
The Annals of Statistics
2000, Vol. 28, No. 1, 239–253

GLOBAL POWER FUNCTIONS OF GOODNESS OF FIT TESTS

By Arnold Janssen

Heinrich-Heine-University of Düsseldorf

It is shown that the global power function of any nonparametric test
is flat on balls of alternatives except for alternatives coming from a finite
dimensional subspace. The present benchmark is here the upper one-sided
(or two-sided) envelope power function. Every choice of a test fixes a priori a
finite dimensional region with high power. It turns out that also the level
points are far away from the corresponding Neyman–Pearson test level
points except for a finite number of orthogonal directions of alternatives.
For certain submodels the result is independent of the underlying sample
size. In the last section the statistical consequences and special goodness
of fit tests are discussed.

1. Introduction. Omnibus tests are commonly used if the specific struc-
ture of certain nonparametric alternatives is unknown. Among other justifica-
tions, it turns out that they typically are consistent against fixed alternatives
and

√
n-consistent under sequences of local alternatives of sample size n. For

these reasons, people often trust in goodness of fit tests and these are fre-
quently applied to data of finite sample size.
On the other hand, every asymptotic approximation should be understood

as an approximation of the underlying finite sample case. Thus the statistician
likes to distinguish and to compare the power of different competing tests.
The present paper offers a concept for the comparison and justification of

different tests by their power functions and level points. It is shown that under
certain circumstances every test has a preference for a finite dimensional space
of alternatives. Apart from this space, the power function is almost flat on balls
of alternatives. There exists no test which pays equal attention to an infinite
number of orthogonal alternatives. The results do not only hold for asymptotic
models but they also hold for concrete alternatives on the real line at finite
sample size and their level points uniformly for the sample size.
The results are not surprising. Every statistician knows that it is impossible

to separate an infinite sequence of different parameters simultaneously if only
a finite number of observations is available.
The conclusions of the results are two-fold.

1. The statistician should analyze the goodness of fit tests of his computer
package in order to get some knowledge and an impression about their
preferences.
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2. A well-reflected choice of tests requires some knowledge about preferences
concerning alternatives which may come from the practical experiment. A
guide (and summary) to the construction of tests is given in Section 3.

The present results will be explained for a one-sample goodness of fit problem.

Example 1.1. Suppose that X1� � � � �Xn are real i.i.d. random variables
with joint distribution P ∈ � and distribution function FP where � is a
nonparametric subset of all continuous distributions on �. Suppose that the
testing problem is given by the simple null hypothesis

H0 = �P0�(1.1)

at sample size n. Two concrete cases should be kept in mind.
(a) One-sided testing problem. Suppose that the alternatives

� \ �P0� ⊂ �P� FP ≤ FP0
�(1.2)

are stochastically larger than FP0
.

(b) Two-sided testing problem. In the general case given by testing H0
against all continuous alternatives, the tests are restricted to the class of
unbiased level α tests φn with EQn
φn� ≥ α for all Q ∈ � , where φn is a test
which is based on X1� � � � �Xn.
In both situations we have an upper envelope power function at level α

on � ,

Q → β
Qn�� = sup
EQn
φn���(1.3)

where the supremum is taken over the present class of level α tests. In the case
of Example 1.1(a) this supremum is just the power of the Neyman–Pearson
test of Pn

0 against Q
n.

The power function (1.3) is now the benchmark which should be compared
with the nonparametric power function of a given test.

Throughout, we will give a brief survey about related work dealing with
power functions for nonparametric tests. A principle component decomposition
of goodness of fit tests has been studied by Anderson and Darling (1952) and
Durbin and Knott (1972), see also Shorack and Wellner (1986). Bounds for
global power functions of two-sided tests were obtained by Strasser (1990).
They rely on an extrapolation of their curvature at the null hypothesis; see
Milbrodt and Strasser (1990) and Janssen (1995). Global power functions of
one-sided Kolmogorov–Smirnov tests for a restricted class of alternatives were
obtained by Anděl (1967) and Hájek and Šidák (1967).
For sparse sets of nonparametric alternatives [compared with the omnibus

alternatives of Example 1.1(b)] minimax tests were established by various
authors. We refer to Ingster (1993), Lepski and Spokoiny (1999) and refer-
ences therein. They deal with the related signal detection problem for the
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Wiener process. Detailed information about the Hodges–Lehmann and Ba-
hadur asymptotic efficiency for goodness of fit tests can be found in Nikitin
(1995).
Neyman’s smooth tests are also very popular; see Neyman (1937). There

is much interest in extensions and data driven tests of this kind which are
then applied to omnibus alternatives, see Bickel and Ritov (1992), Eubank,
Hart and LaRiccia (1993), Kallenberg and Ledwina (1995), Inglot and Led-
wina (1996) and Inglot, Kallenberg and Ledwina (1998). However, the esti-
mator of the dimension should not be too restrictive since otherwise these
data driven tests are close to parametric procedures; see the detailed discus-
sion in Section 3. It is also pointed out that the Pitman efficiency the local
Bahadur efficiency, the Hodges–Lehmann efficiency and the intermediate effi-
ciency may be different. This discussion may explain some paradoxial results
for the Kolmogorov–Smirnov test and data driven tests.
The present paper is organized as follows. Section 2 contains the treatment

of the power function for the Brownian bridge shift experiment, which is just
the limit model of Example 1.1. It is shown that only a sparse space of alter-
natives has sufficient high power. In Section 3 it is shown that these results
uniformly hold for each sample size n. Thus the same gap shows up for finite
sample size and the asymptotic model as well. Special attention is devoted
to the behavior of level points which yield a good tool for the comparison of
different tests. The practical consequences are also discussed in that section,
which includes comments about data driven tests.

2. Tests for the Brownian bridge B0. In a first step, asymptotic power
functions are compared with their upper envelope power functions. Notice that
the asymptotic considerations of (one- and two-sample) goodness of fit tests
lead to a shift experiment,

B0
t� +
∫ t

0
h
u� du� 0 ≤ t ≤ 1(2.1)

on C�0�1� for the Brownian bridge B0
·� with parameter space

H = L02
��
0�1��� = �h ∈ L2
��
0�1���
∫
h d��
0�1� = 0�(2.2)

which is endowed with the natural inner product < h1� h2 >=
∫
h1h2 d��
0�1�,

where ��
0�1� is the uniform distribution on the unit interval. We refer to
Strasser [(1985), Chapters 11, 13 (82.23)], Shorack and Wellner (1986) and
Milbrodt and Strasser (1990). More details about abstract Wiener spaces can
be found in Bouleau and Hirsch (1991). The model (2.1) is a standard Gaussian
shift G = 
��� � �Ph� h ∈ H�� [with distribution Ph of (2.1)] in the following
sense.
Let 
H�< ·� · >� be a real Hilbert space with distributions Ph � P0 for

each h ∈H. The likelihood is given by

log
dPh

dP0
= L
h� − �h�2/2�(2.3)
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where h → L
h� is a linear centered Gaussian process w.r.t. P0 and covariance
Cov
L
h1��L
h2�� =< h1� h2 >; see Strasser (1985), Section 68. In the case
of (2.1) the process L
h� is just the stochastic integral L
h� = ∫

h
u�B0
du�.
Another example similar to (2.1) is the Gaussian white noise shift model which
was analyzed by Drees and Milbrodt (1991, 1994), for instance.
Since the present results only use the likelihood structure (2.3) we will

consider an arbitrary Gaussian shift G. The benchmark for testing the null
hypothesis �Pn

0� can easily be calculated. Notice that the Neyman–Pearson
envelope power function at level α and sample size n for �Pn

0� against �Pn
h�

is given by

β1
h�n�� = φ
n1/2�h� − u1−α�(2.4)

and its two-sided counterpart for unbiased testing [see Example 1.1(b)] is just

β2
h�n�� = �
n1/2�h� − u1−α/2� +�
−n1/2�h� − u1−α/2��(2.5)

where u1−α = �−1
1− α� denotes the 
1− α�-quantile of the standard normal
distribution function �.
Within an arbitrary Gaussian shift we will now show that the power func-

tion of any test is almost flat except for certain directions given by a finite
dimensional subspace of alternatives. Let V⊥ ⊂H denote the orthogonal com-
plement of a linear subspace V ofH. Due to the stability of the Gaussian shift
we have βi
h�n� = βi
n1/2h�1� for i = 1�2 and we will restrict ourselves first
to n = 1.

Theorem 2.1. Let φ be any test with EP0

φ� = α, 0 < α < 1, for the null

hypothesis �P0� of the Gaussian shift G. For each � > 0 andK > 0 there exists
a linear subspace V ⊂H of finite dimension with

sup
{�EPh


φ� − α�� h ∈ V⊥� �h� ≤K
} ≤ ��(2.6)

Moreover the following upper bound:

dim
V� − 1 ≤ �−1α
1− α�( exp (K2)− 1)(2.7)

holds for the dimension of V which is independent of the test φ.

Remark 2.1. (a) Compared with (2.4) or [2.5] the power of φ is poor on
V⊥ ∩ �h� �h� ≤ K�. Notice that the envelope power functions (2.4) [(2.5)] are
attained by one-sided (two-sided) Neyman–Pearson tests, respectively.
(b) By Lemma 2.1 below, the total amount of squares of the power higher

than α of any test is limited for orthonormal directions. Thus the statistician
has to decide how he can distribute his power on different underlying direc-
tions. The directions of alternatives and their subspaces stand for preferences
which should reflect the priority of the given experiment. The restriction to
some important preferences can be helpful in practice.
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Lemma 2.1. Let 
hi�i∈I be an orthonormal system in the parameter space
H. For each constant K > 0 we have∑

i∈I

sup��Ethi


φ� − α�� �t� ≤K��2 ≤ α
1− α�( exp (K2)− 1)�(2.8)

Proof. We will start with a family Ki > 0� i ∈ I, of positive reals. Since
t → �Ethi


φ�−α� is continuous for each i ∈ I the function attains its maximum
at some point ti on �−Ki�Ki�. Consider now i ∈ I0� = �j ∈ I� tj �= 0� and the
L2
P0� functions,

fi� = exp (tiL
hi� − t2i /2
)− 1�(2.9)

This definition leads to Etihi

φ� − α = ∫

φfi dP0 = Cov
φ�fi�. Observe that

L
hi��i∈I0 are i.i.d. standard normal random variables underP0. Thus 
fi�i∈I0
is a system of independent random variables. By (2.3) we have E0
fi� = 0 and

0 <
∫
f2i dP0 = VarP0
fi� = exp

(
t2i
)− 1 ≤ exp(K2

i

)− 1�(2.10)

Let now βi = Cov
φ�fi�/
∫
f2i dP0 be the Fourier coefficient of φ in direction

fi. Thus there exists an L2
P0� function φr with

φ− α = ∑
i∈I0

βifi +φr(2.11)

in L2
P0� where Cov
fi�φr� = 0 holds for each i ∈ I0.
By standard L2-arguments we have

∑
i∈I0

β2i

∫
f2i dP0 =

∑
i∈I0
Var
βifi�

= Var( ∑
i∈I0

βifi
) ≤ Var
φ− α�

= E0
φ2� − α2 ≤ α
1− α��

(2.12)

Statement (2.12) combined with (2.10) now implies the result if we put Ki =
K. ✷

Proof of Theorem 2.1. Let � and K be fixed. Below we can construct
by induction an orthonormal system 
hi�i∈� in H, linear subspaces Vn =
sp
h1� � � � � hn�, generated by h1� � � � � hn with V0 = �0�, and a sequence of
reals 
ti�i∈�, �ti� ≤K, with the following properties: for each n ≥ 0 we have


sup��Eth
φ� − α�� �t� ≤ K� h ∈ V⊥
n � �h� = 1��2

≤ 
Etn+1hn+1
φ� − α�2 + �/2n+1

= � an+1 + �/2n+1�
(2.13)

According to Lemma 2.1 we have an → 0 as n → ∞. Let now m denote the
smallest positive integer with am + �/2m ≤ �. Thus we arrive at


m− 1�� ≤
m−1∑
j=1


aj + �/2j�

≤ α
α− 1�
exp
K2� − 1� + ��

(2.14)
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If we choose V = Vm−1 then our construction (2.13) implies (2.6) and (2.7)
follows from (2.14). ✷

Different tests will now be compared by the examination of their level points
along one-parametric subalternatives 
Pth�t∈�, where h ∈ H is a normalized
direction with �h� = 1. Let β be a level with α < β < 1. For instance, 1 − β
may be the error probability of second kind which is just acceptable. The level
point (lp) of a test φ in direction h is (up to the sign) the smallest distance �s�
from the null hypothesis zero where the power β is attained, namely

lp
φ�β�h�� = inf��s�� Esh
φ� ≥ β�(2.15)

[and let (2.15) be infinite if the power is always below β]. In addition, let
lp1
β�n� and lp2
β�n� be the level points of the envelope power function βj
of (2.4) and (2.5), respectively, which actually belong to one-sided or two-sided
Neyman–Pearson tests for j = 1�2. Theorem 2.1 has further consequences.
We will only treat β2
·� in Lemma 2.2(b) and their level points lp2
·�. The
results for one-sided tests are similar.

Lemma 2.2. Let φ� � → �0�1� be any test for the Gaussian shift with
EP0


φ� = α.
(a) For each � > 0 and K > 0 there exists a linear subspaceW ⊂H of finite

dimension with
�Eh
φ� − α�
β1
h�1� − α

≤ �(2.16)

for all h ∈ 
W⊥ \ �0�� ∩ �h� �h� ≤K�.
(b) For each constant C > 0 and α < β < 1 there exists a linear subspace

U ⊂H of finite dimension with

lp
φ�β�h�
lp2
β�1�

≥ C(2.17)

for all directions h ∈ U⊥ ∩ �h� �h� = 1�. The dimension of the subspace U is
bounded by some constant k
α�β�C� which is independent of the test φ.

Proof. (a) The power function (2.4) admits a Taylor expansion,

β1
th�1� − α = t
·
�
−u1−α� + o
t�(2.18)

for each h� �h� = 1, at t = 0. If the assertion (a) is violated then there exists
an � > 0 such that (2.16) does not hold for each subspace of finite dimension.
There exists a sequence gi �= 0 of orthogonal elements in H, �gi� ≤K, with

�Egi

φ� − α� ≥ �
β1
gi�1� − α��(2.19)

Define Ki = �gi� and hi = K−1
i gi. Obviously we have Ki → 0 as i → ∞ by

(2.6). On the other hand we may apply (2.12) for ti =Ki which yields
∞∑
i=1

(�Egi

φ� − α�(exp(K2

i

)− 1)−1/2)2 ≤ α
1− α��(2.20)
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Since 
β1
gi�1� − α�
exp
K2
i � − 1�−1/2 → ·

� 
−u1−α� by (2.18) the statement
(2.19) contradicts (2.20) and part (a) is proved.
(b) The result and (2.17) immediately follow from Theorem 2.1. ✷

A further Gaussian shift model is the Wiener process with noise B
t� +∫ t
0 h
u�du� 0 ≤ t ≤ 1, where in contrast to (2.1) all L2
��
0�1�� functions h
serve as parameters. For this model the minimax testing problem and the
minimax rate of testing are discussed in detail; see Ingster (1993) and Lep-
ski and Spokoiny (1999) and references therein, for instance. As conclusion it
is well known that H0 = �h = 0� and alternatives which are too large can-
not be distinguished in the minimax sense. Under extra conditions given by
smoothness parameters for h, the minimax rate of testing is established in
the literature.
The following condition is necessary for the minimax distinguishability of

�h = 0� and alternatives � � for each A > 0 the intersection � ∩ �h ∈
L2
��
0�1��� �h�2 = A� includes only a finite number of orthogonal vectors. We
will point out that this result [see Burnashev (1979), page 114 and Ingster
(1993), Theorem 2.3] is related to the present results. Notice that Lemma
2.1 yields a lower bound for the minimax bound for testing �h = 0� versus
�hi� 1 ≤ i ≤ M� where hi are M mutually orthogonal elements of L2
��
0�1��
with �hi�2 = A. Let m = min�EPhi


φ�� 1 ≤ i ≤ M� be the minimax power of
a test φ with EP0


φ� = α. Then Lemma 2.1 implies

M
m− α�2 ≤ α
1− α�
exp
A� − 1��(2.21)

Thus the minimax bound of the sum of error probabilities of first and second
kind is given by

α+ 
1−m� ≥ 1− 
α
1− α��1/2
M−1
exp
A� − 1��1/2�(2.22)

which is slighly sharper than the related bound of Burnashev [(1979), Corol-
lary 2]. After the obviously missing brackets are inserted, the formula of Bur-
nashev reads as

α+ β
α�S� ≥ 1− 1
2 sup

A

√
M−1
A�
exp
A� − 1��(2.23)

which follows his notation. The inequality (2.22) holds for every Gaussian
shift. So far the present results are related to nonparametric minimax testing.

3. A discussion about global power functions. The results for the
limit model (2.1) given in Section 2 have some important consequences for the
goodness of fit testing problem on the real line for fixed sample size n; see
Example 1.1. One might have the impression that the situation for the limit
model (2.1) of Example 1.1 may be worse or better fixed sample size than the
model. Our next example shows that it is here neither better nor worse in
general, if all nonparametric alternatives have equal rights. Without loss of
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generality we will discuss goodness of fit tests for the uniform distribution on
the unit interval 
0�1� for H0 given in (1.1).
Throughout, let Ph be the distribution of (2.1) and let

G = 
C�0�1���
C�0�1��� �Ph� h ∈H��(3.1)

with H = L02
��
0�1�� be the Brownian bridge shift model. Since C�0�1� is a
polish space we can find a Borel isomorphism T� C�0�1� → � on the real line,
see Parthasarathy [(1967), Section 2, Theorem 2.12].
The mapping T is one-to-one with measurable inverse. After an obvious

manipulation with inverse distribution functions we may assume that

Q0� = ��
0�1� = � 
T�P0�(3.2)

is the uniform distribution on 
0�1�. Setting
Qh = � 
T�Ph�(3.3)

we will now consider the submodel F = ����� �Qh� h ∈H�� with
dQh

dQ0
= exp
L
h� ◦T−1 − �h�2/2�

of all continuous distributions on the real line and goodness of fit tests for (3.2)
at sample size n. In this connection the familiar normalization of alternatives
with scale factors n−1/2 is appropriate since the Neyman–Pearson power bound
for testing Qn

0 versus Q
n
h/

√
n
is still �
�h� − u1−α� which is independent of n.

Notice that t → Qth� t ∈ �, is an ordinary exponential family of distributions
on the real line for fixed direction h. It is remarkable that in this case the
results of Section 2 hold uniformly w.r.t. the sample size n.

Theorem 3.1. (a) Let φn� �n → �0�1� be any test with EQn
0

φn� = α. For

each constant K > 0 the inequality
∑
i∈I


sup�∣∣EQn
thi/

√
n

φn� − α

∣∣� �t� ≤K��2 ≤ α
1− α�
exp
K2� − 1��(3.4)

holds uniformly in n and φn. The dimension restriction of Theorem 2.1 holds
uniformly in n and φn for the rescaled family of order n−1/2.
(b) For each α < β < 1 and C > 0 the following results hold for the level

points lp
φn�β�h� of φn (2.15) with respect to �Qn
th� t ∈ �� and the level points

lp2
β�n� of their upper envelope power function at sample size n. There exists
a linear subspace U ⊂H of finite dimension with

lp
φn�β�h�
lp2
β�n�

≥ C(3.5)

for all directions h ∈ U⊥ ∩ �h� �h� = 1�. In this case the bound k
α�β�C� of
the dimension of U is the same as in Lemma 2.2(b) and it is now independent
of φn and the sample size n.
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Proof. The proof follows from Lemma 2.1 and Lemma 2.2(b). We will
show that the bound (3.4) and the bound on the dimension of U can be made
independent of the sample size. Notice first that 
y1� � � � � yn� → 
T
y1�� � � � �
T
yn��, defined on the space C�0�1�n → �n, is a sufficient statistic. Thus the
new tests

ψn
y1� � � � � yn� = φn
T
y1�� � � � �T
yn��(3.6)

on C�0�1�n have the same power w.r.t. Pn
h as φn w.r.t. Q

n
h and they have the

same level points. On the other hand the dimension can be reduced by the
statistic S� C�0�1�n → C�0�1�,

S
y1� � � � � yn� = n−1/2
n∑
i=1

yi(3.7)

which is sufficient for �Pn
h� h ∈H�, refer to (2.1)–(2.3). Notice that if

B

1�
0 
·�� � � � �B
n�

0 
·�
are independent Brownian bridges we have

n−1/2
n∑
i=1

(
B


i�
0 
t� +

∫ t

0
h
u� du) = n−1/2

n∑
i=1

B

i�
0 
t� + n1/2

∫ t

0
h
u� du(3.8)

and consequently

� 
S�Pn
h� = Pn1/2h�(3.9)

(This is just the stability of the Gaussian shift G.)
By the sufficiency of S we may choose versions of the conditional expecta-

tions ψ0 = E·
ψn�S� of ψn which are independent of the parameter h. Hence

EPn
h

ψn� = EPn1/2h


ψ0�(3.10)

follows. This equation together with Lemma 2.1 establishes our assertion (a).
(b) As further consequence of (3.10) one obtains the identity

lp
ψn�β�h� = n1/2lp
ψ0� β� h�(3.11)

for the level points in direction h. On the other hand, the level points of the
upper envelope functions are obviously given by

lp2
β�n� = n1/2 lp2
β�1��(3.12)

Now we may choose the subspace U according to Lemma 2.2(b) for the test
ψ0. For h ∈ U⊥, �h� = 1, we see that the factor n1/2 of (3.11) and (3.12) can
be cancelled and we have

lp
ψn�β�h�
lp2
β�n�

= lp
ψ0� β� h�
lp2
β�1�

≥ C�(3.13)

which implies the desired result (3.5). ✷

The present result gives rise to various comments and conclusions. Follow-
ing the labels 1 and 2 of our introduction we will now summarize proposals
and results which are cited from the literature.
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1. Since the asymptotic Brownian bridge model (2.1) is much the same as the
(suitably normalized) finite sample nonparametric testing problem we will
restrict ourselves to the limit model (3.1). Below, let φ be a goodness of
fit test on C�0�1�. In general it is hard analytic work to get information
about those finite dimensional linear subspaces which are prefered by φ.
However, many results are known for various concrete tests.
(a) If φ is an integral test of Cramér–von Mises or Anderson–Darling

type, then often a global principle component decomposition of the test
statistic and its power function is available; see Anderson and Darling
(1952), Durbin and Knott (1972), Shorack and Wellner [(1986), Chapter 5]
and see also Neuhaus (1976), Milbrodt and Strasser (1990), Drees and Mil-
brodt (1994).
(b) Two-sided goodness of fit tests φ with centrally symmetric and con-

vex acceptance regions have a more general structure than integral tests.
Since there is no principle component decomposition of their test statistics
available, Milbrodt and Strasser (1990) proposed a principle decomposition
of the curvature of the power function at h = 0 in H. A Taylor expansion
of the power function along the present exponential family is given by

EPth

φ� = α+ �h�Th�t2/2+ o
t2�� t ∈ �� h ∈H(3.14)

at t = 0 where T� H→H is a Hilbert–Schmidt operator with

T
g� =
∞∑
i=1

λi < hi� g > hi �(3.15)

See Janssen (1995) for the most general result. In various cases the spec-
tral decomposition and their eigenvalues λi ↓ 0 can be derived (at least
approximately or by numerical methods). In his 1990 paper Strasser ob-
tained global extrapolations for power functions

t → EPth

φ�(3.16)

of tests φ with centrally symmetric acceptance regions which are based
on the curvature < h�Th >, �h� = 1. This procedure yields sharp upper
bounds for (3.16) given the curvature < h�Th > which are attained in
the class of tests with centrally symmetric acceptance regions. Using his
bounds it is easy to see that within this class of goodness of fit tests the
global power function becomes flat if the curvature is small. More precisely,
let gn ∈H be a sequence of parameters with �gn� = 1 and let tn → t� t > 0,
be convergent. Then < gn�Tgn >→ 0 implies here

EPtngn

φ� → α as n→ ∞�(3.17)

The program works, for example, for Kolmogorov–Smirnov tests. The curva-
ture of the two-sided Kolmogorov–Smirnov test was calculated in Milbrodt
and Strasser (1990) by numerical methods and it was analytically treated
by Janssen (1995). Together with the global extrapolations, it is now known
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that the tests are roughly speaking most sensitive to deviations of the me-
dian, which has a nice practical interpretation. Its first principal component
dominates all other directions and it does not pay equal attention to further
(finitely many) directions as Neyman’s smooth tests do by their construc-
tion. The method works for one- or two-sample testing problems. A similar
interpretation is true for one-sided Kolmogorov–Smirnov tests, see Anděl
(1967) and Hájek and Šidák (1967) who obtained its gradient. If one likes
to apply a goodness of fit test of Kolmogorov–Smirnov type then an adjust-
ment of principle components may be of interest. An adjustment by weight
functions was proposed by Janssen and Milbrodt (1993) for survival tests.
However, the argument (3.17) does not hold for arbitrary tests and it cannot
be used to prove Theorem 2.1. General questions and problems concerning
the extrapolation of local quantities of tests to global power functions will
be considered in a forthcoming paper elsewhere.
In order to be concrete, consider again the two-sided Kolmogorov–

Smirnov (KS) goodness of fit test φ
n�
KS of asymptotic level α for Example

1.1(b). Let

φ

n�
KS = 1� sup

0≤t≤1
�n1/2
F̂n
t� − t�� > cα�(3.18)

denote this test at sample size n for ��
0�1� versus unspecified continuous
alternatives, where F̂n is the empirical distribution function. Under con-
tiguous local alternatives of order n−1/2, given by alternatives with tangent
h ∈ L02
��
0�1��, the asymptotic power function of φ
n�

KS is just

P
 sup
0≤t≤1

�B0
t� +
∫ t

0
h
u�du� > cα��(3.19)

see Milbrodt and Strasser (1990), page 3, for details. The curvature <
h�Th > of the power function is greater than zero and the power is strictly
larger than the level α = P
sup0≤t≤1 �Bo
t�� > cα� for all nontrivial direc-
tions h �= 0. This fact is labeled as √n-consistency of the sequence of tests.
Since (3.19) is close to one for tangents sh with s ∈ � large enough we see
that

lim sup
n→∞

lp
φ
n�
KS�β�h�

lp2
β�n�
<∞(3.20)

holds for the level points for each β < 1 and each direction h �= 0; see also
Lemma 3.1 below.

2. Since every test has a preference for some finite dimensional subspace, one
may be interested in the construction of tests which have good performance
on a given finite dimensional linear subspace of alternatives U; see also
Remark 2.1. In this case Milbrodt and Strasser (1990) proposed Neyman’s
smooth tests; see Neyman (1937) and the discussion below. Tests based
on density estimators were established by Neuhaus (1988). One-sided non-
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parametric tests for given cones of alternatives were proposed by Behnen
and Neuhaus (1989). All these tests are typically admissible within full
nonparametric models and no test will majorize the power functions of
another tests for all directions. Results of this kind follow from the modern
decision theory of Le Cam.

Data driven tests. As mentioned above, Neyman’s smooth tests can be
recommended for two-sided testing problems when � is an exponential family
with k-dimensional parameter space. These tests are asymptotically minimax
and likelihood ratio tests and they are therefore well motivated. The problem is
now the choice of the dimension k in nonparametrics; see, for instance, Bickel
and Ritov (1992) for a recent discussion of this subject. There exists a series of
papers about data driven versions of Neyman’s smooth tests with estimated
order k; see Kallenberg and Ledwina (1995), Inglot and Ledwina (1996), In-
glot, Kallenberg and Ledwina (1998) and earlier references therein. These au-
thors show that their data driven tests are asymptotically equivalent to some
Neyman–Pearson tests (given by the first direction of their sequence of orthog-
onal directions of alternatives) under contiguous local alternatives and that
they are intermediate efficient under noncontiguous alternatives within their
concept of efficiency. Moreover, the shortcoming (difference between power and
the power of the most powerful tests) vanishes for intermediate alternatives
even if the level α tends to zero. The convergence of the level α → 0 is part
of the notion of intermediate efficiency of tests. According to Theorem 3.1 also
each adaptive test distributes the ”total amount of power” on orthogonal di-
rections of the present alternatives. This is not a mathematical contradiction
since nothing is said about noncontiguous alternatives in the preceeding sec-
tions.
In a brief discussion about data driven tests, and Kolmogorov–Smirnov

tests, I will try to clarify this point again for the situation of Example 1.1(b)
and P0 = ��
0�1�. Roughly speaking, different definitions of efficiency yield
different answers. Let us start with the following concept.
(i) Pitman efficiency (fixed level α and local alternatives of order n−1/2) is just

the point of view of Theorem 3.1; see also Hájek and Šidák (1967). Consider a
sequence φn of (perhaps data driven) tests which is asymptotically equivalent
to a sequence of Neyman–Pearson tests φ
n�

NP, in the sense that φn −φ

n�
NP → 0

holds in �n�
0�1�-probability as n → ∞. Let φ
n�
NP be n

−1/2 Pitman-efficient for a
parametric family with tangent h0 �= 0. In contrast to (3.19) the asymptotic
power function of φn is just α under all local alternatives of order n−1/2 given
by h0-orthogonal tangents h with

∫
h0h d��
0�1� = 0, since the asymptotic

relative Pitman efficiency of φn in direction h is then zero; see Hájek and
Šidák (1967). Consequently, we have in comparision with (3.20),

lim
n→∞

lp
φn�β�h�
lp2
β�n�

= ∞(3.21)

for all o < α < β < 1 and h0-orthogonal tangents h.
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Thus the KS test is asymptotically superior in the Pitman sense for these
types of directions and tests of type φn cannot be supported by the present
asymptotics. Also the shortcoming of KS-type tests vanishes for fixed α and
all intermediate alternatives since the power function then converges to one;
see Lemma 3.1 below.
(ii) Intermediate efficiency (level αn → 0 and alternatives with β < 1). In

this case, data driven Neyman’s tests reach the optimum power for certain
non-contiguous alternatives given by infinitely many different directions. The
KS-test is only intermediate efficient (and local Bahadur efficient, respectively)
for regression models in location with double exponential error variables, see
Inglot and Ledwina (1996) and Nikitin (1995), Section 6.3. Note that this
family is just the least favorable one parameter submodel for the median
functional.
(iii) Hodges–Lehmann efficiency (fixed level α and fixed alternatives with

β = βn → 1). Nikitin [(1995), Section 2.7,] pointed out that somewhat unex-
pectedly the KS-test is overall efficient.
The present results (i)–(iii) look like a paradox. First, I will comment the

different results for the KS-test. The key is the level αwhich heavily influences
the quality of the KS-test. For moderate values of α (α = 0�1 or 0�05) it looks
more like a goodness of fit test than for very small α. If α remains bounded
away from zero, then everything is fine for intermediate alternatives; see also
Lemma 3.1. If α → 0 holds, the curvature operator T of (3.15) collapses and
behaves like a one-dimensional projection, see Janssen (1995). Together with
the global extrapolation of Strasser (1990) this phenomenon confirms the dom-
inating role of the first principal component of the power function and it may
explain the poor intermediate and local Bahadur efficiency on a space with
codimension one.
On the other hand, data driven Neyman’s tests heavily rely on the assump-

tion αn → 0 which produces the intermediate efficiency. In contrast to these
different results the efficiency concepts coincide for instance for linear rank
tests since here the Pitman efficiency is independent of the level α; see Nikitin
(1995).
What can be done in practice? I think that data driven tests are worth-

while also if α is bounded away from zero. However, it is my feeling that
in the asymptotic set-up one should then use estimators Sn� �n → � of
the dimension k of Neyman’s smooth test so that �n�
0�1�
Sn = 1� does not
converge to one under the null hypothesis. This stands in accordance to the
work (mostly about two-sample testing) of Neuhaus (1988) and Behnen and
Neuhaus [(1989), page 120] who proposed a bandwidth of the kernel density
estimators for data driven tests which does not converge to zero. They men-
tioned that otherwise their theory collapses. It is my feeling that level points
and the global approach provide good tools for discriminating between and
comparing different procedures.

Lemma 3.1. Let Pt be distributions on 
0�1� with distribution functions
Ft and P0 = ��
0�1�. Suppose that there exists some x ∈ 
0�1� and Kx �= 0
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[typically Kx = ∫ x
0 h
u�du] with Ft
x� = F0
x� + tKx + o
t� as t → 0.

Let tn = an/
√
n be real sequences with tn → 0 and �an� → ∞. Then for fixed

level α,

EPn
tn

φ
n�
KS� → 1

holds as n → ∞. The same result is true for αn → 0 whenever cαn/an → 0.
Recall from Hájek and Šidák [(1967), page 182] that αn ∼ 2 exp
−2c2αn� holds.

Proof. By the central limit theorem for arrays of binomial variables we
have asymptotic normality of

√
n
F̂n
x�−Ftn


x�� with mean zero and variance
x
1− x� under Pn

tn
. Thus t−1n 
F̂n
x� −Ftn


x�� → 0 follows in probability. This
implies t−1n 
F̂n
x�−x� →Kx and �

√
n
F̂n
x�−x�� → ∞, both in probability. ✷
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