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Abstract— Here we present an approach to estimate the
global pose of a vehicle in the face of two distinct problems;
first, when using stereo visual odometry for relative motion
estimation, a lack of features at close range causes a bias in the
motion estimate. The other challenge is localizing in the global
coordinate frame using very infrequent GPS measurements.
Solving these problems we demonstrate a method to estimate
and correct for the bias in visual odometry and a sensor fusion
algorithm capable of exploiting sparse global measurements.
Our graph-based state estimation framework is capable of
inferring global orientation using a unified representation of
local and global measurements and recovers from inaccurate
initial estimates of the state, as intermittently available GPS
information may delay the observability of the entire state.
We also demonstrate a reduction of the complexity of the
problem to achieve real-time throughput. In our experiments,
we show in an outdoor dataset with distant features where
our bias corrected visual odometry solution makes a five-
fold improvement in the accuracy of the estimated translation
compared to a standard approach. For a traverse of 2km we
demonstrate the capabilities of our graph-based state estimation
approach to successfully infer global orientation with as few as
6 GPS measurements and with two-fold improvement in mean
position error using the corrected visual odometry.

I. INTRODUCTION

In this paper we study the problem of localizing a vehicle

in a global coordinate frame given two distinct challenges

found in outdoor environments. One challenge is the features

detected for a stereo visual odometry system can be at a

significant distance from the camera and introduce a bias

in the motion estimate. The other challenge we address is

maintaining a coherent and accurate global solution with

intermittent GPS coverage. We focus our experimental results

on a mapping application in riverine environments where

both problems can be found, but these issues are also

pertinent to other environments and applications.

We extend our prior results in river mapping with an

autonomous rotorcraft [1] and present new approaches to

improve accuracy and efficiency. Our application has tight

constraints on power consumption and weight, which have

significant implications on the sensor payload. We therefore

heavily rely on a light weight stereo camera for visual

odometry and fuse its motion estimates with readings from

MEMS inertial sensors and position data recorded with

a consumer grade GPS receiver. In earlier work [1], we
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employed a common approach to stereo visual odometry

with demonstrated accuracy in automotive applications [2].

We found that the algorithm performed well in preceding

experiments in urban environments, but it exhibited a signif-

icant bias for sequences recorded on a river. In this work,

we will show that riverine environments are characterized

by a distinctly different distribution of visual features and

that this lack of structure at close range results in a con-

sistent underestimation of the translation for the class of

visual odometry algorithms used in our experiments. We will

introduce an approach to estimating and correcting this bias

and demonstrate improvements of an approximate five-fold

reduction in the bias.

Besides suffering from impaired visual odometry, au-

tonomous aerial vehicles in riverine environment will also

have to cope with intermittent GPS availability caused by

tall vegetation along the banks that blocks satellite recep-

tion. Whenever available, global position estimates provide

valuable information to reduce drift in the pose estimation

and constraint the vehicle pose in a global coordinate frame.

We therefore define the following set of requirements for

our full 6 degrees of freedom (DoF) pose estimation

• consistently fuse the inputs of stereo visual odometry,

inertial measurements, and sparse GPS information into

a single pose estimate with real-time throughput

• have the ability to deal with significant changes of the

pose in the global coordinate frame defined by GPS and

avoid discontinuities in the vehicle path

These requirements have substantial implications on the

pose estimation. Having to avoid discontinuities in the path,

the pose estimation has to be able to adjust a history of poses.

The length of this history is determined by GPS availability,

as the pose estimation must include multiple measurements

to infer global orientation from GPS information. On the

other hand, demanding real-time throughput requires a con-

stant reduction of the problem to keep it computational

feasible.

In this paper, we describe a pose estimation method that

treats the problem as a graph-based non linear optimization.

It employs a unified representation of global and local

constraints and continuously reduce the complexity of the

problem.

We demonstrate the performance of the algorithm on

a challenging dataset captured in a riverine environment,

showing that by applying our bias correction to stereo visual

odometry and fusing it with inertial measurements and as

little as 6 GPS locations over a distance of about 2 km, we

can reconstruct a path that closely replicates the ground truth



recorded with a high accuracy GPS. Even by incorporating

so few GPS measurements into the optimization, we can still

estimate the global position and orientation of the path with

a mean error of 5m from truth. To our knowledge, no other

state of the art approach fuses GPS measurements at such

low rates, while estimating consistent paths with real-time

performance.

We first discuss related work in Sec. II, we present a

method to estimate and correct the bias in visual odometry

in Sec. III, describe our graph-based global state estimation

framework in Sec. IV and provide results and conclusions of

our work in Sec. V and Sec. VI.

II. RELATED WORK

Here we focus on the related work that has been done both

on stereo visual odometry and in the field of state estimation

from multiple sensor sources.

Visual odometry is a well established tool to estimate the

motion for vehicles both travelling on the ground [3], [4], [5],

[6], [7], [2] and aerial vehicles travelling near to ground [8].

Most experimental results presented along with the afore-

mentioned approaches were obtained in environments with

visual features in a short range. Distant features introduce

a bias in stereo triangulation [9], [10]. The bias is also

apparent in stereo visual odometry solutions and there have

been recent attempts to correct for the bias after executing a

trajectory with the use of GPS readings [7]. In this work, we

address the implications of this bias on visual odometry for

long range features and we present an approach to estimate

and correct the bias for each frame using visual information

alone.

State estimation with a focus on mapping is a well studied

problem in robotics. In the past, recursive filters have been

successfully demonstrated for a variety of applications (e.g.

[11], [12]). Recent research [13] suggests that recursive filter-

ing performs inferiorly compared to optimization approaches

for many applications. Furthermore, we expect the fusion of

sparsely available GPS information to result in large changes

in the state estimation, which makes repeated relinearizations

necessary. Our approach is similar to FrameSLAM [14] in

that it fuses inertial measurements with visual odometry, but

it consistently considers GPS readings in the state estimation

as well. A similar approach [15] integrates GPS readings

into the position estimation using an EKF, though it remains

unclear whether the approach can deal with sparse and seri-

ously impaired GPS reception. GraphSLAM [16] is capable

of fusing GPS measurements into the SLAM problem, but it

constitutes an offline solution to the problem not intended to

perform in real-time. Similarly, our general approach marks

a sub-class of problems that can be addressed with the

g2o framework [17], but it additionally incorporates a graph

reduction scheme comparable to [18] to keep the problem

computationally tractable. Furthermore, this work makes use

of the sparse Levenberg-Marquardt framework presented in

[19], which provides an interface to a similar set of efficient

sparse solvers as the g2o framework.
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Fig. 1. (a) A typical riverine environment overlaid with the spatial
distribution of matches and their temporal flow. The features are color
coded by their depth. Note the absence of any salient, static, visual features
in close proximity of the vehicle. (b) Simulation results for stereo visual
odometry with feature distributions resembling an urban and a riverine
environment. The black line indicates true motion, the blue solid line marks
the distribution of estimates from 50,000 random trials with a mean feature
distance of 5m, while the red solid line shows the distribution of estimates
for a mean feature distance of 30m. Dotted lines indicate the mean of the
distributions. The graph illustrates that features at long range create a bias in
visual odometry towards underestimating the motion. We fix the simulation
to match our experimental setup. Note that improved resolution, baseline
and pixel noise, would improve the underestimation problem. However, no
matter the parameters, there will be a feature configuration that creates a
biased estimate.

III. LONG RANGE VISUAL ODOMETRY

We employ a stereo visual odometry algorithm to give

accurate and consistent local motion estimates and provide a

solution to errors introduced by operating a visual odometry

system at a long range from the nearby environment.

Recent visual odometry systems [2], [4] report high ac-

curacy with errors less than 2% of distance travelled and

sometimes as low as a fraction of a percent [6]. However,

these high accuracy results all have one commonality which

is that the evaluation has been conducted in environments

where features are mostly at close range to the camera.

Fig. 1(a) shows the distribution of feature matches in a

riverine environment, where features are predominantly from

the shoreline and often at a significant range from the camera.

We find in our tests that the conventional approaches for



visual odometry do not only have low accuracy when the

features are at a long range from the camera, but also exhibit

a significant bias towards underestimating the motion. This

bias is depicted in Fig. 1(b), where visual odometry was

simulated for an experiment with features at close range

versus one with features at long range.

To understand the issue of stereo visual odometry at

long ranges, we study the core component common to all

approaches which is triangulating the set of 2D image feature

locations in the left image F l
[u,v] and right image Fr

[u,v] of the

stereo pair, into 3D coordinates F[x,y,z]:

d = F l
u −Fr

u (1)

Fz =
b f

d
(2)

Fx = Fz(F
l
u − cu)/ f (3)

Fy = Fz(F
l
v − cv)/ f (4)

where Fu and Fv is the horizontal and vertical image coor-

dinate of the feature, f is the focal length of the camera

in pixels and cu,cv is the center of projection. In the past

the error in triangulation was often modelled with a zero-

mean Gaussian distribution [20] but more recently it has been

established in the literature [9], [10] that the error is a non-

Gaussian distribution with a heavy tail, that introduces a bias

in the triangulation. The non-Gaussian distribution can be

verified in simulation with a Gaussian noise model, γ , on the

2D image feature locations F [u,v]. The bias in triangulation

becomes more pronounced with range of the features from

the camera, specifically this is when the noise in the extracted

feature locations, gamma, approaches the signal, the feature

disparity, d, from Eq. 1.

We find the bias in triangulation when placed in context

of visual odometry creates an underestimation of the motion

of camera. The issue has been discovered previously in [7]

and the authors present a method to estimate and correct

the bias after-the-fact using GPS readings. However, when

moving through an environment the feature configuration

changes dramatically and, hence the error changes rapidly

which means a single correction factor for the bias computed

after travelling a trajectory is not sufficient.

In this work we demonstrate how to estimate the bias in

visual odometry for each frame at the time of computing and

ideally without relying on GPS or other positioning sources.

The approach first takes the motion solution from a generic

stereo visual odometry algorithm. We believe any visual

odometry algorithm will suffer from the underestimation

issue, for our specific implementation we adopt the approach

of [2] that uses commonly deployed iterative minimization

on reprojection error to solve for the motion. We denote the

visual odometry algorithm, g(·), as a function of the features

extracted in the two stereo pairs of the current frame, i, and

previous frame, i−1:

[Ro, to] = g(F i−1,F i) (5)

the resulting rotation, Ro, and translation, to, solution has an

unknown bias, k, from the true motion [Rw, tw] as follows:

[Rw, tw] = [Ro,kto] (6)

To estimate the bias we generate a new solution [R̄, t̄] by

simulating a stereo camera at the pose of the initial solution,

[Ro, to], and projecting the triangulated 3D feature locations

from the previous stereo-pair, F i−1
[x,y,z]

, onto the simulated

camera plane, as 2D coordinates F̄ i
[u,v]:

F i
[x,y,z] =

(

RT
o F i−1

[x,y,z]−RT
o to

)

(7)

F̄ i
u = γ +

(

f F i
x/F i

z + cu

)

F̄ i
v = γ +

(

f F i
y/F i

z + cv

)

(8)

where RT
o is the transpose of the rotation matrix and γ is

the pixel noise which we inject as a random sample from

a Gaussian distribution which we fix at 0.5 pixel standard

deviation.

Using the features simulated on our second stereo pair, F̄ i,

and the features originally extracted in the first stereo pair,

F i−1, we compute a new motion estimate, [R̄, t̄], with:

[R̄, t̄] = g(F i−1, F̄ i) (9)

To derive a stable solution, we repeat the simulation

several times, by generating new random samples of γ and

generate a set of J motion solutions, from which we extract

the mean:

[R̄, t̄] =
J

∑
j=1

g(F i−1, F̄ i
j )

J
(10)

We then compute a bias estimate k̄ as the error between

the norm of the original and simulated translation estimate:

k̄ =
||to||

||t̄||
(11)

We apply the bias estimate to derive our corrected motion

estimate:

[Rc, tc] = [Ro, k̄to] (12)

Fig. 2. Diagram of the bias correction. The actual motion tw is under-
estimated by the visual odometry algorithm (to). We simulate a camera at
to using the same feature distribution as estimated in the stereo pair and
generate a new estimate t̄. We compute the bias k̄ between original and
simulated estimates, depicted by the curved red arrows. We assume the bias
at the initial solution is a good approximation of the actual bias and generate
a corrected motion estimate tc, represented by the green arrow.

Our corrected motion estimate appears to hold true subject

to two assumptions. First is that our pixel noise model

γ is accurate. Secondly, the bias in motion, k, can be

approximated by the bias at our original estimate [Ro, to], that

is to say the bias is locally smooth in the solution space. The

process is summarized in Fig. 2, where the red curved arrow
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Fig. 3. This sequence of figures depicts the procedure of reducing the dimension of a pose graph by the node s3. Fig. (a) shows a subsection of the
pose graph, where the nodes sM represent the vehicle pose at different time steps tk , while s0 marks a virtual zero pose. The poses are constrained by
measurements, modelled as edges in the graph. In Fig. (b), the sub-graph consisting of node s3 and all directly attached constraints is removed from
the graph. It is replaced by a single constraint resembling the same dependence, which depends on all nodes that have previously been connected the
marginalized node (see Fig. (c)). Section IV-B describes the operations involved in the marginalization of nodes in more detail.

represents the computed bias and the green arrow represents

the bias being applied to generate the corrected estimate.

Later in the results section we compare our corrected

estimate against the original output of a standard visual

odometry system [2].

IV. OPTIMAL POSE ESTIMATION WITH SPARSE GLOBAL

POSITION INFORMATION

Our approach to global pose estimation is closest to [18]

and [14] in the sense that it treats the problem as a non

linear optimization over a history of vehicle poses with

a graphical representation. The graph consists of a set of

nodes that represent past vehicle poses at discrete points

in time. Sensor measurements induce constraints on these

vehicle poses, which are modelled as edges that connect

the nodes of the graph. In general, the inputs to our pose

estimation can be classified into local measurements, that

induce edges between two successive nodes (e.g. stereo

visual odometry, relative orientation from gyroscopes), and

global measurements, which impose constraints on the pose

in a global coordinate frame (e.g. GPS readings, inclination

from accelerometers). By introducing a virtual zero node

at the origin of the coordinate system into the graph, both

classes of constraints can be treated in a unified way [21].

We make the assumption that we can model sensor mea-

surements xk as a function hk of the pose at exactly two points

in time s1(k) and s2(k) or the pose s2(k) and the fictitious

zero pose s0. Furthermore, we assume that measurement

noise can be modelled as a zero-mean Gaussian distributed

random variable ν .

xk = hk (s1(k),s2(k))+νk (13)

By minimizing the cost function

n

∑
k=1

(hk(s1(k),s2(k))− xk)
T

C−1 (hk(s1(k),s2(k))− xk) (14)

a set of vehicle poses can be determined, which is optimal

with respect to the previously stated assumptions. With

C−1 = QTQ, the optimization can be treated as a non linear

least square problem

n

∑
k=1

‖Q(hk(s1(k),s2(k))− xk)‖
2 (15)

The state S of the overall system is formed by concatenating

the individual pose information si, collected from the nodes

in the graph. Each constraint contributes fk(s1(k),s2(k)) =
Q(hk(s1(k),s2(k)) − xk) to the overall set of non linear

equations f(S). We employ a sparse Levenberg-Marquardt

library [19] to efficiently solve for the optimization problem.

A. Pose Parametrization and Sensor Models

The pose is parametrized as

s = [Ψ, t]T = [φ ,θ ,ψ, tx, ty, tz]
T

(16)

where Ψ = [φ ,θ ,ψ]T denotes Euler angles parametrizing the

orientation, and t = [tx, ty, tz]
T parametrizes the position in

a global coordinate frame. Note that there exist different

conventions for Euler angles, which expose different singu-

larities. We chose Euler angles for which the singularities

coincide with kinematically infeasible orientations of the

rotorcraft in normal operation.

Our current implementation uses the stereo visual odom-

etry presented in [2] and corrects for the bias according

to Sec. III to provide the 6 DoF motion that the camera

underwent in between taking two sets of stereo images along

with the uncertainty of the estimate. Nodes are added to the

graph when visual odometry is available, using its 6 DoF

transformation to obtain an initial estimate of the current

vehicle pose, while the optimization step is run only after a

few nodes have been added to the graph. With R(Ψ) denoting

the R
3 7→ R

3×3 mapping of Euler angles Ψ to a rotation

matrix, and R−1(A) denoting the inverse mapping from a

rotation matrix A to Euler angles, visual odometry constraints

are defined as

fvo(si,s j) = Qvo

(

T(si,s j)−

[

Ψvo

tvo

])

(17)

= Qvo

[

R−1(R(Ψi)
TR(Ψ j))−Ψvo

R(Ψi)
T(t j − ti)− tvo

]

(18)

where x = [Ψvo, tvo]
T denotes a transformation, measured by

visual odometry in the coordinate frame of si. The function

T(si,s j) transforms pose s j into the coordinate system of

pose si.

Gyroscope constraints are defined respectively on the

orientations of successive poses:

fgyro(si,s j) = Qgyro

[

R−1(R(Ψi)
TR(Ψ j))−Ψgyro

]

(19)

where Ψgyro is obtained from numerical integration of angu-

lar velocities as presented in [22]. For simplicity, we assume



that the coordinate frames of the stereo camera and inertial

measurement unit (IMU) coincide here. In the more general

case, an additional transformation must be included that

accounts for the difference in the coordinate frames of IMU

and camera [23].

GPS measurements induce constraints on the vehicle pose,

that can be expressed similarly by using the fictitious zero

pose s0

fgps(s0,s j) = Qgps

[

R(Ψ0)
T(t j − t0)− tgps

]

(20)

In order to constrain absolute orientation, we employ

accelerometers as inclinometers [14]. With g being the

gravity vector in the global coordinate frame, this constraint

is calculated as

fg(s0,s j) = Qg

[

R(Ψ j)
TR(Ψ0)g−a

]

(21)

where a denotes an accelerometer measurement and Qg a

weight matrix corresponding to a sufficiently large measure-

ment covariance to account for accelerations of the vehicle.

B. Graph Reduction

The requirement of real-time capability in terms of

throughput imposes strict constraints on the number of poses

that can be considered in the optimization. At the same time,

it should be possible to integrate multiple GPS measurements

into the optimization to exploit their implications on the

global orientation of the vehicle path. In order to address

these conflicting objectives, the pose estimation includes a

graph reduction scheme, similar to [18], [14], and is carried

out over a sliding-window of most recent nodes.

We apply the following steps in order to marginalize out a

node sM , a procedure which is depicted graphically in Fig. 3:

1) Select the sub-graph consisting of sM and all di-

rectly connected constraints and nodes. Let S =
[s0,s1, ..,sn,sM] denote the set of nodes in the sub-

graph, including the node sM , which is later marginal-

ized, and the zero pose s0. As inclinometer informa-

tion is available for every pose, the sub-graph always

includes the zero node. Optimize the sub-graph and

collect its overall state as well as the overall Jacobian

J = ∇F(S).
2) Calculate the approximated Hessian matrix of this

estimation as H = JTJ. Marginalize out the rows and

columns of H and S that correspond to node sM , using

the Schur complement [14]. With

H =

[

Hnn HnM

HT
nM HMM

]

(22)

where Hnn denotes the block of H that does not corre-

spond to any parameter of node sM , the marginalization

is performed as

H̃ = Hnn −HnMH−1
MMHT

nM (23)

The resulting matrix corresponds to the inverse covari-

ance matrix for the remaining poses in the coordinate

frame of s0.

3) Select a root node sr ∈ S \ {s0,sM}, remove the cor-

responding rows and columns from H̃ and S, and

obtain Ŝ and Ĥ by transforming the state S and

Hessian H̃ into the coordinate system of sr using

the transformation T(sr,si) introduced in Eq. 17 and

its Jacobians. Render constraints of the selected sub-

graph inactive, connect sr and sM through a fixed 6

DoF transformation T(sr,sM), and introduce a new

constraint with h(sr,s0, ..,sn) = [T(sr,s0), ..,T(sr,sn)]
T,

x = Ŝ and QTQ = Ĥ connecting the remaining nodes.

The pose estimation repeatedly marginalizes nodes and

rigidly connects the marginalized nodes to remaining active

nodes through a 6 DoF transformation. As the marginaliza-

tion of a node involves a linearization of the sub-system

connected to this node, the resulting reduced system is only

exact as long as the sub-system is moved rigidly. Otherwise,

linearization errors are introduced into the solution. The

implications of these errors are twofold: On the one hand,

they impose an upper bound on the number of consecutive

nodes that can be marginalized without a significant sacrifice

in accuracy, which we determined to be about 80 poses

for our experiments. On the other hand, we observed that

these linearization errors can introduce false constraints on

previously unconstrained DoF of the global orientation. For

sparse GPS measurements, even these small constraints may

result in a serious distortion of the path. In order to overcome

this problem, the transformation T(sr,s0) of any root node to

the zero node has been adapted to only impose constraints on

the observable parts of the state given the sensor data fused

into this edge of the graph. For improved stability, nodes

with attached GPS constraints are not marginalized.

V. RESULTS AND DISCUSSION

We evaluate results of our visual odometry work from

Section III and pose optimization algorithm presented in

Section IV on real world data collected from a river.

A. Experimental Setup

The dataset used in our experiments was captured on the

Allegheny river near Pittsburgh. A sensor suite consisting

of a stereo camera pair, an IMU and a consumer-grade L1

GPS was mounted on a tripod and was taken onto a narrow

section of the river on a pontoon boat. The boat travelled in a

loop of roughly 2 km overall length, which corresponded to

about 12 minutes of IMU and GPS measurements and almost

10,000 video frame pairs. In the course of our experiments,

we acquired ground truth using a high accuracy L1/L2

Trimble GPS system, with RTKLIB [24] post-processing.

We assume the L1/L2 system as too expensive and heavy

for the applications we focus on, and we use this just as

ground-truth. As input for our pose graph optimization we

used a MicroStrain 3DM-GX3-35 inertial measurement unit

with integrated L1 GPS, that measured angular velocities and

linear accelerations at 100 Hz.

A Point Grey Bumblebee2 stereo camera with an image

resolution of 1024 x 768 and 97◦ horizontal field of view,



provided the imagery to the visual odometry at a rate of 15

Hz.

B. Visual Odometry Results

We implement as a basis of our visual odometry work the

algorithm of [2] as a representation of a standard stereo visual

odometry approach, that uses RANSAC to remove outliers

and Levenberg-Marquardt to solve for motion. We estimate

the bias for each frame and correct to provide our motion

solution, Eq. 12.

Fig. 4 shows a comparison between the error experienced

by the algorithm from [2] and the corrected solution we gen-

erate frame by frame. The plots demonstrate that the standard

visual odometry underestimates the motion on average by

approximately 10%, and that our solution gives an improved

estimate at around 2% error. The variance of our estimate

scales accordingly.
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(b) Corrected Visual Odometry

Fig. 4. Mean and standard deviation of errors in stereo visual odometry
experienced over a 2km traverse on a river. The output of a standard stereo
visual odometry algorithm [2] compared against our corrected solution.
To generate this plot, we subdivided the path into segments of the sizes
indicated on the x axis and evaluated the displacement of the end position
of the accumulated visual odometry to ground truth recorded with a sophis-
ticated L1/L2 GPS system. The standard visual odometry underestimates the
motion on average by approximately 10%, while our correction improves
the underestimation to about only 2%. The variance scales according to our
correction.

C. Global Pose Optimization Results

Next we discuss the results of the global pose opti-

mization. We first quantitatively analyze the errors in the

optimization given a very sparse input of GPS data, at

a rate of one GPS measurement approximately every two

minutes. We compare the optimization both with the standard

visual odometry solution and with the corrected solution we

derive from Eq. 12 and present in the plot in Fig 5(a). The

plot illustrates that in-between the GPS measurements the

uncorrected visual odometry solution drifts up to 20m away

from the correct solution, and with a mean error of 10m.

The corrected solution on the other hand has less drift and

at no stage is the error larger than 10m and the mean error

is over two times smaller at 5m from ground truth.

Next we visually present the estimated trajectories overlaid

on satellite images, in Fig. 6. The figure depicts the recon-

structed vehicle path for different levels of GPS availability,
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Fig. 5. Visualization of the position error in the estimated poses over a
2km traverse on a river. In Fig. (a), we use a very sparse input of GPS with
6 readings input randomly over the 12 minutes traverse, at an approximate
rate of one every two minutes. The red line indicates the solution using
a typical visual odometry algorithm [2]. The green line depicts results for
the corrected visual odometry provided by Eq. 12. GPS readings used in
the pose estimation are indicated by grey vertical lines. Fig. (b) displays
the mean error of the global pose estimation using varying number of GPS
measurements. The mean error in absolute position was computed over all
poses and 10 iterations of the dataset, each iteration with randomly selected
GPS measurements. We observed a moderate growth in the error when
reducing the number of readings from 20 to 5 followed by a rapid growth
in error for less than 5 readings as the drift in visual odometry becomes
dominant.

overlaid onto an aerial image of the area. The black path

displays the ground truth for the motion, while red is the

uncorrected and green the corrected visual odometry. The

six black marks indicate the GPS readings used for the

global state estimation. With only six measurements over

2km traverse, the global position and orientation of the

path could be recovered with accuracy of mean of 5m. The

solution using the uncorrected visual odometry is biased

and most apparent at the turns in the trajectory where

the path is underestimated by approximately 20m, whereas

the corrected visual odometry solution replicates the path

accurately without a significant bias. The reduced graph of

this sequence of about 10k stereo frames contains 168 active

nodes and can be solved in about 300 milliseconds.

Finally in Fig. 5(b) we look at the effect on accuracy that

introducing varying amount of GPS measurements has on the

solution. As the number of GPS measurements is decreased

the error in the corrected visual odometry remains low at

6m with even as few as 5 readings over a 2km traverse.

The drift in visual odometry is too large to provide an

accurate solution with fewer than 5 readings and the error

grow dramatically with less GPS readings. By comparison

the solution with uncorrected visual odometry is consistently

less accurate from 20 GPS readings to a point where at 5

readings the error is twice as large, diverging from truth by

13m on average. With less than 5 readings both corrected

and uncorrected solutions diverge substantially from ground

truth, where sources of drift other than the underestimation

bias dominate. However, even in these extreme cases the

pose estimation is capable of inferring a reasonable heading

estimate from sparse GPS measurements.



Fig. 6. Visualization of the global pose optimization using six sparse GPS
readings over a 12 minutes, 2km traverse. The plot illustrates a comparison
between the corrected and uncorrected visual odometry. The black path
represent the ground truth of the motion obtained with a sophisticated
L1/L2 RTK GPS system. On the right of the figure, close-up views of
the path at the southern and northern end of the traverse are depicted. Here
the underestimation in the uncorrected visual odometry is apparent as the
vehicle turns around to return back along the river with approximately 20m
from truth at the apex and the corrected visual odometry solution is within
5m.

VI. CONCLUSION AND FUTURE WORK

Our visual odometry results validate our assumption that

the bias for the true camera motion is locally smooth and can

be approximately estimated at its initial estimate. Our future

work will try to determine if there are conditions under which

our assumptions fail to reproduce the true behavior of the

bias. We perceive the significance of the motion bias studied

in this work as not being limited to riverine environments.

In many experiments conducted outdoors, aerial vehicle

applications being a prime example, there will be moments

where the majority of observed features are at large distance

with respect to the stereo baseline and in these cases the

proposed bias correction can improve accuracy.

The results of our pose estimation system showed globally

consistent paths using very few GPS measurements. We

employed a batch optimization method over a sliding window

of poses, which required the presence of at least two GPS

measurements within the window to infer global heading

from relative motion and absolute positions. To keep this

computationally tractable for intermittent GPS, poses were

continuously marginalized from the system, which inevitably

introduced linearization errors. We found that these errors

resulted in false constraints on unobservable parts of the

state and that special care had to be taken to avoid these

from distorting the estimated path when GPS is only intermit-

tently available. Our future work will incorporate kinematic

constraints into the graph to help further constrain the state

estimate.
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