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Introduction

Based on the increasingly understood regenerative capacity of the
human heart and vascular system,1 cardiovascular regenerative medi-
cine (CRM) encompasses all potential diagnostic and therapeutic
strategies aimed at restoring organ health. Envisioned to enhance the
innate regenerative response of cardiovascular tissues, diverse and
often complementary products and strategies have been investigated
(e.g. stem and progenitor cells, stromal cells, extracellular vesicles
such as microvesicles and exosomes, growth factors, non-coding
RNAs, episomes and other gene therapies, biomaterials, tissue engi-
neering products, and neo-organogenesis). Despite promising results
based on 20 years of research, next generation CRM treatments have
yet to transform cardiovascular practice.

Given the compelling need for a thorough critical debate on the
past, present, and future of CRM, the international consortium
Transnational AllianCe for regenerative Therapies In Cardiovascular
Syndromes (TACTICS, www.tacticsalliance.org)2 summarizes the
shared vision of leading expert teams in the field (for a complete list
of TACTICS members please see Annex 1). The document
addresses key priorities and challenges, including basic and transla-
tional research, clinical practice, regulatory hurdles, and funding

sources. The methodological procedure included the following: (i)
identification of strengths, weaknesses, opportunities, and threats
(SWOT analysis) by means of an open poll; (ii) distribution of the
main topics between at least two worldwide key opinion leaders,
who prepared proposals for each topic; (iii) open discussion and con-
sensus on each proposal between all members of TACTICS; and (iv)
review of the document by an independent committee.

Cardiovascular regenerative
medicine in perspective

This section summarizes existing knowledge pertinent to the mecha-
nisms of cardiovascular regeneration, the attempts to apply that
knowledge in the preclinical arena, and the main achievements and
obstacles in translation to clinical practice.

Mechanisms of cardiovascular
regenerative response
Cardiac regenerative response

Available evidence indicates that ongoing cell turnover in the adult
human heart involves the death of cardiomyocytes and generation of
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new tissue.1,3 Furthermore, the myocardium, like other parenchymal
organs, contains endogenous stem cells with the ability to proliferate
and replace cardiomyocytes that die due to apoptosis or oncosis.4

Therefore, the paradigm that cardiomyocytes are terminally differen-
tiated cells incapable of proliferation or renewal has shifted, and the
heart is recognized to be a self-renewing organ.

However, the regenerative capacity of the adult human heart is lim-
ited and insufficient to overcome the massive loss of cardiomyocytes
during acute damage or prolonged remodelling, in which cardiomyo-
cyte death exceeds cardiomyocyte renewal. Such a limitation contrasts
with the active cardiomyocyte turnover observed during embryogene-
sis and with the intense regenerative capacity of the adult heart in
some species. In certain mammals, cardiac muscle cells remain mitoti-
cally active through the foetal and early perinatal periods, although
shortly after birth, mitotic division of cardiomyocytes becomes unde-
tectable, supporting the long-held belief that mature mammalian cardi-
omyocytes are terminally differentiated. In contrast, an adult zebrafish
can fully regenerate its heart even after amputation of 20% of the ven-
tricular mass.5 Mammalian neonates have the potential to regenerate
injured hearts in much the same way as lower vertebrates.6 Although
still a controversial concept, the mechanisms by which these processes
occur form the basis of regenerative therapies and include various
non-exclusive and probably interacting possibilities. These healing
mechanisms are still in debate but include the following: (i) Endogenous
cardiac progenitor cells (CPC)7 in distinctive architectural microenviron-
ments known as ’cardiac stem cell niches’, which have demonstrated
their capacity to differentiate into several cardiac cell types under spe-
cific circumstances and constitute a source of new cardiac cells during
cardiac regenerative processes; (ii) Dedifferentiation, proliferation, and
reprograming of pre-existing adult cardiomyocytes to produce new cardio-
myocytes.8,9 This process is the main component in the regeneration
of damaged myocardium in zebrafish and mammalian neonates. The
mechanisms underlying this process may shed light on how to revert
the inhibition of the mitotic capability of human adult cardiomyocytes
and enable in situ cell reprogramming10,11; and (iii) Activation of cells from
the epicardium as a reminiscence of its involvement in cardiogenesis
during embryonic life.12 Although this mechanism remains controver-
sial, the contribution of epicardial cells to the whole process of heart
regeneration, and particularly to the inflammatory response after
injury, has been extensively documented and confirms the role of the
epicardium in regeneration.13

Vascular regenerative response

Cardiovascular regenerative medicine is also a promising approach for
refractory angina and peripheral artery disease (PAD).14 Dysfunction
of the endothelial monolayer is the key initiation event of vascular dis-
eases and is caused by a variety of stimuli including hypertension, dia-
betes, dyslipidaemia, and oxidative stress. After endothelial
dysfunction and denudation, endogenous resident endothelial progeni-
tor cells (EPC) tend to proliferate and replace the injured endothe-
lium.15 However, this endogenous mechanism of regeneration is a
relatively slow and inefficient process.16 Preclinical and clinical studies
indicate that a variety of CRM therapies provide growth factors and
cytokines for therapeutic angiogenesis, both in the heart and through-
out the vascular system.17–20 The mechanisms by which those treat-
ments yield positive results are being steadily unmasked.21

Cardiovascular regenerative products
Products used for CRM can serve two complementary strategies
according to the target processes (Figure 1): (i) exogenous regenerative
responses, in which implanted products, cells, or tissues are expected
to replace the structure of damaged or dysfunctional tissue; and (i)
stimulation of endogenous regenerative responses, in which the products
delivered are aimed at enhancing the efficiency of endogenous repar-
ative mechanisms.

Approaches based on ‘exogenous regenerative responses’
include in vitro-differentiated cardiomyocytes, cardiovascular and
EPC, and tissue-engineered cardiac and vascular patches with
some degree of electromechanical functional maturation. In
recent years, considerable advances have been made with this
strategy,22–25 which has proven to be effective in primates.26,27

However, although the complex mechanisms underlying in vitro
differentiation and maturation have limited its application in clini-
cal practice, a first-in-man clinical trial is already assessing the feasi-
bility and the safety of the transplantation of human embryonic
stem cell-derived cardiovascular progenitors.28

Cardiovascular regenerative medicine products focused on the
modulation, enhancement and activation of ‘endogenous regenera-
tive responses’ can be subdivided into three main groups, which
could be eventually combined:

(1) Cell implantation: several types of stem, progenitor and stromal cells
have been investigated. These include both pluripotent stem cells,
such as embryonic stem cells (ESC) and induced pluripotent stem cells
(iPSC), and adult stem cells, including cells of cardiac origin [e.g. CPC
and cardiosphere-derived cells (CDCs)] and cells from other sources
[e.g. bone marrow-derived mononuclear stem cells (BMMNC), bone
marrow-derived mesenchymal stem cells (BM-MSC), adipose tissue-
derived mesenchymal stem cells (AT-MSCs), EPC and adventitial pro-
genitor cells]. Excellent reviews summarizing their distinctive charac-
teristics and outcomes have been published elsewhere.29,30

(2) Injection of biological or synthetic factors with active functions in endog-
enous regenerative processes, which emulate the benefits of cell
therapy without the need for living cells. Products in this category
include extracellular vesicles (microvesicles, nanoparticles, and exo-
somes)31–33 isolated from in vitro cell secretomes and synthetic
growth factors. All these products can be generated in clinical grade
and injected using various delivery strategies.34,35

(3) Genetic and epigenetic modifications that modulate the expression of
genes and mRNA involved in the endogenous regenerative capacity
of the heart and vessels. Increasing knowledge of the genetic path-
ways that govern cardiovascular generation and regeneration proc-
esses, which are active during the embryonic and neonatal stages,
enables identification of factors that could be reactivated during
adult life using genetic approaches.11,36 From the administration of
mRNA produced in vitro to in vivo modifications of human DNA, the
therapeutic regulation of gene expression and regeneration path-
ways may dramatically increase the possibilities of repairing the
human cardiovascular system.37,38

Preclinical therapeutic application of
basic science
Preclinical development depends on the use of appropriate animal
models that accurately reflect human disease. In contrast with other
areas, cardiovascular in vitro models provide limited information,
which is restricted mainly to the assessment of drug toxicity and
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..specific cellular and molecular aspects.39 Functional hearts and ves-
sels are necessary to evaluate and optimize regenerative therapies.

Most of the mechanisms of CRM have been clarified thanks to pre-
clinical research on small animals,29,30,40 although their practical and
translational significance can be undermined by anatomical and func-
tional deviations from human organs. In order to obtain a more com-
prehensive picture and better translational value, large animals such
as pigs, sheep, and perhaps monkeys are needed.41–43 It is notewor-
thy that with large mammals, research has focused on acute myocar-
dial infarction (AMI), chronic ischaemic cardiomyopathy (CIC), and,
more sporadically, on dilated cardiomyopathy (DCM) and other
forms of non-ischaemic heart disease (NIHD). The study of other
cardiovascular diseases, such as Chagas disease,44,45 requires more
complex animal models, in which the availability of transgenic and
knock-out mice is proving particularly useful for assessing genetic fac-
tors and inducers of cardiovascular diseases.

Lessons learned from clinical research
Stem cells were first used in to prevent heart failure (HF) in clinical prac-
tice in 2002.46 Ever since, ischaemic heart disease (IHD) has been the
most prominently evaluated disease, with more than 100 and 90 clinical
trials carried out in the settings of AMI and chronic ischaemic HF, respec-
tively. Table 1 provides a brief description of the products and results of
individual trials. The literature has been further enriched with 48 system-
atic reviews and meta-analyses,47 which have consistently shown the fea-
sibility and safety of the aforementioned regenerative strategies, as well
as promising functional and clinical improvements in patients with AMI
and chronic ischaemic left ventricular dysfunction, thus warranting

appropriately powered and well-designed phase III clinical trials. In sum-
mary, the application of regenerative strategies in patients with IHD is
feasible and safe. However, although promising, regenerative therapies
have yet to demonstrate definitive clinical benefit over standard-of-care.
Table 1 also details previous experiences in refractory angina, NIHD,
PAD and stroke, for which the results are similar.

Regenerative therapies are currently being investigated in other cardiac
conditions (e.g. valvular heart disease, rhythm disorders, and congenital
myopathies), although clinical research is currently in very early stages.

The main obstacles that clinical CRM has encountered since its
inception and that have hampered its large-scale adoption in daily
clinical practice are depicted in Table 2 and include incomplete under-
standing of cardiovascular regenerative mechanisms, heterogeneity
of study protocols and underestimation of aspects such as delivery
methods, extracellular structure, dose, and patient selection.
Furthermore, surrogate and clinical endpoints have been inconsis-
tently used and are usually misinterpreted. Finally, multidisciplinary/
multinational collaborations to unravel and resolve the limitations
identified have been insufficient.

Challenges of cardiovascular
regenerative medicine

The following section summarizes the outlook for the next decade.
Specifically, the main challenges and priorities of each area involved in
the clinical application of CRM are identified.

Figure 1 Schematic representation of cardiovascular regenerative advanced therapy medicinal products according to the pre/clinical phase of
development. ADSC, adipose tissue-derived stem cells; BMMNC, bone marrow mononuclear cells; BM-MSC, bone marrow-derived mesenchymal
stem cells; CDC, cardiosphere-derived cells; CPC, cardiac progenitor cells; CSC, cardiac stem cells; EPC, endothelial progenitor cells; ESC, embry-
onic stem cells; iPSC, induced pluripotent stem cells; MSC, mesenchymal stem cells; SM, skeletal myoblasts.
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Priorities in cardiovascular regenerative
medicine: diseases and disease stages
The ultimate goal of CRM is the prevention and treatment of cardio-
vascular failure and its consequences, including the protection and
repair of tissue necrosis caused by ongoing myocardial ischaemia and
reversal of chronic ischaemic dysfunction at all stages of disease pro-
gression. In addition, vascular damage in pulmonary or systemic circu-
lations is a key target in CRM.

The application of regenerative strategies in the setting of AMI
takes advantage of preserved extracellular tissue architecture,
although it is subject to the inflammatory hostility of the milieu in the
context of excellent initial and long-term results of standard-of-care
approaches (e.g. reperfusion strategies). Therefore, given the results
of research already carried out in this setting, new initiatives should
focus on patients at risk of developing HF and should depend on find-
ings from ongoing large-scale clinical trials and from translational and
phase I/II clinical studies analysing new regenerative products and
mechanistic aspects, such as timing, dose, therapeutic combinations,
and single vs. sequential delivery.

In patients with chronic ischaemic or non-ischaemic HF, the his-
topathological, and functional substrate is crucial and underlies

the choice, design, and methodology of regenerative applications.
In this setting, coronary tree status, myocardial perfusion and via-
bility, together with the extent and characteristics of maladaptive
myocardial remodelling and influence of chronic inflammatory
processes, will help to choose between therapies aimed at stimu-
lating endogenous repair and/or at replacing a functional scar with
healthy tissue.

Priorities and methods for basic research
Enhancement of endogenous cardiac regeneration is limited by the
lack of knowledge regarding the mechanisms of modulation of the
regeneration capacity in the adult mammalian heart. Accordingly,
basic research focuses with the potential to revolutionize clinical
practice are summarized in Table 3.

Priorities and methods for translational
research: animal models
The three stages in the development of new therapeutic products
comprise discovery and development of leading products, explor-
atory studies, and confirmatory studies (Figure 2). The first
two stages usually involve small animal models (e.g. zebrafish

....................................................................................................................................................................................................................

Table 1 Summary of randomized clinical trials in cardiovascular diseases with regenerative products

Disease (patients treated) Regenerative product Safety Overall efficacya

(surrogate endpoints)

Acute myocardial infarction (n = 2732) BMMNC48–63 Favourable Inconsistent

BM-MSC64 Favourable Inconsistent

Specific BM cells65–69 Favourable Inconsistent

ADSC70 Favourable Inconsistent

CDC71 Favourable Positive

Growth factors72–77 Favourable Inconsistent

Ischaemic heart failure (n = 2035) SM78–81 Favourableb Inconsistent

BMMNC82–85 Favourable Inconsistent

BM-MSC86–88 Favourable Positive

Specific BM cells89–96 Favourable Positive

CSC97 Favourable Positive

Gene therapy37,98–101 Favourable Inconsistent

Refractory angina (n = 353) BMMNC102–106 Favourable Positive

Specific BM cells107–109 Favourable Positive

ADSC110 Favourable Positive

Non-ischaemic heart failure (n = 166) BMMNC111,112 Favourable Inconsistent

Specific BM cells113,114 Favourable Inconsistent

BM-MSC115 Favourable Inconsistent

Peripheral artery disease (n = 1217) BMMNC116 Favourable Positive

Specific BM cells117–119 Favourable Positive

Gene therapy120–124 Favourable Inconsistent

Stroke (n = 95) Neural stem cells125 Favourable Inconsistent

BMMNC125 Favourable Inconsistent

Specific BM cells125 Favourable Inconsistent

ADSC, adipose tissue-derived stem cells; BMMNC, bone marrow mononuclear cells; BM-MSC, bone marrow-derived mesenchymal stem cells; CDC, cardiosphere-derived
cells; CSC, cardiac stem cells; SM, skeletal myoblasts. ‘Specific BM cells’ means either modified or selected subpopulations of the bone marrow mononuclear fraction.
aNote that all randomized clinical trials evaluated efficacy with surrogate endpoints.
bMain safety concerns after skeletal myoblast transplantation in humans include an increased probability of arrhythmic events, so these cell type should be viewed with extreme
caution in further clinical trials.
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..and rodents), which enable affordable and rapid experiments.
Confirmatory studies are typically performed in large mammals,
which are more representative of human disease, in order to
assess the risks of a new therapy and to predict safety, feasibility,
and efficacy. Although studies in large animal models are expen-
sive, complex, and technically demanding, they offer the advantage
of being conducted in settings that more closely mimic clinical
practice. Therefore, large animal studies are essential if we are to
justify the risks and costs of clinical trials and to improve the clini-
cal outcomes of regenerative therapies. However, publication bias
is a major concern in preclinical trials. As is the case in other medi-
cal fields (e.g. cancer studies), the lack of interest in negative or
neutral findings may translate in a disproportional body of positive
published results. In order to overcome this overestimation, one

suggestion would be that preclinical research with large mammals
follows standards used in clinical trials (see Table 4).127

Priorities and methods for tissue
engineering and biomaterials
Despite the regenerative capacity of mammalian hearts and vessels,
experience with highly damaged tissues indicates that, at a certain
point of damage (e.g. homogenous fibrotic scars and highly calcified
valves or arteries), endogenous recovery is impossible. In such cases,
substitution of the tissue may be the only possible strategy. Given the
small number of transplant donors, tissue engineering has emerged as
an attractive approach. However, in order to become clinically useful,
major challenges have to be resolved (Table 5).

Table 2 Main obstacles encountered by clinical CRM

1. The complex molecular, cellular and organ-based mechanisms that govern the cardiovascular reparative process as a whole have yet to be under-

stood. Consequently, it has been difficult to design clinical trials. Since many cardiovascular diseases are syndromes, the future identification of specific

molecular or cellular causes will help to increase the chances of success in clinical trials.

2. The results of clinical trials are often contradictory because of non-homogeneous study protocols with inter-trial and inter-patient variability and the

lack of standardization and scalability of investigational products.

3. Focus on cell phenotype initially led to underestimation of the importance of delivery methods, thereby leading to low initial cell retention rates, poor

survival in the host tissue, and subsequent loss of efficacy.

4. Efforts have focused mainly on the loss of the myocardial parenchyma, thus leading to underestimation of the importance of other key aspects of a

functional heart, such as the extracellular matrix or the appropriate cell patterning and electromechanical coupling required for a well-co-ordinated

improvement in contractility.

5. Key aspects of clinical trial design that have been systematically underestimated and not sufficiently investigated in phase I trials include optimal dosage

(dose-escalation studies), timing of delivery (especially in the case of AMI), cell type and delivery method in the specific condition under study.

6. Patient selection is paramount, given the critical influence that comorbidities, aging and medications have on the quality of source cells (if autologous)

and on the response of host tissue to regenerative products. Predictors and scores that would enable appropriate identification of specific target pop-

ulations that benefit most from CRM have not been described/validated.

7. Surrogate imaging and hard clinical endpoints have been inconsistently used in clinical trials and are usually misinterpreted when translating clinical

research for a specific product. In addition, surrogate endpoints need further standardization.

8. Limited multidisciplinary/multinational collaborations to unravel and resolve identified limitations, which could increase our knowledge of regenerative

therapies and facilitate definitive large-scale preclinical and clinical trials.

Table 3 Recommendations for basic research

Strategies for the enhancement of endogenous regenerative responses

1. Better understanding of the underlying biology that leads to significant loss of regeneration capacity in the adult mammalian cardiovascular system.

2. Breakdown of the regeneration process in clinically relevant models, from the niche of adult stem cells to active dedifferentiation, proliferation, and/or

transdifferentiation.

3. Identification of molecular mechanisms that control the post-infarction inflammatory response and the remodelling process in order to redirect heal-

ing towards regeneration instead of scar formation.

4. Identification of endogenous regeneration triggers that would enable the production of biological or synthetic CRM products, ideally for a prolonged

and efficient outcome.

5. Evaluation of potential differences between males and females in terms of their ability to generate a regenerative response.

Strategies for cardiovascular tissue replacement

1. Identification of the most appropriate in vitro—and eventually in vivo—maturation processes to mimic adult cardiac tissue (e.g. in terms of cell structure

and electromechanical function).

2. Evaluation of disruptive organogenesis strategies (e.g. chimeric approaches to produce human organs in pigs).126
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Figure 2 Flow-chart of translational research.

Table 4 Recommendations for translational research with large animal models

1. Prospective online and public registration of preclinical trials, including the description of the study and research model, primary and secondary

outcomes, number of animals, and duration of follow-up.

2. Obligatory publication of results required for grant fund release (e.g. funding depends on the dissemination of results, independently of whether they

are positive or negative). Use of the ARRIVE guidelines for the reporting of preclinical study results.128

3. Prioritization of multicentre studies and development of collaborative consortia consisting of independent core laboratories specialized in large animal

models (e.g. the CAESAR consortium).129

4. Blinded and randomized studies in the confirmatory stage.

5. Establishment, optimization, and sharing of standard animal models and protocols. Funding agencies should provide guidelines for the generation of

animal models, which should include the definition of a standard model for AMI and CIC.

6. Standardization of software protocols for the analysis and quantification of the main outcomes by means of open-source solutions and platforms for

data sharing (e.g. scar size, left ventricular ejection fraction).

7. Prioritization of animal models that include comorbidities (e.g. old-animal models), cardiovascular medication use and clinically relevant scenarios

(e.g. surrogate cell products or xenoregulated animals that do not require immunosuppression).

8. Mandatory evaluation of gender differences.

Table 5 Main challenges of cardiovascular tissue engineering

1. Enormous number of cells needed to build a heart (e.g. around 10 billion for a whole human heart)130

2. Anatomically realistic scaffolds (e.g. natural or synthetic biomaterials with vasculature and anisotropic structures).

3. Differentiation of cells into several cardiac lineages (e.g. endothelial cells, fibroblasts, cardiomyocytes)

4. Mature electrophysiological properties (e.g. action potential duration and conduction velocities, avoidance of autoexcitability) to ensure co-ordinated

contraction without arrhythmias.131

5. Mature mechanical function (e.g. sarcomere constructs, troponin orientation) to achieve efficient contraction.

6. Bioreactors that allow maturation under sterile conditions for long culture periods.

7. Development of easy-to-use and safe, minimally-invasive, delivery technologies.
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The aforementioned challenges in the generation of clinically useful
cardiac muscle tissue are not present in other cardiovascular struc-
tures, for which the tissue engineering approach is already producing
clinically viable and useful products. Such is the case of cardiac valves
and large vessels.132–135 Nevertheless, technical improvements are
required in order to extend their applicability to a larger number of
patients. These improvements include standardized production units,
the identification of the most appropriate materials, control of long-
term degradation and integration in the body, and the development
of minimally invasive delivery devices.136

In addition to the clinical usefulness of cardiovascular tissue engi-
neering solutions, the possibility of producing personalized monolayer
cultures and three-dimensional human engineered cardiac tissues her-
alds a new era for the in vitro identification of pathophysiological mecha-
nisms and for the development of tailored novel treatments (e.g. by
using human cardiomyocytes obtained by directed differentiation of
iPSC derived from patients with cardiomyopathy).137,138

Priorities and methods for production,
delivery, tracking, and assessment
Cardiovascular regenerative medicine products have special charac-
teristics that differentiate them from classic pharmacological treat-
ments in terms of production, delivery, tracking, and assessment
(Figure 3). The manufacturing of these advanced therapy medicinal
products (ATMP) includes multiple step from the acquisition of bio-
logical samples to the delivery of a personalized product for each
patient. Given the heterogeneity present in the generation of most
biological CRM products, the process of manufacturing and the deliv-
ery technology need to be considered as part of the CRM product
itself. The functionality of a cell-based product is influenced by multi-
ple factors, including the initial source, harvesting and isolation techni-
ques, and manufacturing. Standardization of these procedures and

methods is especially important, as lack of uniformity in cell manufac-
turing may influence clinical outcome.139 Moreover, standardization
permits direct comparisons between trials and indirect comparisons
through meta-analyses. Several reviews have already provided guid-
ance for the technological progress and challenges towards manufac-
turing of CRM products based on the principles of Good
Manufacturing Practice.140–142

The main objective of delivery technologies is to achieve the opti-
mal dosage of biological material needed to provide benefits in the
region of interest of the host tissue. Although all available modalities
of regenerative product delivery display—to varying degrees—the
four desired characteristics (safety, ease of use, clinical utility, and low
cost), after 20 years of research we can conclude the following:

(1) Surgical transepicardial delivery has been relegated to patients with
a formal indication for open-chest surgery. However, minimally
invasive approaches, such as lateral minithoracotomy, video-
assisted thoracoscopy and robotic surgery, are currently being
investigated.

(2) Percutaneous catheter-based delivery has been the most exten-
sively used modality for cardiac diseases. Intracoronary infusion of
regenerative products has been the mainstay in the setting of acute
coronary syndromes, whereas more sophisticated catheters—with
or without navigation platforms—for endomyocardial delivery have
been specifically used in HF and refractory angina.

(3) Intravenous infusion of products was discontinued owing to low
selective engraftment rates, subsequent to early trapping in remote
organs (primarily the lungs), although it may play a role in the deliv-
ery of products with high tropism for the target tissue after AMI
(e.g. viral vectors).

(4) Tissue engineering products require more specific transplantation
technologies. These products may prove easier for injection of bio-
materials, but will require highly sophisticated systems in the case of
matrixes or patches if they are to be minimally invasive or even
administered percutaneously.

(5) In the case of PAD and stroke, intra-arterial and intramuscular injec-
tions have been used extensively, and no relevant advances in deliv-
ery technologies are anticipated in the short-term.

(6) Few preclinical studies have compared delivery modalities.143–145

It seems that the intracoronary and endomyocardial approaches are
the most efficient, depending on the phase of myocardial ischaemia
(acute vs. chronic).146 However, evidence is scarce with humans,
and the efficiency of product delivery is a complex, multifactorial
variable that is influenced by several factors, including cell type, tim-
ing of delivery, device design, and cell dose. Moreover, the implica-
tions of these experimental findings for clinical practice are not
completely clear, and it is now well known that retention rates may
not determine the effect of a given product.147–149

Our recommendations are shown in Table 6.

Identification of regenerative products
ready for clinical trials:
recommendations regarding clinical
investigation tracks
‘First-generation’ cell types include a series of heterogeneous adult
stem cell populations that were first used (unmodified) in CRM at the
beginning of this century (e.g. unfractionated BMMNC and selected
subpopulations thereof, CPC, EPC, SM, MSC, and ADSC).29 These
types of cells are believed to induce myocardial repair through the

Figure 3 Supply chain of cardiac regenerative advanced therapy
medicinal products.
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secretion of cytokines and growth factors that activate innate regen-
eration pathways (paracrine activity). Most have already been investi-
gated in depth in clinical practice (see ‘Lessons learned from clinical
research’ section) and have passed through phase I and II studies with
consistent and solid safety profiles. Furthermore, and although sev-
eral issues concerning their regenerative capacity remain unresolved
(e.g. mechanisms of action, dose, and timing), in some cases, they
have already been considered as the most suitable types for investiga-
tion in phase III clinical trials.

In contrast, ‘second-generation’ cells include purified cardiac cell
subpopulations (CDCs and CSC), ‘potency-enhanced’ cells with
genetic or pharmacological modifications (e.g. ‘cardiopoietic’ BM-
MSC), cells of allogeneic origin (MSC and CSC), and novel pluripo-
tent sources (iPSC and ESC). Despite their robust paracrine activity,
these cell types are also—theoretically—able to replace the damaged
myocardium with the formation of new cardiomyocytes, smooth
muscle cells, and endothelial cells to a greater or lesser extent.
Although a first experiment with ESC-derived CPCs in chronic HF
has been initiated in humans,28 we can consider iPSC and ESC to be
at the preclinical stage because of safety concerns (e.g. uncontrolled
proliferation, transfection-related mutagenesis in iPSC).136 The
remaining cell types have also been considered to be ready for phase
III experimentation. However, additional safety studies (e.g. immuno-
genicity and tumorigenicity) are required with some allogeneic sour-
ces before genuine phase II clinical trials can be considered.

The field of ‘cell-free’ products has evolved rapidly from the first
unsuccessful experiences with growth factors (e.g. granulocyte
colony-stimulating factor) used as soluble injectates to more

sophisticated products, such as episomes, microRNA (mi-RNA), and
exosomes, either alone or embedded in hydrogels or encapsulated in
nanoparticles. Although these new approaches that mimic the secre-
tome of donor cells could soon be used in clinical practice, further
investigations on their characterization, bioavailability (dose, timing),
organ distribution (delivery), and efficiency (outcomes) are
warranted.

With regards to gene therapy, after 14 years of clinical research,
angiogenic factors, calcium-handling proteins, and homing factors
have been investigated in phase I/II trials. Given the limited results of
gene therapy in clinical trials compared with preclinical models, sev-
eral obstacles need to be overcome before clinical application of
gene therapy can be considered realistic. These obstacles include, but
are not limited, to: (i) technical challenges regarding viral and non-
viral constructs (e.g. tissue-specific promoters and chemical ligands);
(ii) grounded choice of therapeutic targets and clinical conditions; (iii)
safety, transfection efficacy, and production costs; and (iv) optimiza-
tion of delivery systems for precise administration and appropriate
bioavailability with minimal off-target effects. Finally, the field of tissue
engineering is one of the most promising in CRM and is currently ini-
tiating phase I first-in-man experiences.150

Clinical research tracks in CRM must be based on an evidence-
based translational rationale. When ready for clinical testing, any
regenerative product should follow the traditional four phases of clin-
ical research (see also Table 8).29,151 Of note, some currently
researched CRM products do not comply with these principles.

Table 7 summarizes our recommendations on the identification of
regenerative products ready for clinical trials.

Table 6 Recommendations for production, delivery, navigation, tracking, and assessment

1. Identification of optimal delivery technologies for each novel or ‘conventional’ regenerative product (e.g. viral vectors, stem cells, growth factors and

molecules). Other variables, such as timing, dose, microenvironment, clinical scenario, and location, need to be considered when designing new

delivery technologies.

2. Development of minimally invasive methodologies, ideally percutaneous approaches, for tissue engineering solutions.

3. Optimization of delivery modalities to improve accuracy by means of fusion imaging tools.

4. New imaging and automated software to guide and improve CRM product delivery and retention: real-time, non-invasive imaging and/or integrating

computed tomography, magnetic resonance and ultrasound into the catheter navigation process.

5. New imaging and automated software for in vivo tracking of CRM products in humans.

Table 7 Identification of regenerative products ready for clinical trials

1. ‘First-generation’ and ‘second-generation’ stem cells (except for iPSC and ESC), including those used in allogeneic transplants, are ready for phase III

clinical trials. However, issues such as best tolerated doses, benefits of repetitive administration, optimal timing, and most efficient delivery modality

still need further research.

2. Emphasis should be placed on comparison between products, doses and delivery strategies.

3. Cell-based and other regenerative products, especially when evaluated in multicentre/international trials, should be standardized. Standardization

includes quality assessments of the final product before release (viability, surface markers, potency, stability, and sterility tests).

4. Safety and efficacy issues in gene therapy should be solved before moving forward to new phase I or more phase II trials. Novel ‘cell-free’ products

and tissue engineering approaches must progressively enter the clinical stage.

5. Efforts should be made to include biomarkers, new imaging/tracking and delivery techniques in phase I trials with the aim of unraveling the complex

mechanisms of action of regenerative products.
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Priorities and proposals regarding clinical
trial design
Before the promise of biologic-based interventions can be translated
into clinical benefits, appropriate endpoints must be selected to facili-
tate the regulatory path that regenerative interventions are subject
to. Regulatory bodies in the US and Europe stipulate generic and
disease-specific requirements and rigorous criteria for good clinical
practice and clinical research. These requirements are summarized in
Table 8 (reprinted from152 with permission).

Interestingly, some of the aforementioned variables have been sys-
tematically ignored or not investigated in depth in phase I/II trials. The
shortcomings of previous approaches include the following:

(1) Safety and efficacy endpoints have been used consistently, although
not in a standardized/uniform manner between trials, and sometimes
not correctly according to the corresponding clinical research phase.
No novel endpoints that could allow us to increase our knowledge
of CRM (‘mechanistic’ endpoints) have been put forward.

(2) Surrogate endpoints have been assessed in several
trials with very different imaging modalities and sometimes

with high inter- and intra-observer variability (e.g.
echocardiography).

(3) Traditionally, phase II clinical trials have been misused to confirm
efficacy, which is the final aim of phase III studies. Ambitious efficacy
results have been frequently incorporated into phase II trials with
the purpose of shortcutting development expenses and obtaining
scientific recognition, frequently resulting in global scientific disap-
pointment.153 Phase II trials should be carried out with many pri-
mary ‘surrogate’ endpoints (such as functional and structural
measures, biomarkers, quality of life, and functional capacity) to test
a range of efficacy domains and to broadly survey the possible bene-
fits of the study product, with little regard for ‘P’ values. On the con-
trary, hard clinical endpoints (such as all-cause mortality or cause-
specific mortality) that are applicable in daily clinical practice should
be tested in well-designed phase III trials, although other endpoints
of cardiovascular improvement/impairment may be included.152

(4) Patient-related modifiers: Age, gender, and comorbidities may alter
the reparative proficiency of cardiac regenerative products. For
instance, patients with cardiovascular disease rarely harbour cells
with an acceptable regenerative capacity, an issue that we will be
able to assess through the development of biomarkers and potency

....................................................................................................................................................................................................................

Table 8 Requirements for each phase of clinical research

Preclinical, Phase I Phase II Phase III

Product regulatory

requirements

Kinetics, biodistribution of the

regenerative product.

Purity, potency, and karyotype

stability of particular cells.

Ensure traceability

Short-term side effects and risk

associated with particular regen-

erative biologics.

Establish efficacy and safety moni-

toring assays

Performed after preliminary evidence suggesting

effectiveness of particular regenerative product

Objective Safety.

Kinetics, dose-dependency,

retention, and optimal deliv-

ery method

Safety/surrogate endpoints Safety/therapeutic benefit/improved survival

Patients restriction/

criteria

Identify target group (safety

analysis)

Identify potential responders and

non-responders

Include only responders

Sample size Usually 20 per cohort From a few dozen to a few

hundred

Several hundred or more

Design Randomized, open label or pla-

cebo/sham

Randomized, double-blind, placebo

or sham controlled

Randomized, double-blind, placebo or sham

controlled

Endpoints (feasibil-

ity/product and

procedure

related)

Procedural safety, biological

activity of the regenerative

product

Safety/feasibility of the procedure,

adequate number of cells/dose

response

Long-term, substantial evidence of previously

observed feasibility/safety

Safety endpoints Patient tolerance, abnormal cell

growth, mutagenesis,

tumorigenicity

Patient tolerance, tissue injury, clin-

ical major adverse cardiac events,

arrhythmias

Clinically relevant endpoints: death, adverse clini-

cal events

Efficacy endpoints Detect surrogate endpoints

that are sufficiently sensitive

to track the therapeutic

benefit

(1) Further analysis of previously

detected surrogate endpoints

(2) Exploratory analysis of clini-

cally relevant endpoints

(1) Clinically relevant endpoints
• Objective (single or composite):

improved survival, reduced clinical

events/number of hospitalizations
• Subjective: symptom score, health-related

quality of life

(2) Surrogate efficacy endpoints that correlate

significantly with clinical endpoints
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assays. Furthermore, clinical trials should include only patients
under optimal medical treatments, given that concomitant medica-
tions may also modify the final effect of cell/gene therapy, either by
affecting the quality of source cells or the response of the host tis-
sue. Some scores predict the impact of these variables on the out-
come of regenerative therapies,154 although their use has been
marginal to date.

(5) Patient selection: Inclusion and exclusion criteria should focus on
specific subpopulations with poor prognosis that could benefit the
most from CRM and should clearly identify target patient popula-
tions. It is increasingly recognized that standard-of-care medications
and interventions lead to a high rate of spontaneous recovery in
some settings (e.g. post-AMI), thus underpowering the potential
beneficial effects of CRM. On the other hand, in many cases regen-
erative strategies have been applied to ‘low-risk’ patients, thus also
precluding the observation of positive beneficial results. Finally, level
of treatment and disease severity must be well balanced between
treatment and control groups.

(6) Sample size has frequently been calculated by imitating the
approach adopted in previous trials or based on preclinical models
that do not predict human responses and on weak surrogate-based
results. These calculations must be drawn only from well-founded
and reliable data, once the primary endpoint and the trial objective
have been identified and the magnitude of difference for detection
and acceptability of errors has been specified. If data are not avail-
able, the most reliable resources must be used.

(7) Cell dosing: As mentioned above, in most cases, the number of cells
to be delivered in a clinical trial is empirically determined (e.g. subject
to manufacturing capacities) or simply copied from previous trials;
genuine dose-escalating studies are lacking. A feasible, safe, and even-
tually efficient dose of the regenerative product should be anticipated
from the results of preclinical research and tested in phase I trials.

(8) Specific studies to determine the ideal timing for cell delivery (mainly
in the acute phase) are lacking. Furthermore, the effect of repetitive
injections of CRM products has not been sufficiently assessed.

Other aspects that should be borne in mind when designing future
clinical trials include ethics issues (e.g. the choice of control group, which
is mandatory in phase II/III trials, and the correct assessment of the risk/
benefit ratio), the eventual role of conflicts of interest (mainly commer-
cial interests), and the major impact of CRM results on the scientific
community and, in a broader sense, on decision makers and the public.

Table 9 shows our recommendations on translational clinical
research with ATMP.

Priorities and proposals regarding
regulatory hurdles
Biological products are subject to significantly different regulatory
requirements throughout the world. In the United States, regulation of
cellular and gene therapy products falls under the auspices of the
Center for Biologics Evaluation and Research (CBER). In the European
Union (EU), cellular and gene therapies are regulated by the European
Medicines Agency (EMA) and undergo evaluation by the Committee
of ATMP. In addition, each European country has its own agencies and
procedures. In Japan, regulation is the responsibility of the
Pharmaceuticals and Medical Devices Agency (PMDA), which recently
prioritized biologics, thus enabling the approval of stem cell therapies
with only basic demonstrations of safety and trends toward efficacy
(phase II clinical trials). Similarly, other countries are developing their
own regulations. Each agency periodically publishes its own guidelines,
which are frequently subject to discrepancies in terms of objectives
and methods. Meanwhile, alternative strategies are often used by small
clinics and unscrupulous people to minimize regulatory requirements
and obtain profits from patients desperate for ‘magic’ options.155

To address the needs of patients, researchers, sponsors, and
regulatory agencies, we propose the recommendations detailed in
Table 10.

Table 9 Recommendations for advanced therapy medicinal product-based translational clinical research

1. Clinical research planning should include ‘proof-of-principle’ studies, bio-distribution studies, and dose-escalation studies before safety and efficacy can

be validated.

2. Confirmatory ‘proof-of-efficacy’ trials should comply with disease-specific guidelines and target specific, well-defined patient subpopulations.

3. Traditional safety and efficacy endpoints (clinical/surrogate) will be used in the future when appropriate. However, new mechanistic endpoints to cor-

roborate unanswered hypotheses (e.g. on mechanisms of action) should be incorporated after proper validation in the preclinical field and standar-

dized according to regulatory recommendations. In the event that surrogate endpoints are anticipated, the most reproducible techniques must be

used (MRI, PET), and core laboratories should be established for centralized analysis.

4. The timing and route of delivery must also be re-considered from the early phases, taking into account the underlying disease, previous hard preclinical

observations, and plausible assumptions.

5. Patient selection is crucial. Confounders such as age, gender, comorbidities, disease vulnerability and severity, and concomitant medications should

always be taken into consideration when designing a new clinical trial (using predictive scores of outcomes, if possible).

6. Sample size calculations should be rigorous, and general requirements and safety/efficacy profiles for phases I, II, and III should be strictly adhered to.

Specifically, phase II clinical trials must be conducted in order to generate hypotheses and foundational (although not significant) evidence for the

appropriate design of meaningful confirmatory phase III clinical trials.

7. Adequate inclusion of control/placebo patients should be ensured and strict blinding methods should be followed. The risk/benefit ratio should be

defined, and the interference of eventual commercial interests should be avoided.

8. The costs of clinical evaluation phases have been frequently underestimated, thus forcing the interruption of ongoing trials. Strong support and collab-

oration between academia and industry and an appropriated economic plan are mandatory if we are to provide patients with the most efficient

treatments.
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Priorities and proposals regarding
strategies for public and private funding

The funding challenges facing the CRM community are considerable,
and the solutions are demanding. Regenerative medicine raises gen-
eral questions about the appropriate allocation of government and
private resources, thus casting doubt on the relative priority of the
translational approach over health care in funding decisions. The
research portfolios of pharmaceutical companies and non-profit
organizations also reveal an array of promising lines, although neither
the public sector nor the private sector can support each and every
promising research project. In summary, no single strategy will likely
prove itself sufficient to meet the patient’s needs. In order to guaran-
tee quality (both in healthcare and research) and private-sector finan-
cial support in the CRM field, investors and governments should be
prepared to collaboratively support a range of strategies aimed at
increasing funding, improving operational efficiency (both administra-
tive and academic) and generating additional revenues through royal-
ties, patent registration, and other models. Only countries and
investors with an efficient strategy for market positioning and promo-
tion of translational research in the healthcare system will obtain
profits from the revolution of CRM and offer improvements to their
citizens in terms of quality of life.

Vision and global perspectives

The TACTICS consortium is the first worldwide cooperative
research network in the field of CRM. In this consensus document,
the Writing Group of the TACTICS Task Force presents a critical
summary of the state of the art in CRM, covering basic and

translational research, clinical practice, regulatory pathways, and
funding strategies. Our end objectives are to describe the priorities
and challenges in the field for the next decade and to provide
evidence-based recommendations to guide the future application of
regenerative products in the fight against cardiovascular failure. The
most relevant challenges are summarized in Table 11.

In conclusion, the opportunity to optimize the regenerative medi-
cine armamentarium and to make real progress in the regeneration
of human cardiovascular tissue is through worldwide multidisciplinary
cooperation. By pooling the efforts of leading expert groups, we will
collectively be able to develop effective treatments that will improve
the prognosis of patients with a wide range of heart and vascular
diseases.
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TF, Drexler H, Landmesser U. Impaired endothelial repair capacity of early
endothelial progenitor cells in prehypertension: relation to endothelial dysfunc-
tion. Hypertension 2010;55:1389–1397.

21. Paneni F, Costantino S, Kr€ankel N, Cosentino F, Lüscher TF. Reprogramming
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28. Menasché P, Vanneaux V, Hagège A, Bel A, Cholley B, Cacciapuoti I, Parouchev
A, Benhamouda N, Tachdjian G, Tosca L, Trouvin J, Fabreguettes J, Bellamy V,
Guillemain R, Suberbielle Boissel C, Tartour E, Desnos M, Larghero J. Human
embryonic stem cell-derived cardiac progenitors for severe heart failure treat-
ment: first clinical case report. Eur Heart J 2015;36:2011–2017.

29. Madonna R, Van Laake L, Davidson S, Engel F, Hausenloy D, Lecour S, Leor J,
Perrino C, Schulz R, Ytrehus K, Landmesser U, Mummery C, Janssens S,
Willerson J, Eschenhagen T, Ferdinandy P, Sluijter J. Position Paper of the
European Society of Cardiology Working Group Cellular Biology of the Heart:
cell-based therapies for myocardial repair and regeneration in ischemic heart
disease and heart failure. Eur Heart J 2016;37:1789–1798.

30. Broughton KM, Sussman MA. Empowering adult stem cells for myocardial
regeneration V2.0. Circ Res 2016;118:867–880.
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