sigma 38 (~37%, P < 10-3) and sigma 32 (~14%, P <10-13) (fig. 3C & supplementary fig. S16). 

Overall, in EvoCrp strains, we observed rewiring of metabolic pathways and amelioration of 

protein biosynthesis machinery, which corroborated with the reallocation of RNA polymerase 

favouring growth over stress-related functions.     
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Figure 3. Enrichment analysis of the DE genes in EvoCrp3 compared to Δcrp. (A) The 

Voronoi maps showing the downregulated metabolic pathways enriched by KEGG 

classification. Ribosome (adj-P < 10-8), and Chaperone and folding catalysts (adj-P < 10-2) were 

found to be significantly downregulated. (B) The Voronoi treemaps showing the upregulated 

metabolic pathways enriched by KEGG classification. Transport (adj-P < 10-3), tRNA loading 

(adj-P < 10-13) and Oxidative phosphorylation (adj-P < 10-5) were found to be significantly 

upregulated. See supplementary fig. S11-S15 for the Voronoi maps of the pathways and the 

genes within each pathway for all EvoCrp strains. The genes enriched within each pathway are 

shown in supplementary fig. S13. Note: The size of the hexagon within each pathway is directly 

proportional to the absolute fold change observed for each gene. The colour of the hexagon 

denotes the specific pathways classified by KEGG. (C) Enrichment of genes under regulation 

of sigma factors; the brown bars and the cyan bars indicate the percentage of downregulated 

and upregulated genes in EvoCrp3 vs to Δcrp respectively. Significant increase or decrease is 

denoted by asterisks: one asterisk indicates P < 0.05, two asterisks indicate P < 10−4 and three 

asterisks indicate P < 10−10. See supplementary fig. S16 for sigma factor usage of DE genes for 

other EvoCrp strains. 

 

Accumulation of metabolites illustrate strain-specific growth effects 

Next, to evaluate the metabolite levels that mirror the shifts in growth profiles (Barupal et al., 

2013; Erickson et al., 2017), we characterized several metabolites of central carbon metabolism  
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Figure 4. Fate of cAMP and global metabolome of the strains. (A) A multi-variate statistical 
analysis using PLS-DA for 24 significant metabolites found in our analysis. The six dots for 
each strain indicate the three biological and two technical replicates. The circles indicate 95% 
confidence intervals. (B) Network diagram of PEP-PTS system for glucose uptake with 
schematic representation of the regulation on cAMP by the enzymes of PEP-PTS. Key 
metabolites of the pathway are shown in yellow blocks. The green solid arrow indicates 
positive gene regulation from our study and the green dotted arrow indicates positive regulation 
of activity from literature evidence. (C) Expression profile of the DE genes of PEP-PTS with 
the metabolite levels of cAMP. Fold change values for gene expression and metabolite levels 
are obtained by comparing Δcrp vs WT and EvoCrp vs Δcrp. Expression values are obtained 
from average of two biological replicates expressed as log2 FC. Metabolite levels are obtained 
from average of three biological and two technical replicates expressed at height ratio/gDCW 
(log2 FC).  

 

in the exponential phase of growth in Δcrp and the evolved strains using 13C-labelled 

metabolomics (supplementary file 2). An initial exploratory assessment was performed using 

partial least squares discriminatory analysis (PLS-DA) on 24 metabolites that were found to be 

statistically significant (adj-P < 0.05, Student’s t-test) in either EvoCrp vs Δcrp or EvoCrp vs 

WT or Δcrp vs WT strains. The two components of the PLS-DA scores plot (fig. 4A) which 

accounted for ~68% of the variance, revealed partial restoration of the metabolite profiles in 

EvoCrp towards WT levels.  
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We integrated the metabolite levels with its cognate gene expression profiles to unravel the 

strain-specific adjustments at key nodes of metabolic pathways. Modulation of glucose uptake 

in E. coli can be inferred from the pool size of the physiological signal molecule cAMP, an 

inducer of CRP activity (fig. 4B). To decipher whether the absence of CRP alters the 

accumulation of cAMP, we measured the intracellular cAMP levels. We found that the deletion 

of CRP leads to a ~55-fold higher (adj-P < 10-9) accumulation of cAMP compared to the WT 

(fig. 4C). Counterintuitively, we observed no change in cyaA gene expression, that generates 

cAMP from ATP (fig. 4B), known to be activated by the phosphorylated EIIA (crr) component 

of the PTS system (fig. 4C) (Deutscher et al., 2006). Also, cpdA gene, responsible for degrading 

cAMP, had lower expression in Δcrp. Thus, the absence of sequestration by CRP and reduced  

degradation resulted in the extremely high intracellular accumulation of cAMP in Δcrp. After 

evolution, we observed a ~8-fold decrease in cAMP levels across all EvoCrp strains relative to 

Δcrp that indicated an evolutionary restoration of cAMP levels albeit inefficiently that might 

be suggestive of optimization of ATP usage. 

We reinforce that glucose transport in exponential phase in E. coli K-12 MG1655 is mediated 

majorly via the ptsG gene (Deutscher et al., 2006; Postma et al., 1993), as evidenced by the 

mutation profiles. The gene expression pattern of ptsG (fig. 4C) in EvoCrp strains corroborates 

with the nature of mutations in the promoter of ptsG gene. Since glucose uptake in E. coli 

involves group translocation with the donation of phosphate from PEP (fig. 5A), we sought to 

examine PEP levels (Deutscher et al., 2006; Postma et al., 1993). We observed an increase in 

phosphoenolpyruvate (PEP) concentration (aFC ~ 8-fold) in Δcrp compared to the WT (fig. 

5B), consistent with the reduced expression of ptsG gene (aFC ~ 2.5-fold). Recovery of PEP 

levels was observed across the majority of the EvoCrp strains (aFC ~ 6-fold, vs Δcrp). Akin to 

PEP, 3-phosphoglycerate (3PG) was found to be higher in Δcrp (aFC ~ 3-fold, vs WT) and its 

level was reduced in EvoCrp strains (aFC ~ 2-fold, vs Δcrp). Since PEP and 3PG levels attune 

to ptsG expression, they represent reliable indicators of carbon limitation (Brauer et al., 2006), 

and their recovery promptly sheds light on the restoration of carbon balance. PEP being a 

precursor of aromatic amino acids, we observed a higher concentration of phenylalanine levels 

(aFC ~ 1.4) in Δcrp, concomitant with an increase in PEP levels (fig. 5B). Conversely, gene 

expression of aromatic amino acid biosynthesis genes namely aroF (aFC ~19), tyrA (aFC ~13) 

and trpABCD (aFC ~3) showed significant downregulation in Δcrp mutant. Such antagonism  
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Figure 5. Integrated transcriptomics and metabolomics analysis at glycolytic and Pentose 

Phosphate Pathway (PPP) nodes. (A) A network diagram depicting glycolytic pathway, 
Pentose Phosphate Pathway (PPP) and amino acid biosynthetic pathways generating from the 
precursor metabolites of glycolytic and PPP pathway. (B) Expression profile of DE genes and 
metabolite levels significantly altered in the glycolytic and Pentose Phosphate Pathway (PPP) 
and amino acid biosynthetic pathways, were obtained by comparing Δcrp vs WT and EvoCrp 
vs Δcrp. Expression values are obtained from average of two biological replicates expressed 
as log2 FC. Metabolite levels are obtained from average of three biological and two technical 
replicates expressed as log2 FC of height ratio/gDCW. 

 

highlighted the known negative feedback regulation of amino acid biosynthesis (Reznik et al., 

2017). However, EvoCrp strains retained corresponding levels of phenylalanine compared to 

Δcrp, despite lowered levels of PEP and upregulation of aroF gene expression (aFC >7). 

Pyruvate, an α-keto acid and end product of glycolysis, is a precursor of the several branched-

chain amino acids alanine, valine, leucine, and isoleucine (fig. 6A). We found a reduction in 

valine (aFC ~ 1.5-fold) and an increase in leucine levels (aFC ~ 2-fold) in Δcrp compared to 

WT. In contrast, we observed, reduction in valine (aFC ~ 2.3-fold, fig. 6D) and no significant 

changes in leucine in the EvoCrp strains compared to Δcrp. Although studies have suggested 

that higher valine inhibits branched chain amino acid synthesis and leucine biosynthesis 
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involves sequestration of the toxic metabolite, acetyl CoA (Neidhardt et al., 1991), it is unclear 

as to why these strains choose to retain lower levels of valine and higher levels of leucine. 

We also determined the concentrations of citrate and other α-keto acids like alpha-ketoglutarate 

(αKG) and oxaloacetate (OAA), which are key intermediates of the TCA cycle (fig. 6B). In 

Δcrp, citrate level was lower (aFC ~1.75) compared to WT in agreement with the reduced gene 

expression of gltA (fig. 6C-D), whereas its levels were restored after evolution despite no 

alteration in gene expression that might be attributed to increased TCA cycle activity in the 

EvoCrp strains (Eiteman et al., 2006). We observed a ~1.7-fold higher concentration of αKG 

in Δcrp compared to the WT as well as in EvoCrp compared to Δcrp (fig. 6D). The αKG 

accumulation has been known to indicate nitrogen limitation in the organism (Doucette et al., 

2011). We speculate that the high intracellular levels of αKG in Δcrp as well as EvoCrp, 

therefore, indicated a possible scenario of nitrogen limitation prevalent due to loss of CRP and 

that evolution was unable to recover the limitation during the process of growth recovery. αKG 

is a precursor for the amino acids glutamate, glutamine, arginine, and proline. In Δcrp 

compared to WT, glutamate levels were upregulated (aFC ~3) whereas, in the EvoCrp strains 

compared to Δcrp, we observed reduced levels of glutamate (aFC ~1.6). OAA that can be 

interpreted from malate levels in the cell (Yuan et al., 2009), serves as a precursor of amino 

acids like aspartate, asparagine, lysine, threonine, and methionine levels (fig. 6B). Concomitant 

with the higher OAA or malate (aFC ~2-fold) levels, a ~2.5-fold higher aspartate and ~1.5-fold 

higher levels of lysine were seen in Δcrp mutant compared to WT. Despite no changes in OAA 

(malate) levels and ~1.75-fold reduction in aspartate concentration, we observed 1.6-fold 

higher asparagine and identical lysine levels in EvoCrp strains compared to Δcrp. Methionine, 

which showed no change in its concentration in Δcrp compared to the WT, was 1.6-fold high 

in all the EvoCrp strains compared to its parent Δcrp. Thus, concomitant with changes in 

precursors, we observed changes in proteinogenic amino acids, which elucidated an inefficient 

utilization towards its cellular objectives or protein biomass. 

To summarize, we inferred that accumulation of key proteinogenic amino acids like 

phenylalanine, aspartate, glutamate, and lysine in Δcrp was ascribable to the impaired 

functioning of protein biosynthesis machinery observed in gene expression analysis. Further, 

in the EvoCrp strains, we observed increased accumulation of costly amino acids (considering 

only the number of activated phosphate bonds used in making the amino acid without the 

contribution of precursor synthesis itself)(Neidhardt et al., 1991) like methionine, asparagine, 

lysine, and arginine which were not restored to WT levels that seems to explain the restoration  
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Figure 6. Integrated transcriptomics and metabolomics analysis at pyruvate and TCA 

cycle nodes. (A) A network diagram depicting branch points from pyruvate node, and amino 
acid biosynthetic pathways generating from the precursor metabolite pyruvate. (B) A network 
diagram depicting branch points from TCA cycle and amino acid biosynthetic pathways 
generating from the precursor metabolites of TCA cycle. (C) Expression profile of DE genes 
of pyruvate node, TCA cycle and amino acid biosynthetic pathways, were obtained by 
comparing Δcrp vs WT and EvoCrp vs Δcrp. Expression values are obtained from average of 
two biological replicates expressed as log2 FC. (D) Metabolite levels perturbed at the pyruvate 
node, TCA cycle and, acid biosynthetic pathways, were obtained by comparing Δcrp vs WT 
and EvoCrp vs Δcrp. Metabolite levels are obtained from average of three biological and two 
technical replicates expressed as log2 FC of height ratio/gDCW.    

 

pattern seen in PLS-DA scores plot. Despite the restoration of protein biosynthesis machinery, 

the accumulation of these amino acids in EvoCrp was suggestive of the reallocation of ATP 

concordant with a reduction in unnecessary cAMP synthesis.  

 

Gene expression analysis of electron transport chain coupled to ATP synthesis 

We assessed whether the reallocation of ATP was subjected to any changes in its synthesis 

genes. Hence, we investigated at the transcriptomic level any significant changes in the 

expression levels of the genes of the electron transport chain of E. coli that is responsible for 

the transfer of electrons to oxygen coupled to the generation of ATP (fig. 7A and 7C). We 

observed the downregulation of cyoABCDE genes (aFC~2) and the upregulation of appABC  
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Figure 7. Gene expression data of oxidative phosphorylation and transhydrogenase genes. 

(A) A network diagram depicting the ETC and (B) the membrane bound transhydrogenases. 
(C) Expression profile of DE genes of ETC and the transhydrogenase genes, obtained by 
comparing Δcrp vs WT and EvoCrp vs Δcrp. Expression values are obtained from average of 
two biological replicates expressed as log2 FC. 
 

genes (aFC ~4.5) in Δcrp compared to the WT. The cyoABCDE genes are induced by high 

levels of oxygen and encode for the terminal oxidase cytochrome bo, the major route for 

oxygen channelling in aerobic respiratory conditions (Cotter and Gunsalus, 1992). On the 

contrary, appABC genes code for the terminal oxidase cytochrome bd and are expressed under 

low oxygenation levels (Atlungl and Brndsted, 1994). This reiterated the role of CRP in the 

proper utilization of oxygen coupled to changes in the TCA cycle (Nam et al., 2005; Zheng et 

al., 2004). In contrast, in EvoCrp compared to Δcrp, we observed restoration in these gene 

expression profiles. Additionally, the genes of ATP synthase complex, atpABCDEFGH, that 

are responsible for the synthesis of ATP (Neidhardt et al., 1991), were downregulated in the 

Δcrp compared to the WT. However, in EvoCrp strains relative to Δcrp, we observed an 

upregulation that indicated restoration of the ATP synthesis machinery. 
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 Apart from ETC genes, we observed restoration in gene expression of membrane-bound 

transhydrogenase pntAB (fig. 7B and 7C), which was in agreement with the rapid growth 

recovery of EvoCrp strains. Previously, pntAB has been suggested to be necessary for anabolic 

NADPH formation whose expression profile levels have a strong correlation with the growth 

rate of the organism (Haverkorn van Rijsewijk et al., 2016; Sauer et al., 2004). To summarize, 

EvoCrp strains show restoration of oxidative phosphorylation and transhydrogenase expression 

profiles that are necessary for proper oxygen utilization and to balance the ATP and NADPH 

demand for anabolic processes to support enhanced growth. 

  

Model-based prediction of proteome allocation  

An inherent property of E. coli is to tightly coordinate the metabolism and protein economy in 

the cell towards an optimal resource allocation favouring growth fitness (Erickson et al., 2017; 

Scott et al., 2010). In the light of observations from gene expression and metabolites, we sought 

to obtain insights into how necessary and unnecessary metabolic proteome are affected, which 

directly associates with the shifts in growth fitness. Towards this, we recalled a genome-scale 

ME-model (for Metabolism and Expression) that accounts for 80% of E. coli proteome 

(LaCroix et al., 2015; Lloyd et al., 2018; O’Brien et al., 2013; Utrilla et al., 2016), to assess 

how deletion of CRP affects the proteome allocation in the organism. The model was used to 

predict protein encoding genes that serves to explain the trade-offs in proteome allocation. The 

model predicted genes along with transcript per million (TPM) calculations were employed to 

depict the “utilized ME” (uME) and “non-utilized ME” (nonME) proteome fractions specific 

to aerobic glucose metabolism in E. coli K-12 MG1655 (supplementary file 1). We observed a 

reduction in uME fraction and an increase in nonME (glyoxylate shunt, osmotic stress-induced, 

and amino acid degradation genes) fraction in the Δcrp strain indicating a reduction in genes 

aligning with growth fitness and increase in genes related to hedging mechanisms respectively 

(supplementary fig. S17). Intuitively, our data revealed upregulation in uME fraction and 

downregulation in nonME fraction in EvoCrp strains to enhance their growth fitness. Also, a 

lower fraction of TCA cycle genes and secondary glucose transporters (man and mal genes) 

were found to be consistent across all the EvoCrp strains, to mitigate the unnecessary proteome 

cost towards their synthesis. Thus, as an adaptive strategy to recover growth, the EvoCrp strains 

redirected the protein economy towards necessary processes. Overall, changes in metabolic 

and unnecessary metabolic proteome towards biomass synthesis, the proteome allocation 

outline such trade-offs fundamental for balanced exponential growth (Scott et al., 2010). 
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Physiological characterization agrees with the underlying molecular mechanism that 

defines growth 

To evaluate how the changes in the transcriptome and the metabolome has directly impacted 

the phenotype of the organism, we characterized the growth rate, glucose uptake rate (GUR), 

acetate production rate (APR), oxygen uptake rate (OUR), and biomass yield (supplementary 

table S3). We observed a marked reduction in growth rate (~57%) in Δcrp strain compared to 

WT (fig. 8A). The GUR and OUR in Δcrp were both significantly reduced by ~56%, compared 

to the WT (P < 0.05, Student’s t-test) (fig. 8B and 8C), which can be attributed to the reduction 

in gene expression of ptsG and oxidative phosphorylation, respectively. Similar trends were 

also observed in APR as well, despite no changes in its gene expression (fig. 8D). Conversely, 

we observed increase in growth rate (112%, P < 0.05; fig. 8A) as well as GUR (~130%, P < 

0.05; fig. 8B) and APR (~115%, P < 0.0 5; fig. 8D) in all EvoCrp strains compared to the ∆crp. 

This is in contrast to the previous study wherein, deletion of CRP in the ancestral strains did 

not cause any significant decrease in the glucose uptake rate and, ptsG gene gained CRP 

dependence only over time in their evolution experiment (Lamrabet et al., 2019). The OUR in 

EvoCrp showed variability in its increase compared to Δcrp ranging from ~99% to ~155% (fig. 

8C). Further, we calculated the pairwise correlation of growth rate with GUR (Pearson 

correlation coefficient, r = 0.96, P < 10-3) and growth rate with OUR (Pearson correlation 

coefficient, r = 0.92). The strong correlation between them indicated that lowered GUR and 

lowered OUR might have resulted in an overall reduction of growth rate in the Δcrp strain 

(supplementary fig. S18A-S18B). In summary, our data suggested that all the parallel 

populations converged to phenotypes similar to WT at the end of ALE within ~100 generations. 

The biomass yield for each of the strains was determined by normalizing the growth rates with 

their specific glucose uptake rates. While the WT and ∆crp strains showed similar biomass 

yields (0.41-0.42 gDCW/gGlucose), there was a consistent decrease in the biomass yield 

(~0.37 gDCW/gGlucose) of EvoCrp strains that highlighted their inefficiency in optimally 

directing the carbon towards biomass (fig. 8E). Correlation of the measured biomass yield and 

growth rate (Pearson correlation coefficient, r = -0.87, P < 0.05, EvoCrp and ∆crp) showed the 

divergence of evolved strains away from ∆crp and WT (supplementary fig. S18C). Since 

changes in biomass yields can be a consequence of alterations in ATP maintenance (Pirt, 1982; 

Utrilla et al., 2016) (ATPM, i.e., ATP used for processes other than growth and protein 

synthesis), we predicted ATPM yields for each of the strains. The EvoCrp strains had a 

significantly higher ATPM compared to the WT as well as Δcrp, which was in agreement with  
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Figure 8. Phenomic studies of the strains. Bar-plot depicting the (A) growth rates, (B) 
glucose uptake rates (GUR), and (C) oxygen uptake rates (OUR), (D) acetate production rates 
(APR), and (E) biomass yields of the WT, Δcrp and the EvoCrp strains. The error bars represent 
an average of growth rates obtained from three biological replicates. The error bars indicate the 
standard error across the replicates. Significance of decrease in Δcrp vs WT is shown by 
asterisk whereas significance of increase in EvoCrp vs Δcrp is shown by caret (P < 0.05, 
Student’s t-test).  

 

the accumulation of costly amino acids (supplementary fig. S18D). This phenomenon of 

lowered efficiency of carbon substrate allocation towards growth reinforced the rate-yield 

trade-off mechanism prevalent in ALE-adapted strains (Cheng et al., 2019). 

Discussion 

Adaptive mechanisms overarching genetic and metabolic regulatory networks are fundamental 

in conferring fitness advantages to strains when evolved in response to perturbations in its 

internal or external environments (Dragosits et al., 2013; Rodŕiguez-Verdugo et al., 2016; 

Sandberg et al., 2014; Utrilla et al., 2016; Zorraquino et al., 2017). In this study, we elucidated 

the pleiotropic changes due to the mutations in the ptsG promoter that enables the rapid growth 

of the strains when evolved in the absence of CRP. Specifically, we report restoration of precise 
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functioning of protein biosynthesis machinery coupled with finely tuned proteome allocation 

and metabolic rewiring of ATP towards the synthesis of costly amino acids away from the 

wasteful cAMP synthesis in addition to enhanced rates of glucose uptake and related 

physiological traits, that overall results in growth fitness.  

During evolution, mutations occurred predominantly in the ptsG promoter that generated 

additional “Pribnow-box” like sequences to enhance the affinity of RNA polymerase sigma 70 

towards ptsG gene. Indeed, the lack of interplay of other regulators seen from in vivo binding 

studies and RNA polymerase sigma factor reallocation seen from transcriptome analysis 

supports this basis.  Notably, the mutations resulted in increased ptsG gene expression and 

thereby glucose uptake, emphasizing the role of ptsG promoter mutations in resolving the 

bottleneck caused by loss of CRP. Such a phenomenon was also observed in a previous study, 

thereby implying genetic parallelism across different E. coli sub-strains (Lamrabet et al., 2019). 

Despite such similarities, the difference in regulatory control of CRP on ptsG gene and the 

profound differences observed in genomic and phenomic states concurs with the genetic 

background of the parent strains. The secondary glucose transporters, known to function in 

limiting glucose or pH altered conditions (Steinsiek and Bettenbrock, 2012), did not harbour 

any mutations per se, which might be attributed to serial passaging in the mid-exponential 

phase and constant pH during ALE. Thus, we corroborate with previous studies (Deutscher et 

al., 2006; Postma et al., 1993) that ptsG is the sole major transporter of glucose in E. coli K-12 

MG1655 during its exponential growth.  

We also elucidate here the molecular events underlying impaired growth caused by the deletion 

of CRP that delineates the coordination between the global regulator and several growth-rate 

dependent factors (RNA polymerase, ribosome, and metabolites) (Berthoumieux et al., 2013; 

Klumpp et al., 2009).  We report that the deletion of CRP caused a significant decrease in the 

glucose and oxygen uptake rates, which correlated strongly with the decreased growth rate. We 

additionally emphasized the indirect effects of CRP deletion on protein biosynthesis 

machinery, as evidenced by their metabolic and ribosomal gene expression profiles as well as 

the accumulation of proteinogenic amino acids that were not being utilized for protein biomass. 

Recent studies have reported tight coordination of ribosomal protein expression with the 

growth rate of the organism (Scott et al., 2014, 2010). Biosynthesis of ribosomes required for 

protein translation involves huge proteome investment (Scott et al., 2010; Zhu and Dai, 2019). 

For slow-growing cells in stressed environmental conditions, the organism produces more 

ribosomes to hedge for unfavourable conditions (Zhu and Dai, 2019). This, in turn, limits the 
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ribosomes available for synthesis for metabolic proteins manifested as an increase in 

unnecessary ribosomal proteins and a reduction in translational efficiency thereof (Dai et al., 

2018).  

Concurrently, our predicted system-wide proteome fraction of Δcrp mutant demonstrated a 

wasteful allocation of proteome towards stress or hedging functions. Evolved strains 

rebalanced the proteome by increasing the growth-promoting proteome fraction and by 

mitigating the proteome cost associated with the synthesis of expensive proteins, such as 

enzymes of the TCA cycle. However, to meet the energetic demands of the faster-growing 

strains, we suggest that the TCA cycle enzymes might have gained a higher in-vivo maximal 

rate observed from higher levels of TCA cycle intermediates, a phenomenon predicted to be 

occurring in adaptive evolution (O’Brien et al., 2016). In addition to lowered proteome 

fractions of secondary glucose transporters in the evolved strains, our findings emphasized the 

fine-tuning of the proteome allocation in response to its metabolic demands. 

It is well known that growing cells maintain an optimal cAMP level necessary for proper 

carbon sensing (You et al., 2013) and hence ATP optimization. We observed a high 

accumulation of cAMP in the absence of sequestration by CRP. On the contrary, evolved 

strains show restoration of their cAMP level though inefficiently, thereby partially alleviating 

ATP wastage. We speculate that this surplus ATP pool conserved from reduced cAMP 

synthesis was invested towards the synthesis of costly proteinogenic amino acids that were 

found to accumulate in the evolved strains. This might be partially responsible for the higher 

ATPM yield resulting in an overall reduction in the biomass yields observed in the evolved 

strains. It should be noted that such accumulation in evolved strains can also be ascribable to 

protein degradation which is energetically expensive (Jozefczuk et al. 2010; Barupal et al. 

2013). Nevertheless, such inefficiencies involving subpar utilization of carbon towards 

biomass in the evolved populations limit their ability to grow as energetically optimal as the 

wild-type. Such inefficiencies involving subpar utilization of carbon towards biomass in the 

evolved populations limit their ability to grow as energetically optimal as the wild-type. 

Overall, we observed that Δcrp efficiently allocated carbon but not proteome towards biomass 

synthesis, whereas, the evolved strains were able to efficiently allocate only the proteome 

towards biomass synthesis. 

In summary, we have elucidated in detail the system-wide pleiotropic effects manifested due 

to the mutations in the promoter of ptsG gene. The current ALE study using multi-omics has 
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revealed mechanistic insights into the inherent systemic constraints that facilitate the final 

phenotypic response in conjunction with the selected mutations in the evolved strains to 

overcome the defects due to loss of global regulator. We observed that growth fitness in the 

adaptively evolved strains in comparison to its parent Δcrp is enhanced due to modulation of 

the metabolic and ribosomal gene expression along with alterations of several central carbon 

metabolites namely PEP, α-ketoacids, cAMP, and proteinogenic amino acids that facilitate 

precise coordination of protein biosynthesis machinery with metabolism. Further, we revealed 

that the evolved strains possessed finely tuned proteome allocation that favour growth over 

uneconomical hedging strategies and mitigation of costly proteome fractions. Our findings 

based on proteome allocation in parent and evolved strains bear striking similarities with 

proteome sector changes, that represent a corollary to resource allocation defined by growth 

laws (Scott et al., 2014, 2010). Future studies characterizing the genotype-to-phenotype 

relationship using a multi-omics approach would expedite our understanding of microbial 

evolution across diverse conditions. 

Materials and Methods 

Strains  

An E. coli K-12 MG1655 (CGSC#6300), was used as the parent strain in this study and all the 

other strains used in this study were derived from this strain (supplementary table S1). We 

constructed Δcrp knockout in this genetic background by 𝝺-Red mediated recombination 

(Datsenko and Wanner, 2000), using plasmids pKD46, pKD13, and pCP20. After strain 

verification, glycerol stocks were made and stored at -80°C.  

Physiological characterization in a bioreactor 

For transcriptome, metabolome and phenotype characterizations, cells were grown in 500 mL 

bioreactor (Applikon) (planktonic state, batch culture) containing 200 mL M9 media (6 g/L 

anhydrous Na2HPO4, 3 g/L KH2PO4, 1g/L NH4Cl, 0.5 g/L NaCl + 2 mM MgSO4 + 0.1 mM 

CaCl2), with 2g/L glucose and 40 mM MOPS. Briefly, cells from glycerol stocks were plated 

out on LB agar plate and a single colony was inoculated in LB media. A fixed volume of 100 

µL cells was used to inoculate 50 mL preculture M9 +40 mM MOPS media with 4 g/L glucose 

which was grown overnight in a shake flask at 200 rpm in a 37°C (Eppendorf) incubator. The 

preculture cells, while still in exponential phase, were centrifuged and washed with M9, and 

inoculated in a bioreactor containing 200 mL M9 media with 2g/L glucose such that the start 
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OD of all the cultures were ~ 0.05 OD. The temperature of the bioreactor was maintained at 

37°C and the pH of the media was maintained at pH 7.2 using 40 mM MOPS buffer to prevent 

the effects of pH change on growth. Aeration was done by sparging air in the bioreactor at 700 

mL/min and at all times the dissolved oxygen (DO) levels were maintained above 40% 

saturation using mass flow controllers (MFC). Growth was monitored by collecting samples at 

regular intervals and measuring the optical density (OD) at 600 nm in a spectrophotometer 

(Thermo Multiskan GO) until the organism reached its stationary phase. The growth rate was 

calculated from the slope of the linear regression line fit to ln(OD600) vs. time (in hrs) plot in 

the exponential phase. The dry cell weight (DCW) was determined from the O.D.600 values 

by using the experimentally derived relationship that 1.0 O.D.600 corresponds to 0.44 

gDCW*h-1. The phenotypic characterizations were done for three biological replicates (n = 3) 

across the exponential phase. The transcriptome and metabolomics characterizations were 

performed in the mid-exponential phase (0.6-0.7 OD).  Samples were also collected during 

regular intervals to determine the rate of glucose uptake as well as the rate of secretion of 

extracellular metabolites. The samples were centrifuged and the supernatant was collected 

which was then used to determine the concentrations and rates using HPLC (Agilent 1200 

Series) equipped with Bio-Rad Aminex HPX-87H ion exclusion column with 5mM H2SO4 as 

the mobile phase. The column was maintained at a temperature of 50°C and the flow rate at 0.6 

mL/min. The specific rates were calculated from the change in substrate concentration over 

time, normalized to the biomass of each strain (Sauer et al., 1999). The biomass yield for each 

of the strains was determined by normalizing with their specific glucose uptake rate 

(gDCW/gGlucose). Oxygen uptake rate was measured using a dissolved oxygen probe 

(Applikon) while growing the cultures in the bioreactor during its exponential phase. All 

physiological measurements were checked for statistical significance using unpaired two-tailed 

Student’s t-test.  

Adaptive Laboratory Evolution Protocol 

Adaptive evolution of replicate populations of Δcrp was carried out in shake flasks (planktonic 

state, batch culture) with M9 minimal media with 2g/L glucose and 40 mM MOPS at 37°C. 

MOPS was added to maintain the populations at a constant pH during evolution (supplementary 

fig. S2). All the replicate cultures were passaged serially into fresh media strictly in the mid-

exponential phase to ensure that fitness gains occur primarily via increased growth rates. This 

also prevents the cultures from entering the stationary phase where glucose-limited and thereby 

avoids complexities associated with the onset of the stationary phase. As the growth rate of the 
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organism changed during evolution, the volume of culture passaged was adjusted to prevent 

entry into the stationary phase. Glycerol stocks were made during each passage and PCR 

verified for any cross-contamination. This procedure was followed for 10 days (approximately 

100 generations) and after it had reached a stable growth and no further increase in growth rate 

was observed, ALE was terminated. Genotype and phenotype characterizations of the evolved 

replicates were done for the population and not for individual clonal samples to ensure that all 

the traits of the population are taken into consideration. Characterization at the population level 

is a more efficient and feasible approach to understand the underlying mechanisms of evolution 

in an unbiased manner as it better reflects the properties of the population as a whole 

(McCloskey et al., 2018b). 

Whole Genome Resequencing (WGS) 

Genomic DNA from all the endpoint populations was extracted using GenElute Bacterial 

Genomic DNA Kit (NA2120; Sigma-Aldrich, St. Louis, MO) using the manufacturer’s 

protocol. The integrity of the extracted genomic DNA was analyzed by running it on an agarose 

gel and the quality was assessed and quantified using Multiskan GO (Thermo Scientific). The 

genomic DNA library was prepared using Illumina TruSeq DNA Nano Kit. The quality of the 

libraries was checked using Agilent Bioanalyzer. The libraries were then sequenced from both 

ends (paired-end) on Illumina HiSeq250 platform with  

2 X 100 cycles. All the samples had an average of 275X mapped coverage. 

The raw reads obtained from the sequencer were trimmed using CUTADAPT to remove 

TruSeq adapter sequences. The breseq pipeline (Deatherage and Barrick, 2014) was used to 

identify the point mutations (SNPs), insertions, and deletions mapped to E. coli genome K-12 

MG1655 (GenBank accession no. NC_000913.3). Breseq was run using the -p option (for 

population samples) with default parameters to identify mutations present in only a subset of 

the population at a frequency of less than 100%. Mutations that had 100% frequency were 

assumed to be parental mutations and were not considered. Only the mutations predicted with 

high confidence under the category “predicted mutations” were further analyzed in this study.  

Mutation Validation 

To determine the causality of the mutations detected by WGS, the mutations were introduced 

into the Δcrp background using in vivo site-directed mutagenesis (Kim et al., 2014). However, 

to limit the scale of this study and given the consistent occurrence of mutations in the Fis 

binding region, only the IG116 mutation (SNPs) detected in the promoter of ptsG gene in the 
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EvoCrp1 strain was selected for validation. Additionally, IG116 mutation was also investigated 

for Mlc binding. To construct the strains, scarless editing of the E. coli K-12 MG1655 Δcrp 

genome was done using a two-step recombination method using pSLTS plasmid (Addgene 

plasmid #59386). The primers used in this method are given in Supplementary Table S2. After 

the construction of the strains, they were sequenced to verify the correct introduction of the 

SNPs in the genome. This strain was further used to add 3X FLAG-tag to Fis protein or Mlc 

protein as described in the section below. 

ChIP qPCR 

A 3X FLAG-tag was added to the C-terminus of the Fis or Mlc protein using pSUB11 plasmid 

(Uzzau et al., 2001) as the amplification template. The primers used for amplification for 

tagging are given in Supplementary Table S2. The amplified construct was then introduced 

into E. coli K-12 MG1655 WT, Δcrp and IG116-Δcrp strain. The constructed strains were 

verified by PCR and Sanger sequencing. ChIP experiment was carried out using the protocol 

as described previously (Kahramanoglou et al., 2011). The DNA samples immune-precipitated 

by this method were recovered by PCR purification and were quantified by qPCR using primers 

for the specific as well as non-specific region (frr). Fold change in IP-ed DNA compared to 

mock DNA was calculated as 2−ΔΔCt as described previously (Mukhopadhyay et al., 2008). 

RNA extraction and enrichment of mRNA 

For each sample/strain, RNA extraction of two biological replicates was performed. The cells 

were grown till the mid-exponential phase and then 50 mL cells were harvested by 

centrifugation. RNA extraction was done using the TRIzol-chloroform method as previously 

described (Rio et al., 2010; Srinivasan et al., 2015). DNase treatment was done to remove any 

DNA contamination after which enrichment for mRNA was done using the MicrobExpress Kit 

following the manufacturer’s protocol. Single-end, strand-specific libraries for RNA 

sequencing were prepared using NEBNext Ultra II Directional RNA library kit. The quantity 

of the mRNA was assessed using Multiscan GO (Thermo Scientific) Nanodrop and the quality, 

as well as integrity, was checked using BioAnalyzer. The sequencing was carried out on HiSeq 

2500 Rapid Run Mode using a 1x50 bp format. 

Transcriptome data analysis 

The raw files were first trimmed using CUTADAPT to remove adapter sequences and low-

quality reads. The reads were then mapped to the E. coli genome K-12 MG1655 (GenBank 
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accession no. NC_000913.3) using BWA (Li and Durbin, 2009). The sam file generated was 

then converted to compressed bam format using Samtools (Li et al., 2009). FeatureCounts 

(Liao et al., 2014) was used to assign counts at the gene level using the reference genome 

provided in the GTF format.  Ecocyc database (Keseler et al., 2017) (version 21.5) was used to 

retrieve the annotations for 4662 genes. Differential gene expression (DGE) was analyzed from 

the raw counts by EdgeR (Robinson et al., 2009)  after removing genes having less than 10 

reads. The genes that showed ≥ 2-fold change in expression (in both directions) and had 

adjusted P < 0.05 (Benjamini-Hochberg) were considered for further analysis. The DEGs were 

enriched for metabolic pathways using KEGG pathway classification (Minoru Kanehisa and 

Susumu Goto, 2016) as defined in Proteomaps (www.proteomaps.net). The mapped genes 

were represented as Voronoi treemaps (version 2.0) (Liebermeister et al., 2014). The 

significance of the upregulated and downregulated genes within each category was validated 

using a hypergeometric test with P-value correction using Benjamini Hochberg in R (R Core 

Team 2019). For each up/down regulated category, we arbitrarily choose atleast five DE genes 

enriched to be considered for significance analysis. Those DE genes which do not have an 

assigned “Accession ID” (Ecocyc Version 21.5) such as phantom genes were excluded from 

the above analysis. 

For sigma factor enrichment analysis, the DE genes enriched by KEGG pathway classification 

were further enriched based on regulators using data available in EcoCyc and Regulon DB 

(Santos-Zavaleta et al., 2019). The upregulated and downregulated genes belonging to each 

regulator were then validated using a hypergeometric test in R (P-value < 0.05). Only those 

sigma factors which regulated atleast 10% of the KEGG enriched upregulated and 

downregulated DE genes, were retained for this over-representation analysis. Pearson 

correlation of log2 fold changes of EvoCrp vs WT and Δcrp vs WT and statistical significance 

were performed in R (R Core Team 2019). 

Metabolomics 

1. Chemicals for metabolomics  

LC-MS grade methanol, acetonitrile, and ammonium hydroxide (≥ 25% in water) were 

purchased from Honeywell. Analytical grade chloroform, HPLC-grade water, and LC-MS 

grade ammonium acetate were purchased from Sigma. All metabolites used as external 

standards were purchased from Sigma.  Uniformly labelled U-13C (> 99% purity) glucose was 

purchased from Cambridge Isotope Laboratories.  
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2. Extraction of metabolites  

Metabolite samples were harvested in the mid-exponential phase in biological triplicates and 

technical duplicates. A Fast-Cooling method (Fu et al., 2015; Hollinshead et al., 2016)  was 

used to quench the harvested cells as reported previously. Briefly, ~10 mL culture (~ 6-7 OD 

cells) was directly poured into 2 mL chilled (4°C) M9 (without glucose) in a 50 mL falcon tube. 

The tube was then dipped in liquid nitrogen for 10 secs to bring down the sample temperature 

to 0°C. To prevent the formation of ice crystals, the sample was vigorously agitated with the 

help of a digital thermometer. Samples were then immediately centrifuged at 0°C, 7800 rpm 

for 5 min. The supernatant was discarded and the pellet was snap-frozen in liquid nitrogen and 

stored at -80°C until metabolite extraction was done.  

For extraction of metabolites, the sample pellet was dissolved in 700 µL chilled (-80oC) 

methanol: 300 µL chilled (-20°C) chloroform (Hollinshead et al., 2016), followed by snap 

freezing in liquid nitrogen and homogenization using a hand-held pestle (Sigma #Z359971) all 

within 2 min. 13C-labelled extracts as internal standards were generated for quantification of 

key metabolite pool sizes using an isotope-based dilution method (Wu et al., 2005). The 

samples were spiked at the earliest stage of extraction with a fixed volume of internal standard 

taken from the same batch. The sample tubes were then placed overnight on a Thermo-shaker 

maintained at 0°C and 400 rpm. To the sample tubes, 500 µL of 2% ammonium hydroxide 

(4°C) prepared in HPLC-grade water was added and incubated on ice for 10 min to enable 

phase separation. The tubes were then centrifuged at 4°C, 13000 rpm for 15 min and the 

aqueous layer was collected in a chilled  

1.5 mL tube. The samples were then completely dried in a vacuum concentrator and stored at  

-80°C. Before analysis in LC-MS/MS, samples were reconstituted in 100 µL chilled (-20°C) 

acetonitrile: buffered water (60:40, v/v), centrifuged at 4°C for 10 min, and the supernatant was 

transferred to pre-chilled glass vials. Buffered water consisted of 10 mM ammonium acetate, 

pH 9.23 adjusted with ammonium hydroxide prepared in HPLC- grade water (Teleki et al., 

2015). The volume of the pooled internal standard was standardized such that the external 

standard and internal standard peak height differed less than 5-fold (Bennett et al., 2009). 

Metabolites were extracted from three biological and two technical replicates (n = 6). 

3. LC-MS/MS settings 

The samples were analyzed using a high-resolution mass spectrometer in Orbitrap Q Exactive 

Plus (Thermo) equipped with a SeQuant ZIC-pHILIC column (150 mm x 2.1 mm x 5-micron 
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packing, Merck) and a ZIC-pHILIC guard column (20 mm x 2.1 mm x 5-micron packing, 

Merck) under alkaline mobile phase conditions with ESI ion source. The ESI was operated in 

positive (M+H)+ and negative (M-H)- polarity switching mode. The spray voltage was set at 

4.2 kV and 3.5 kV for the positive and negative modes respectively. The temperature was 

maintained at 300°C and 320°C for the ion transfer capillary and probe heater respectively. A 

heated electrospray ionization probe II (H-ESI-II) probe was used with the following tune 

parameters: sheath gas, 29; auxiliary gas, 7; sweep gas, 0; S-lens at 45 arbitrary units.  A full 

scan range of 66.7 to 1000 m/z was applied for positive as well as negative modes and the 

spectrum data type was set to profile mode. The automatic gain control (AGC) target was set 

at 1e6 with a resolution of 70,000 at 200 m/z. Before analysis, cleaning of the LC-MS system 

and ion transfer capillary (ITC) along with mass calibration was done for both positive and 

negative ESI polarities by using Thermo Calmix solution along with MS contaminants to take 

into account lower mass ranges. The signals of compounds 83.06037 m/z (2 x ACN+H) and 

119.03498 m/z (2 x Acetate-H) were selected as lock masses for positive and negative mode 

respectively with lock mass tolerance of 5 ppm (Zhang et al., 2014).  

The mobile phase for chromatographic separation comprised of non-polar phase A 

(acetonitrile: water mixed in the ratio 9:1, 10 mM ammonium acetate, pH 9.23 using 

ammonium hydroxide) and polar phase B (acetonitrile: water mixed in the ratio 1:9, 10 mM 

ammonium acetate, pH 9.23 ammonium hydroxide). A linear gradient with flow rate of 200 

µL/min was set as follows: 0-1 min: 0% B, 1- 32 min: 77.5% B, 32- 36 min: 77.5% B to 100% 

B, 36-40 min: hold at 100% B, 40-50 min: 100% B to 0% B, 50-65 min: re-equilibration with 

0% B (Teleki et al., 2015). An injection volume of 5 μL was used for all the samples and 

standards.  

4. Metabolomics data analysis 

The data from the machine was processed using the software package Xcalibur 4.3 (Thermo 

Fisher Scientific) Quan Browser. A semi-quantitative analysis was performed using peak 

heights of precursor ions with signal/noise (S/N) ratio more than 3, a retention time window of 

less than 60 secs, and less than 5 ppm mass error. The peak heights of the samples were 

normalized to the peak height of the internal standards to obtain a height ratio. Only those 

metabolites were retained for analysis, which had naturally occurring 12C peak height less than 

~10% of the 13C-labelled peak height in the internal standard. MetaboAnalyst (Xia et al., 2009) 

was used for identifying statistically significant metabolites and for Partial Least Square 
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Discriminant Analysis (PLS-DA) on biomass normalized and g-log transformed metabolite 

concentrations. Missing value imputation was performed using SVD impute function. The 

concentration of metabolites is expressed as height ratio normalized to biomass (as height 

ratio/gDCW). Metabolite levels with false discovery rate (FDR) < 0.05 and ≥ 1.2-fold change 

in concentrations (in both directions) were considered for further analysis. For PLS-DA, out of 

the 40 metabolites, only those that were statistically significant in all the three conditions, i.e., 

Δcrp vs WT, EvoCrp vs Δcrp, and EvoCrp vs WT, were considered for analysis. In the 

heatmaps generated based on log2 fold change of metabolites, only those metabolites with FDR 

< 0.05 in atleast one condition were retained for comparative analysis (the same metabolite 

with FDR > 0.1 in other conditions were not considered).   

ME-model simulations 

The ME-model (Lloyd et al., 2018; O’Brien et al., 2013) was simulated to generate a gene list 

for analysis, by constraining the glucose uptake rates in a range as reported previously (LaCroix 

et al., 2015). Any gene predicted to be expressed in any of the 20 simulations was classified as 

“utilized ME”; genes within the scope of the ME-model but not expressed or having very low 

expression (low protein synthesis flux) are classified as “non-utilized ME”; Next, using the 

differentially expressed genes in atleast one condition (i.e., Δcrp vs WT, EvoCrp vs Δcrp and 

EvoCrp vs WT) were combined and enriched for utilized ME or non-utilized ME gene list 

followed by summing the transcriptome fractions of all utilized ME and non-utilized ME genes 

respectively. The transcriptome fraction was determined from the product of TPM (transcript 

per million) and gene length divided by the sum-product of these calculated over all the genes 

(Utrilla et al., 2016). TPM (Wagner et al., 2012) for all the 4662 genes were calculated using 

the raw counts (genes < 10 reads were not considered). As the proteome fractions were not 

measured experimentally, we assumed that the increase in these protein-coding transcriptome 

fraction corresponds to an increase in proteome fractions. Hence, utilized and non-utilized ME 

genes are metabolic genes corresponding to utilized and non-utilized metabolic proteome, 

respectively (supplementary file 1). 

Calculation of non-growth ATP maintenance (ATPM) 

The experimentally measured growth rates, glucose uptake, and acetate secretion rates were 

used as flux constraints in the iJO1366 metabolic model (Orth et al., 2011). Constrained-based 

flux balance analysis was performed using COBRApy (Ebrahim et al., 2013) by maximization 
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of ATP maintenance (ATPM) reaction flux. This predicted ATPM flux was normalized to 

glucose uptake flux to calculate the yield (gATP/gGlucose) for each of the strains. 
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