
Global Predicate Analysis and its Application to Register Allocation

David M. Gillies, Dz-thing Roy Ju
Hewlett-Packard California Language Lab
11000 Wolfe Road, Cupertino, CA 95014

{ dgillies, royju } @cup.hp.com

Abstract

To fully utilize the wide machine resources in modern

high-performance microprocessors it is necessary to
exploit parallelism beyond individual basic blocks. Archi-
tectural support for predicated execution increases the
degree of instruction level parallelism by allowing instruc-
tions from dtgerent basic blocks to be converted to
straight-line code guarded by boolean predicates. How-
ever; predicated execution also presents signijcant chal-
lenges to an optimizing compiler For example, in live

range analysis, a predicated definition does not necessarily
end the live range of a virtual register

This paper describes techniques to analyze the relations
among predicates in order to improve the precision and
effectiveness of various compiler analysis and transforma-
tion phases in the presence of predicated code. Our predi-
cate analysis operates globally to obtain relations among
predicates. Moreover we analyze control flow and predi-
cation in a single unifiedframework. The result can be que-

ried by subsequent optimization and analysis phases.

Based on this framework, we extend a traditional method

to a predicate-aware register allocator which takes global

predicate relations into account. We have implemented the
proposed algorithms to effectively reduce register pressure.

Our experimental results show 24.6% of a large test suite
obtain, on average, 20.71% better register allocation due

to the algorithms presented in this paper:

1 Introduction

VLIW (Very Long Instruction Word) and superscalar
architectures can exploit significant amounts of instruction

level parallelism (ILP) to achieve improved performance in
application programs. Parallelism within individual basic
blocks are generally insufficient to fully utilize wide
machine resources. Predicated execution 19, 111 is an
architectural model to exploit parallelism across basic
blocks. In this model instructions from different basic
blocks are converted to straight-line code guarded by bool-
ean predicates. Architectural support for predicated execu-
tion varies from general support for predication in the

Cydra 5 [161 and HPL PlayDoh architectures [1 l] to condi-
tional skip instructions in the HP PA-RISC architecture [8],
conditional nullify instructions in the Sun SPARC architec-
ture [19], and conditional move instructions in the DEC

114

Richard Johnson, Michael Schlansker
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94304
{ rjohnson, schlansk } @hpl.hp.com

Alpha architecture [3]. In a general predicated execution
model, the execution of an instruction is guarded by a bool-

ean qualifying predicate. Each qualifying predicate can be
regarded as a l-bit predicate register. An example of a
predicated instruction is

x=y+z if p

where p is the qualifying predicate which controls whether
the instruction executes and updates the architectural state.
To explore predication, a compiler generally incorporates a
technique called if-conversion, which eliminates branch
instructions and converts affected instructions to

appropriate predicated forms. If-conversion effectively
converts control flow into data flow [I].

However, in order to achieve these benefits, predication
presents a challenge to many conventional analysis and
transformation phases performed in an optimizing
compiler. For example, consider the code in Example 1.

Example 1:
Sl: p,q = cmpp.un.uc (a < b)
s2: x=..

s3: y=..

s4: ..=x

s5: ..=y

if true

ifp ’

if q

if p

if q IT

The cmpp instruction sets p true and q false if the
condition (a < b) is true and reverses these values if the
condition is false. (The details of the architectural model
are described in Section 2.) Variable x is defined and used
under p and variable y is defined and used under q. A
conventional live range analysis would find the live range
of x from S2 to S4 and the live range of y from S3 to S5.
Based on this analysis, a traditional register allocator

would conclude that x and y interfere with each other and
subsequently assign different physical registers to them.
However, since p and q are complementary, x and y will
never hold valid values at the same time and thus they can
share the same physical register. The focus of this work is
to develop a practical and efficient mechanism to track
global predicate relations in an entire procedure. This
mechanism can be used to improve data flow analysis and
optimizations in the presence of predicated code. As an
important application, we demonstrate how a register
allocator can benefit from understanding and utilizing the
predicate relations.

1072-4451/96 $5.00 0 1996 IEEE

The IMPACT compiler uses a predicate hierarchy graph
(PHG) to track the boolean equations for all of the
predicates in a hyperblock [14]. The scope of their
predicate analysis is a hyperblock and does not extend

globally. When a companion data structure, like PHG, is

maintained with the code, then it may require updating
whenever the program is transformed. The work in [181

proposes a reverse if-conversion scheme to map predicates
from the data flow domain back to the more familiar
control flow domain. A major drawback of this approach is
that, during the remapping process, some originally non-
existent control paths may be created. This typically occurs
when code is if-converted and then permuted by instruction
scheduling. When this code is reverse if-converted, non-

existent paths may cause conservative treatment in
subsequent analyses and transformations. The work in [7]
solves this register allocation problem by representing
predicates as P-facts -- logically invariant expressions. The

mechanism concludes that two live ranges do not interfere
if the intersection of the two sets of P-facts can be
simplified to false using a symbolic package. This
approach is also restricted to the scope of a hyperblock,
and may have limited practicality given the potential
exponential compilation time behavior with respect to the

number of predicates. The authors in [lo] propose a
representation called predicate partition graph to track the
relations in predicates, and they describe how to construct a
partition graph for the predicates in a hyperblock. Their

work uses the partition graph to provide information to
support data flow analysis.

The false interference in Example 1 can be avoided by a
predicate analysis which analyzes the local predicate
relations in the straight-line code between two branches.
The code fragment in Example 2 shows the importance of
recognizing predicate relations in a global scope, where
code may be partially if-converted based on the
profitability model in an if-converter. Both of x and y are
defined and used in different basic blocks. To check for
interferences, one would propagate the use of x under p to
the else-clause towards the definition of x under r. While
crossing the definition of y under s during this process, an
interference will be assumed between x and y unless one
can assert that p and s are disjoint. Since p and s are defined
in the then- and else- clauses, respectively, p and s can
never both be true at the same time. However, it requires
global analysis to systematically take control flow into

account to assert the disjointness between p and s. This
relation cannot be captured by a hyperblock or basic block
based analysis. Further, with global predicate analysis, one
can also assert that p and r are disjoint. Therefore, the
definition of x under r can never reach the use of x under p,
and this definition is dead.

Our work is based on the predicate partition graph in
[IO]. The main contributions of our work are as follows:

(1) We uniformly track relationships describing both
control flow and explicit uses of predicates at a global

scope by mapping them to a single partition graph. To the

best of our knowledge, this is the first global predicate

analysis framework. (2) We have developed and

implemented practical algorithms for global predicate

analysis and global predicate-aware register allocation
using a generalized data flow framework. (3) We have
demonstrated the effectiveness and practicality of this
approach through experiments which show significant
benefits of predicate-aware register allocation.

Example 2:
p, q, r, s = false

if (. .) then {

p,q = cmpp.un.uc (...)

x = . .

} else {

r,s = cmpp.un.uc (...)
x = . .
y = . .

if true

if p

if true
if r
if s

1
. . = x if p

. . = y if s

The rest of the paper has the following structure:
Section 2 illustrates the architectural model for predication.

Section 3 provides a brief overview of the predicate
partition graph which is used to track the relations of
predicates. Section 4 discusses the details on how to
construct a single connected partition graph including both
control flow and explicit predicates in an entire procedure.
Section 5 presents the details of a predicate-aware register
allocator, which exploits the relations of predicates during

live range analysis and interference graph construction.
Section 6 shows the experimental results in comparing the
predicate-aware register allocator against a conventional
register allocator. Section 7 provides conclusions.

2 Architectural Model

In this paper, we will assume the architectural support
of general predicated execution model provided in the HPL
PlayDoh architecture [I 11, in which the execution of an
instruction can be guarded by a qualifying predicate. The

following form of compare instructions is provided to set
predicates.

pl, p2 = cmpp.<dlxd2> (a ret b) if qp

Predicates pl and p2 are two destination predicates. Each
of <dl> and <d2> is a two-letter descriptor that specifies a
type and mode for the compare instruction. There are four
comparison types: unconditional (u), conditional (c), par-
allel-or (o), and parallel-and (a), specified by the first letter

115

of the descriptor. Each type has both a normal mode (n)

and a complement mode (c), specified by the second letter

of the descriptor. Descriptors <d I> and <d2> control desti-
nation predicates pl and p2, respectively. The condition, (a

rel b), is in the form of a logical comparison of two vari-

ables a and b, where rel can be eq, ne, It, etc. Predicate qp

is the qualifying predicate.
To simplify the discussion, for the unconditional and

conditional types, we assume they are always generated in
form of cmpp.un.uc and cmpp.cn.cc, respectively. There-
fort, for a comparison with the unconditional type, the val-
ues of pl and p2 are complementary. If the comparison

type is and (or) and qp is true, the an (on) target predicate
(say pl) is equal to the result of (a rel b) “and’ed (“or”ed)

with the old value of pl.

Table 1. Behaviors of predicates in compare instructions

qp (a rel b) un UC cn cc on oc an ac
__----------------------------
F F F nc nc nc nc nc nc
T G T F T F T nc nc F
T F F T F T nc T F nc

Table 1 is the summary on how the destination predi-
cates are set in these compare instructions. In the table, T

and F stand for true and false values, respectively. X means

“don’t care” and nc means that the result is unchanged. We
also assume that there is a special predicate register p0,
where any read is always true and any write is discarded.

P5

S6

(4

11: p2, p3 = cmpp.un.uc (sl cond) if true
12: p4 = cmpp.uc (sl cond) if true
13: S2 if p2
14: p5 = cmpp.uc (s2 cond) if p2
15: p4 = cmpp.on (s2 cond) ifp2
16: S3 if p3
17: S5 ifp5
18: S4 if p4
19: S6 if true

(b)

Figure 1. (a) Control flow graph and (b) if-converted code.

Figure 1 shows an example, which contains the original
control flow graph and the if-converted code. The branch
condition of basic block containing Sn is represented as
(Sn cond). If-conversion converts all six basic blocks into a

single basic block with predicated code. Each of the switch

points at the respective basic blocks containing Sl and S2

is converted to a compare instruction with an unconditional
type. The merge (or confluence) point at the basic block
containing S4 is converted to the combination of one com-
pare instruction with an unconditional type and one com-
pare instruction with an or type.

3 Overview of Predicate Partition Graph

In this work, we use the notion of predicate partition

graph proposed in [lo] to track the relations among predi-
cates. To simplify the discussion, we assume that predi-
cates are in static single assignment (SSA) form, where
each predicate is statically defined no more than once.
However, this is not required by our implementation. For
the example in Figure 1, p4 is defined twice. To describe
references to p4 in SSA form, the related definitions and
uses are translated into the following intermediate form.

~4-1 = cmpp.uc (...) if true
. . .

px = cmpp.un(s2 cond) if p2

~4-2 = ~4-1 I px if true

s4 if ~4-2

We use the concept of an execution set to describe the
relations among predicates. We first define the following
notations for straight-line code and extend them to
incorporate control flow in the next section. An execution

truce includes all of the instructions being executed from

the beginning to the end in straight-line code. A trace
belongs to the domain of predicate p, if all of the
instructions on this trace are executed when p is true. The
domain of p includes all such traces. If unambiguous, we
will simply use p to mean the domain of p. A purfition of a
predicate is a division of the domain of the predicate into
multiple disjoint subsets, where the union of these subsets
is equal to the domain. For example, the pictorial view of
the relations among the predicates in instruction
pl,p2=cmpp.un.uc (. . .) if p3 is in Figure 2.

When p3 is true, the values of pl and p2 are always

complementary. In another words, no trace exists where pl
and p2 are both true. One can also derive that if pl or p2 is
true, p3 must be true.

GiGFrs
Figure 2. Set relations between predicate domains.

116

In a predicate partition graph, G=(V, E), each node p in
V represents predicate p and each edge (p, q) represents
that there exists a partition in p such that q is a subset in

this partition. An edge in G is directed and the edges cre-
ated from the same partition are given the same label. For
example, partition p0 = pl U p2 would be represented by
two edges: PO->pl and PO->p2, where both edges are
assigned the same label. G is a directed acyclic graph, and
there may be multiple edges between two given nodes due
to different partitions. A partition graph is complete if the
universal set, p0, is the unique root. This makes every node

reachable from the root as is required by the algorithms

used in predicate analysis. Because the partition graph
approximates predicate relations, one may construct differ-
ent partition graphs with varying accuracy for a single code
sequence.

Figure 3. A partition graph for the example in Figure 1.

Figure 4. Domains of predicates in Figure 1.

A partition graph for the if-converted code in Figure
l(b) is shown in Figure 3. The pictorial view of the parti-
tions shown in Figure 4 helps understand how domains are
partitioned. The root of the partition graph, p0, is parti-
tioned into p2 and p3 in instruction II. Since instructions 11
and 12 both have an unconditional compare type and check
for the same condition, these two instructions are essen-
tially value congruent. Therefore, p3 and ~4-1 always have
the same value and can be mapped to the same predicate
node. In 14, p2 is partitioned into p5 and an implicit predi-
cate px, which is created to complete this partition. In 15,
the union of px and ~4-1 makes up the domain for ~4-2.
We can also find that the complement of ~4-2 is p5 and
generate another partition with p0 as the parent predicate
and ~4-2 and p5 as the child predicates. This step is neces-
sary to make p4-2 reachable from the root.

Once a partition graph is constructed, one can use sim-

ple graph traversal algorithms to support a number of dif-
ferent queries on predicate relations. Readers are referred
to [lo] for further details on the properties of the partition
graph and the implementation of various queries. We list

below only the queries used in our predicate-aware register
allocator.

IsDisjoint (p, q): asks whether the domain of
predicate p overlaps with that of predicate q. Two predi-
cates are disjoint if they can reach a common ancestor
through different edges of the same partition. For example,

in Figure 3, p3 and p5 are disjoint, but p2 and ~4-2 are not.

Note this is obvious from the domain relations in Figure 4,

where px is a subset of both p2 and ~4-2. It is straightfor-
wardtoextend thisquery to IsDisjoint(p,Q),where Q
is a set of predicates, and the answer is true if p is disjoint
from every predicate in Q.

LeastUpperBoundSum (p ,Q) :adds predicate pto
a set of predicates, Q. The domain of the resultant set is the
smallest superset of the union of the domain of p and the
domain of Q. The resultant set is expected to be simplified
in the way that if all of the child predicates in a partition

appear in the union of p and Q, these child predicates are

replaced with their parent predicate.
LeastUpperBoundDiff (p ,Q) : subtracts predi-

cate p from a set of predicates, Q. The domain of the result-
ant set is the smallest superset of the domain of Q
subtracted by the domain of p. For the example in Figure 3,
pxisequal to LeastUpperBoundDiff (p5,p2).

4 Global Predicate Partition Graph and its
Construction

Previous work in predicate analysis are generally based

on the scope of a hyperblock, which is an if-converted sin-
gle-entry multiple-exit control flow region. In our work,

each node in a control flow graph (CFG) is still a basic
block, which is a single-entry single-exit straight line
sequence of possibly predicated code. One advantage of
this representation is that this is the most familiar represen-
tation to compiler analyses and optimizations. We assume
that a CFG has a single start node and a single stop node.
Our global predicate analysis operates on an entire proce-
dure. Global predicate analysis provides more precise
predicate relations when predicates are defined and used in
different basic blocks.

We now extend previously defined notations to an entire
procedure. A trace includes all of the executed instructions
on an acyclic path from the start node to the end node in a
CFG. A trace belongs to the domain of predicate p, if all of
the instructions on this trace are executed when p is true.
Analogous to predicates, we define the domain of a basic
block to be all of the traces such that the basic block is exe-

cuted. Therefore, when a basic block can be reached from

117

another basic block (or vice versa), the domains of these
two basic blocks are not disjoint. This control flow reach-
ability information is expressed in a global partition graph
to track relations among basic blocks regardless of the
existence of predicates.

In order to uniformly treat control flow and predication,

we assign a predicate to each basic block. We call a predi-

cate assigned to a basic block a control predicate and a

predicate which explicitly appears in the instruction stream
a materialized predicate. A control predicate of a basic
block is viewed as a predicate combining all of the condi-
tions which control whether the basic block will be exe-
cuted or not. We perform global predicate analysis based
on building a single complete predicate partition graph
which includes both control predicates and materialized
predicates. This single partition graph allows us to uni-
formly track the semantics of conditional execution
through program branches as well as predicated execution.
Note that our if-converter assures that if a control predicate
is also materialized to a materialized predicate, they share
the same domain and are mapped to the same node in the
partition graph. This further improves the precision of the
predicate analysis.

The graph construction mechanism described below can
be invoked anywhere throughout an optimizer. This can be
done either before or after if-conversion. This flexibility is

again due to that fact that we treat control flow and materi-
alized predicates in a uniform way. Although if-conversion

is the major source of creating materialized predicates,
phases like expanding high level pseudo code may also

emit predicated code. Data flow analyses both before and
after if-conversion can be more precise for predicated code
by knowing the global relations among materialized predi-
cates.

The above discussion associates the control flow and
data flow aspects of predicates. The following two subsec-
tions illustrate the construction of a partition graph for con-
trol predicates and materialized predicates, respectively.

4.1 Handling Control Predicates

In order to analyze control flow, control predicates are
assigned to basic blocks and partitions are formed at con-
trol flow switch and merge points. Although special atten-
tion is given to the following control flow structures, our
predicate analysis handles any arbitrary control flow graph
including irreducible graphs.

Critical Edges - A critical edge is defined as an edge
whose source has more than one successor and whose des-

tination has more than one predecessor. For example, the
edge from S2 to S4 in Figure l(a) is a critical edge. At a
switch (merge) point, a critical edge prevents the use of the
destination (source) node’s control predicate as a child
predicate in the partition. This occurs because, on this criti-

cal edge, the source (destination) node does not dominate
(post-dominate) the destination (source) node. To resolve
this problem, we conceptually create a node on a critical
edge and assign an implicit predicate to the node. Note that
this edge splitting is only done at a conceptual level with-

out actually changing the CFG. With this virtual edge split-

ting, all predecessors dominate their successors at switch

points and all successors post-dominate their predecessors

at merge points. This simplifies the creation of partitions.
Note that if node p dominates or post-dominates node q, p

can always be an ancestor of q in the partition graph.
Back Edges - Back edges are those edges which com-

plete cycles in a CFG. With current techniques, if we were
to take back edges into account in predicate analysis, there
is little useful information that we can derive for predi-
cates. For example, for an if-then-else construct enclosed

in a loop, the then- and else- clauses will never both be exe-
cuted in the same iteration, but they may be in different
iterations. Therefore, the predicates assigned to the two
clauses are disjoint within a particular iteration, but not
necessarily across iterations. The results of this predicate
analysis are interpreted with back edges ignored. This has
little impact on the accuracy of the analysis. This is par-
tially due to the fact that the if-converter is already
restricted to acyclic regions. Section 5 will discuss the
approximation of data flow information through back

edges.
During partition graph construction, back edges are also

split by assigning virtual nodes to them. Our analysis is
also applicable to irreducible graphs. However, because the
back edges are selected rather arbitrarily for an irreducible
graph, the results may be less precise.

Figure 5 presents an algorithm to construct a partition
graph based on control predicates. The input is a CFG.
Edge splitting is first performed on critical edges and back
edges. Finding control equivalent nodes is not essential for
correctness, but instead improves the accuracy of predicate
analysis as predicates with equivalent domains are mapped

to the same node. We then create partitions at all program
switch and merge points to track the predicate relations.
Finally, if any non-start node does not have a parent node, a
partition is created to link it to its immediate dominator to
make the partition graph complete.

We now demonstrate how to construct the partition
graph in Figure 3 based on the CFG in Figure l(a) in anal-
ogy to an earlier discussion in Section 3 on constructing

the same graph based on the if-converted code. Node S 1 is
the start node in the CFG and is given p0 as its control

predicate. Node S6 is control equivalent to Sl and is
assigned with p0 as well. The control predicates assigned
to the rest of nodes are as shown in Figure l(a). The a par-
tition (as marked in Figure 3) is created due to the switch

point at Sl. The edge from S2 to S4 is a critical edge, and

118

px is assigned to this edge to achieve edge splitting. The b

partition is created due to the switch point at S2. The c and
d partitions are created due to the merge points at S4 and
S6, respectively.

ConstructPartitionGraphForControlPredicates(CFG) (

Create a virtual node on each critical edge or back edge

Find control equivalent nodes

Assign a predicate to each set of control equivalent nodes

for every node in the CFG (

v = current node

p = control predicate assigned to v

if(number of successors > 1)

Create a partition with p as the parent predicate and
predicates assigned to the successors as the child

predicates
if(number of predecessors > 1)

Create a partition with p as the parent predicate and

predicates assigned to the predecessors as the child

predicates, if this partition has not been generated yet

I
if a non-start node, u, has no parent, create a partition with

the immediate dominator of u as the parent predicate, and
u and an implicit predicate as the child predicates

I

Figure 5. Algorithm of constructing partition graph for
control predicates.

4.2 Handling Materialized Predicates

This subsection discusses the details of constructing a

partition graph which captures local relations among mate-

rialized predicates. The relations among materialized pred-

icates are created at each point where predicates are
defined, i.e. compare instructions. Figure 6 presents an
algorithm to construct a partition graph for materialized
predicates. The most common case of defining material-
ized predicates is a compare instruction with an uncondi-
tional type. In Figure 6, a partition is created with pp as the

parent predicate and pl and p2 as the disjoint child predi-
cates. If qp is p0, we can view that the current instruction is

guarded by bp which is the control predicate of the basic

block, and the union of the domains of pl and p2 is the
domain of bp. Therefore, we build a partition with control
predicate bp as the parent predicate. This is the key to
establish the relations between control predicates and
materialized predicates and to allow predicate analysis at a
global scope. If qp is not p0, all of the control conditions
affecting whether this instruction will be executed have
been synthesized into the definition of qp. This is ensured
in our implementation. Therefore, if qp is not p0, the union

of pl and p2 is qp and there is no need to build a partition

to link pi and p2 to bp. One can conclude that the domain
of the actual predicate (pp) guarding the compare instruc-
tion is always a subset of the domain of bp.

The other three types of compare instructions involve

updating a predicate, where the previous value of a predi-
cate affects the new predicate result. We treat these com-
pare types conservatively because they appear infrequently
and are not easily modeled by the partition graph. For a
compare instruction with a conditional type, if qp is p0,
this instruction is effectively an unconditional type and is

treated in the same way as the unconditional type. If qp is

not p0, we simply map pl and p2 to a dummy predicate

node and during queries to the predicate analysis they are
treated in a conservative manner. Note that if both of on

and oc (or an and ac) target predicates appear in a compare
instruction, we treat them being split into two single-target
cmpp’s, which are then processed separately. For an and
type compare instruction, the domain of pl is always a sub-
set of that of pl-old. For an or type compare instruction,
the domain of p 1 is always a superset of that of p l-old and
a partition is created to link pl to control predicate cp to

make the partition graph complete.

ConstructPartitionGraphForMaterializedPredicates

(instruction stream + CFG) (

for every compare instruction in CFG (
cinst = current compare instruction

qp = qualifying predicate of cinst
bp = control predicate assigned to the basic block

containing cinst
pl = the first destination predicate

pl-old = the old definition of pl if pl is an update

p2 = the second destination predicate if exists

pp = parent predicate

if(qp == p0) pp = bp else pp = qp

switch (compare type) (

case .un.uc:

Create a partition with pp as the parent predicate
and pl and p2 as child predicates

case .cn.cc:
if(qp == p0) process in the same way as a

.un.uc case
else map pl and p2 to a dummy predicate node

case .an (.ac):

Create a partition with pl-old as the parent predi-

cate and pl and an implicit predicate as child pred-

icates
case .on (.oc):

Create a partition with pl as the parent predicate
and pl-old and an implicit predicate as child predi-
cates
Create a partition with pp as the parent predicate
and pl and an implicit predicate as child predicates

I

Figure 6. Algorithm of constructing partition graph for
materialized predicates.

119

Based on the algorithms in Figures 5 and 6, the parti-
tion graph in Figure 7 is constructed to capture the global
relations for predicates in Example 2. The basic block con-

taining the if-clause is assigned with p0 as its control pred-
icate to become the root of the partition graph. The tben-
and else- clauses are assigned with p-then and p-else as
their control predicates, respectively. The initialization of

predicates to false does not create any predicate node in the
partition graph. The a partition is created at the switch
point in the control flow due to the if-then-else construct.
The b partition is created due to the compare instruction
assigning the materialized predicates, p and q, in the then-
clause. The c partition is created due to the compare
instruction assigning the materialized predicates, r and s, in
the else-clause. This partition graph tracks the global pred-
icate relation that p, q, r, and s are disjoint, which is neces-
sary to assert that x and y do not interfere with each other.

p t h!?\else
7 \ 7 \

!u b

P 4 r S

Figure 7. The partition graph for Example 2.

We have implemented the algorithms in Figures 5 and 6

and used them in our predicate-aware register allocator to
obtain the experimental results in Section 6. There are two
common patterns of compare instructions generated by our
if-converter. For a program switch point, a cmpp.un.uc

instruction is generated, and the algorithm in Figure 6
models this precisely. For an unstructured program merge

point (often due to a critical edge), a combination of
cmpp.un.uc and cmpp.on (or cmpp.oc) instructions is gen-
erated. The algorithm in Figure 6 is always correct but may
be conservative for a comparison instruction with an or
type. This is because in this initial implementation we did
not track the compare conditions controlling predicates nor
apply value numbering on predicates as proposed in [lo].
For example, for the if-converted code in Figure l(b), with-

out value numbering we do not recognize that p3 and ~4-1
can be mapped to the same predicate node and are unable
to obtain that ~4-2 is the union of ~4-1 and px. However,
this type of unstructured merge only accounts for a small
portion (< 10% in our experience) of the if-converted com-
pare instructions. In the future, we will model comparison
instructions with an or type more precisely.

5 Predicate-aware Register Allocation

The problem of global register allocation is well known

[4, 5, 61 and good heuristic approximations have been
developed to solve the problem. However, predication

creates new challenges for the established techniques. In
the quest for greater instruction level parallelism through
predication many register live ranges are created which,
with current analysis techniques, will appear to overlap.
Without applying knowledge of the relationships among
predicates a large number of false interferences will arise.
Our experiments show the resulting register allocation will

conservatively allocate far more registers than are neces-

sary.

Example 3:

loop:

Sl: p, q = cmpp.un.uc (a-zb) if true : ;
s2: x = . . . ifp ’ :
s3: y=... if q
s4: . ..=x if p
s5: . ..=y II ifq ;
S6: z = . . . if true 1 :
s7: . ..=z if true : :
S8: w = . . . if true : 1
s9: . ..=w if true : :

Branch loop
I I

Example 3 illustrates the need for predicate-aware regis-
ter allocation. This code sequence arises from if-conver-
sion and simple list scheduling. As was pointed out in
Section 1, without any knowledge of the relationship
between p and q we will conservatively infer that x and y
interfere. Additionally, it is difficult to conclude that a
predicated definition ends a live range. To do so we must
know that the definition’s qualifying predicate is a superset
of all predicates under which it is currently live. In this

example, the live range of y begins at S5 but, without track-
ing all the predicates under which y is live, we cannot

deduce that it is ended at S3. Conservative data flow anal-
ysis will then cause the live range for y to extend around
the back-edge of the loop to interfere with w at S8 and z at
S6. This originally short live range now interferes with
every other live range defined in the loop. If the number of
live ranges within a loop body of this type is greater than n,
where n is the number of registers available on the target
machine, spilling must occur. This example is presented in
terms of liveness around the back-edge of a loop but the

same situation also occurs in straight-line code.
When predicates cannot be accurately analyzed, the

spilling of predicated code must be handled carefully to
ensure that the graph coloring algorithm terminates. That
is, if we are not able to infer the end of a predicated live
range x correctly then we cannot do so for x’s predicated
spill code either.

Figure 8(b) shows the desired spill code for the two
instruction sequence shown in Figure 8(a). To allow color-
ing to progress after spilling, without predicate analysis

and from the code stream alone, we must arrange for each

120

component of the spilled live range to be definitively ended
by an unpredicated definition. To this end we insert
unpredicated kill pseudo-ops to mark the end of live
ranges.

x= . . . if m y = . . . if m

st[spill] = y if m

.

Id z = [spill] if n

. . . = X if n . . = if n

(a) A

Sl: <Kill y>
52: y = . . .
s3: st [spill] = y

S4: . -.. <KIII z>

s5: Id z = [spill]

S6: . ..=z

w

if true
if m
if m

if true

if n

if n

Figure 8. Spill code difficulties: (a) Sequence to be spilled.
(b) Desired spill code. (c) Worst case spill code.

There are a great number of practical problems in per-
forming register allocation for predicated code. We have
enhanced traditional global data flow analysis and interfer-

ence graph construction to address these problems. Sec-
tion 5.1 describes extensions necessary to enhance a

traditional register allocation scheme to build a predicate-
aware interference graph for a single basic block using
conservative data flow information. Section 5.2 describes
enhancements to the traditional global liveness data flow
calculation, procedure-wide interference graph construc-
tion and the benefit of using global scheduling regions as
boundaries for predicated live range analysis. Section 5.3
discusses approximations which may occur in live range
analysis.

5.1 Local Analysis

Register allocators typically construct an interference
graph by first calculating a bit-vector of all currently live
registers at each point in the CFG. The bit-vector is initial-
ized at the bottom of each basic block to all those registers
which were computed to be live our by a previous pass of
data flow analysis. The bit-vector is then propagated
through the instruction stream to the top of the basic block.
At each instruction an interference is recorded between
each def and all elements of the bit-vector, then the defs are
removed from the bit-vector and all uses added.

Our technique builds upon the standard bit-vector style
interference graph construction algorithm. We first scan
the basic block and collect the set of predicates used in the
code stream and then augment the set with p0, the always

true predicate. This set is termed the basis of analysis for
the basic block or, more simply, the basis. We then allo-
cate a bit-vector for each (predicate) element in the basis.
This bit-vector represents liveness with respect to each of
its basis elements. We call this data structure a LiveSet.

We augment each LiveSet with an identifying basis rug to

ease data flow propagation. In the absence of predicated

code this scheme reduces to the traditional unpredicated

case, since the basis contains only p0, and a LiveSet is a
single bit-vector.

W X Y z

PO
P
9

Figure 9. LiveSet for example in Example 3 after process-
ing S4.

Figure 9 depicts the LiveSet for Example 3 after pro-
cessing the instruction marked S4 in the backward tra-
versal. Liveness is indicated by the bit value 1. This
LiveSet represents the fact that x is live only under p and y
is live only under q at this point. At S3, y is defined under
q. Since x is live under p, and p and q are disjoint, we dis-
cover there is no interference between x and y.

In the next few subsections we will develop the machin-

ery necessary to build the interference graph in the pres-

ence of predication. This machinery naturally extends
from single basic blocks to arbitrary regions or entire pro-
cedures.

AssertLiveUnderPredicate(x, qp) {
let A = (p in the basis I x is live under p }
/I Already live
if qp is a member of A return

// Minimize the liveness information
B = leastUpperBoundSum(qp, A)

mark x as dead under all predicates in
the basis

for each element r in B (

if r is in the basis

II Add x to the LiveSet
liveSet[r] += x

else
for each element s in the basis

if (!isDisjoint(r, s))

// Approximation
liveSet[s] += x

1

1
Figure 10. Algorithm for asserting register liveness.

AssertLiveUnderPredicate - For each register x used
in an instruction we will update liveness under the qualify-

121

ing predicate qp. Instructions guarded by predicate true are
treated as if they were predicated with the control predicate

of the containing basic block. AssertLiveUnderPredicate is

a function which asserts the liveness of a virtual register

under a predicate. Pseudo code for this operation is shown
in Figure 10 (All the pseudo code is written in an object-

oriented manner: each method is assumed to be operating
on a LiveSet). If x is already live under qp then no work is

necessary. If x is not currently live under qp then we com-
pute a minimal set of predicates which encapsulate the
liveness of x by a call to 1eastUpperBoundSum. This
allows us to keep the underlying representation compact.
In the event that the minimal set contains a predicate which
is not part of the basis we will conservatively update the

liveness information to conform to the basis by checking
disjointness with each basis element. This situation may

arise due to the limiting the size of a basis.
AssertDeadUnderPredicate - For each register x

defined in an instruction we will update deadness under the
qualifying predicate qp. AssetDeadUnderPredicate is a
function which asserts that a virtual register has gone dead
under a predicate. The pseudo code for this operation is
shown in Figure 11. We always minimize the number of
basis elements required to represent the liveness of a vari-

able. Therefore, if x is already live under qp we simply
remove liveness under qp and return. Otherwise, we form

a set of all predicates under which x is currently live and
subtract qp from the set by using 1eastUpperBoundDiff to
keep the number of predicates involved to a minimum. As
is the case with AssertLiveUnderPredicate, some approxi-
mation may be introduced.

AssertDeadUnderPredicate(x, qp) (

let A = (p in the basis I x is live under p}

if qp is an element of A {

// Remove x from the IiveSet

liveSet[qp] -= x
return

// Call to predicate analysis
B = leastUpperBoundDiff(qp, A)
mark x as dead under all predicates in the basis
for each element r in B

if r is in the basis

II Add x to the liveSet

liveSet[r] += x
else

for each element s in the basis

if (!isDisjoint(r, s))
liveSet[s] += x // Approximation

I
Figure 11. Algorithm for recording register deadness.

AllCurrentlyLive - In order to compute interferences
or conservatively conduct an analysis across basic block

boundaries we need to be able to produce a set of all regis-
ters which are currently live under a given predicate qp.
For example, each def of an instruction interferes with the

set of registers given by AllCurrentlyLive(qp), where qp is

the qualifying predicate of the instruction. Data flow infor-

mation can be propagated conservatively across basic

blocks by use of AllCurrentlyLive(p0). The pseudo code
for this operation is shown in Figure 12. AllCurrentlyLive
computes a single bit-vector which is the union of all bit-
vectors within a LiveSet whose basis element is not dis-
joint from qp.

AIICurrentlyLive(qp) {

s =I)
for each p in the basis

if (!isDisjoint(p, qp))
S += liveSet[p] It Set union

return S

I
Figure 12. Algorithm for producing a list of all registers
live with respect to a given predicate.

Interference Graph Construction - The algorithm in
Figure 13 describes, in general terms, how the interference

graph is constructed in the presence of predicates. The

method is quite similar to the traditional method of inter-
ference graph construction -- it is simply augmented by the

use of LiveSet’s and the support routines described above.
By controlling the widths of the LiveSet’s, the runtime of
this method is kept in harmony with compile speed require-
ments’.

BuildInterferenceGraph() {
for each basic block bb in the program {

It work is a LiveSet

work = dataflowLiveOut[bb]

for each instruction inst in bb in

backward order (
qp = inst.qualifyingPredicate()
if (qp == PO) qp=bb.homePredicate()

S = work.AIICurrentlyLive(qp)
for each def d in inst

interfere(d, S) /I Add edge to d from set S
for each def d in inst

work.AssertDeadUnderPredicate(d, qp)
for each use u in inst

work.AssertLiveUnderPredicate(u, qp)

I

1)
Figure 13. Algorithm for building the predicate-aware
interference graph.

1.h some cases the coloring algoridm as a whole can even be faster due to the
simpler interference graph.

122

5.2 Global Analysis

The local framework allows for detailed analysis of sin-

gle basic blocks and is sufficient to analyze Example 3.
However, to obtain higher degrees of ILP, aggressive opti-

mizations, such as global scheduling [2] or trace schedul-

ing [131, must be employed to move instructions into ILP-
poor basic blocks. In this section we extend the local
framework to a global framework. The scheduling tech-

niques cited above generally restrict their region of analy-
sis to sub-regions of the CFG. Our approach recursively
merges the bases of analysis of basic blocks within global
scheduling regions (GSR’s) to form a single common basis

for data flow analysis.

RegionSelection() (
for each interval I in the procedure

in depth-first order {

A = I)
for each GSR R in I (
B = {basis for R}
if I A+B I <= LIMIT {

mark R as merged
A+=B

1
1
for each direct descendent interval J of I {

C = {basis of J}

if I A+C I <= LIMIT {

mark J as merged
A+=C

I
I
set the basis of I and all merged GSR’s

and intervals to A

I

1
Figure 14. Algorithm for selecting analysis regions.

Region Selection - Our approach is aimed at analyzing
entire procedures. However, global analysis of predicated
live ranges can be very expensive if limits are not placed on
the algorithm. In practice, it may not be desirable to
always analyze an entire procedure in an aggressive man-
ner. We accommodate such cases by hierarchically build-
ing the regions of analysis from the most deeply nested
portions of the CFG. That is, bases for several basic blocks

are merged only if the size of the resulting basis does not
exceed some limit’.

Good predication can be accomplished only with inti-
mate familiarity with the underlying machine architec-
ture. In our approach we assume that most interesting
predicated live ranges will be created by an if-converter

I .We used 32 as the limit in this study.

and transported across basic blocks by a global instruction
scheduler. Therefore, the scheduling regions used by a glo-

bal scheduler will limit the scope of predicated code

motion and hence the extent of predicated live-ranges2.

Therefore, GSR’s are a natural building block for basis

construction for register allocation.
While GSR’s limit scheduling induced code motion and

thus the length of live ranges, naturally occurring (e.g. pro-
grammer created) live ranges will span many GSR’s. Lim-
iting the scope of analysis strictly to GSR’s is too
conservative. We recursively build-up the basis, first by

attempting to coalesce the basis of all GSR’s within an
interval [12], and then coalescing the bases of inner inter-

vals into a single basis of analysis. Intervals are coalesced
in a depth-first traversal of the interval tree. In the best

case this recursive selection will result in the entire proce-
dure being analyzed with a single basis. In the event that

multiple regions are selected, data flow calculations can
then be performed accurately within each region and sum-
marized at region boundaries. Figure 14 shows pseudo-
code for the region selection process.

Finally, the basis used by each basic block in the pro-
gram is recorded by tugging its LiveSet with a unique basis

identifier. A bit-vector style data flow analysis can now be

performed by extending traditional techniques.

LiveSetUnion(Target, Source) (

if (Target.tag == Source.tag)
for i=O to Target.setCount - 1

I/ Set union
Target.liveSet[i] += Source.liveSet[i]

else
It Conservative

Target.liveSet[pO] +=
Source.AIICurrentlyLive(pO)

Figure 15. Algorithm for computing the union of LiveSet’s.

Data Flow Transfer Functions - Standard bit-vector
liveness calculation techniques can be used by extending
the algorithm to use LiveSet’s rather than simple bit-vec-
tors. Some additional complication arises when propagat-
ing the information across basic block boundaries. To pass
predicated liveness information across basic blocks bound-
aries we need two pieces of information about the source
and target basic blocks:

1 .The current liveness information.
2.The analysis basis used.
Information to identify identical bases is kept with each

LiveSet as its basis tag. The liveness information is con-
tained in the bit-vectors of each LiveSet. If the two

2.Recursive motion between nested GSR’s may also occttr. The recursive nature
of our region selection attempts to address this issue.

123

LiveSet’s use the same basis then data flow information can
be transferred without approximation. Conservative hve-
ness information is used otherwise. Figure 15 shows
pseudo-code for a data flow LiveSet union operation.
Other data flow operations are quite similar.

5.3 Approximation

In some cases the predicate analysis may return an

answer containing predicates outside of the present basis.
This can arise from levels of nesting outside the current
region or from asymmetries in the CFG requiring internal
predicate nodes to be generated (e.g. a critical edge) to rep-
resent the missing symmetrical relationship. These cases
are handled conservatively.

Secondly, the analysis of predicate relations ignores
back edges. Consequently, we cannot accurately analyze
predicated live ranges which are defined on one iteration of

a loop and consumed on a subsequent iteration. We detect
such live ranges and use conservative data flow information

for them at loop back edges.

6 Experimental Results

This section contains experimental measurements
which show the effects of predicate-aware register alloca-
tion on a large number of procedures. Several benchmarks
from the SPECint-92 suite were compiled and the number
of colors required for procedure-wide graph coloring regis-

ter allocation with and without our technique were

recorded. In all, we compiled 1009 procedures and
observed that 248 cases (24.6%) showed improved register
allocation when using our technique. Of those cases which
improved, the average improvement was a 20.71%
decrease in the number of colors required. The standard
deviation was 15.10%. Figure 16 graphically depicts the
distribution of improvement. While most procedures saw
improvements in the l-35% range some procedures
improved by as much as 75%. Some results of the experi-

ments are shown in Table 2. The first column of Table 2
shows the name of the function compiled. The second col-
umn lists the number of colors required when using a tradi-
tional predicate-unaware graph coloring register allocator
on the predicated code. The third column shows the num-
ber of colors required when using our predicate-aware reg-
ister allocator. The fourth column shows the percentage of
improvement.

While many procedures improved with our technique
the majority did not. The dominant cause was absence of

any predicated code in the procedure due to the simple
nature of the if-converter [151. With a more aggressive if-
conversion technique [171 more programs should benefit
from our work. Also, even when predicated code was
present, it was sometimes of such a simple form as to allow

the predicate-unaware method to achieve good results.
Since graph coloring based register allocation is a heu-

ristic approximation to an optimal solution we expected to
see some cases which degraded simply due to the different
structures of the interference graphs. That is, the heuristic

approximation used to color the predicate-unaware inter-
ference graph could use fewer colors than the same heuris-

tic approximation used to color the predicate-aware

interference graph. However, we have not observed any
such case to date.

As the number of predicated live ranges increase in pro-
portion to the number of unpredicated live ranges the
impact of our approach should be even more beneficial.
Furthermore, predicate-aware register allocation will be
even more important when register pressure is increased

by aggressive function inlining.

7 Conclusion

To maximize the effectiveness of predicated execution,

it is very important to take into account the semantics of
predicates during compilation analysis, such as data flow
analysis. In this paper, we have proposed global techniques
to analyze the relations among predicates, and these rela-
tions can then be queried by a subsequent compilation
analysis or transformation phase. In contrast to previous
work, our predicate analysis integrates the relations among
control flow and predication. We have also developed a

predicate-aware register allocator by naturally extending a
traditional method. The precision of data flow analyses

supporting this register allocator is greatly enhanced by
taking into account global predicate relations. The impor-
tance of a predicate-aware register allocator is demon-
strated by the significant reduction in register pressure as
shown in our extensive experimental results. For cases
which show improvement, on average, our predicate-aware
register allocator reduces the number of colors by 20.7 1%.

Register Allocation Improvement

/
5 1015202530354045505560657075

Percentage Improvement
L~~~~~~~~~~~. - -~-~

Figure 16. Distribution of register allocation improvement.

124

Table 2: Experimental results for register allocation

dobindings 34 21 20.59%

duple 25 20 20.0090

Acknowledgements - We would like to thank the compiler

optimization teams at California Language Lab and HP

Labs for their support and comments on this work.

References

[1] J.R. Allen, K. Kennedy, C. Portfield, and J. Warren, “Con-
version of Control Dependence to Data Dependence,” In
Conf. Record of the 10th Annual ACM Symp. on Princi-
ples of Programming Languages, pp. 177-189, January
1983.

[2] David Bernstein and Michael Rodeh, “Global Instruction

Scheduling for Superscalar Machines,” SIGPLAN Notices

26(6):241-255. Proc. of the ACM SIGPLAN ‘9 1 Confer-

ence on Programming Languages and Implementation.

131

[41

PI

161

[71

181

[91

[lOI

1111

[I21

I131

1141

I151

[161

iI71

[ISI

[I91

D.P. Bhandarkar, Alpha Implementations and Architecture,

Digital Press, Butterworth Heinemann, Newton, MA, 1996.

Preston Briggs, Register Allocation via Graph Coloring,

Ph.D Thesis, TR92- 183, Rice University, 1992.

Gregory J. Chaitin, “Register Allocation and Spilling via

Graph Coloring,” SIGPLAN Notices 17(6):98-105, June

1982. Proc. of the ACM SIGPLAN ‘82 Symp. on Com-

piler Construction.

Fred C. Chow and John L. Hennessy, “The Priority-Based

Coloring Approach to Register Allocation,” ACM Trans.

on Programming Languages and Systems, 12(4):501-536,

October 1990.

Alexandre E. Eichenberger and Edward S. Davidson, “Reg-

ister Allocation for Predicated Code,” In Proc. of the 28th

Annual Int’l Symp. on Microarchitecture, November 1995.

Hewlett-Packard Company. PA-RISC 1.1 Architecture and

Instruction Set Reference Manual, Second edition, 1992.

P.Y. Hsu and E.S. Davidson, “Highly Concurrent Scalar

Processing,” In Proc. of the 13th Annual Int’l Symp. on

Computer Architecture, pp. 386-395, June 1986.

Richard Johnson and Michael Schlansker, “Analysis Tech-

niques for Predicated Code,” In Proc. of the 29th Annual

Int’l Symp. on Microarchitecture, December 1996.

V. Kathail, M. Schlansker, B. Rau, HPL PlayDoh Architec-

ture Specification: Version 1.0, Hewlett-Packard Laborato-

ries Technical Report, HPL-93-80, Feb. 1993.

T. Lengauer and R. E. Tarjan, “A Fast Algorithm for Find-

ing Dominators in a Flow Graph”, ACM Trans. on Prog.

Languages and Systems, 1:1, pp 121-141, July 1979.

P. G. Lowney, SM. Freudenberger, T.J. Karzes, W.D. Lich-

tenstein, R.P. Nix, J.S. O’Donnell and J.C. Ruttenberg,

“The Multiflow Trace Scheduling Compiler,” The Journal

of Supercomputing, 7,51-142, 1993.

S.A. Mahlke, D.C. Lin, W. Y. Chen, R.E. Hank, and R.A.

Bringmann, “Effective Compiler Support for Predicated

Execution Using Hyperblock,” In Proc. of the 25th Annual

Int’l Symp. on Microarchitecture, pp. 45-54, Dec. 1992.

J.C.H. Park and M. Schlansker, On Predicated Execution,

Technical Report HPL-91-58, Hewlett-Packard Laborato-

ries, May 1991.

B.R. Rau, D. Yen, W. Yen, and R. Towle, ‘The Cydra 5

Departmental Supercomputer: Design Philosophies, Deci-

sions, and Trade-offs,” IEEE Computer, 22(l): 12-35, Jan.

1989.

Michael Schlansker and Vinod Kathail, “Critical Path

Reduction for Scalar Programs”, In Proc. of the 28th

Annual Int’l Symp. on Microarchitecture, November 1995.

N.J. Waters, S.A. Mahlke, W.-M. W. Hwu, and B.R. Rau,

“Reverse If-conversion,” In Proc. of the SIGPLAN’93

Conf. on Programming Language Design and Implementa-

tion, pp. 290-299, June 1993.

D. Weaver and T. Germond, The SPARC Architecture Man-

ual - Version 9. Prentice-Hall, Englewood Cliffs, NJ 1993.

125

