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Abstract 

To fully utilize the wide machine resources in modern 

high-performance microprocessors it is necessary to 
exploit parallelism beyond individual basic blocks. Archi- 
tectural support for predicated execution increases the 
degree of instruction level parallelism by allowing instruc- 
tions from dtgerent basic blocks to be converted to 
straight-line code guarded by boolean predicates. How- 
ever; predicated execution also presents signijcant chal- 
lenges to an optimizing compiler For example, in live 

range analysis, a predicated definition does not necessarily 
end the live range of a virtual register 

This paper describes techniques to analyze the relations 
among predicates in order to improve the precision and 
effectiveness of various compiler analysis and transforma- 
tion phases in the presence of predicated code. Our predi- 
cate analysis operates globally to obtain relations among 
predicates. Moreover we analyze control flow and predi- 
cation in a single unifiedframework. The result can be que- 

ried by subsequent optimization and analysis phases. 

Based on this framework, we extend a traditional method 

to a predicate-aware register allocator which takes global 

predicate relations into account. We have implemented the 
proposed algorithms to effectively reduce register pressure. 

Our experimental results show 24.6% of a large test suite 
obtain, on average, 20.71% better register allocation due 

to the algorithms presented in this paper: 

1 Introduction 

VLIW (Very Long Instruction Word) and superscalar 
architectures can exploit significant amounts of instruction 

level parallelism (ILP) to achieve improved performance in 
application programs. Parallelism within individual basic 
blocks are generally insufficient to fully utilize wide 
machine resources. Predicated execution 19, 111 is an 
architectural model to exploit parallelism across basic 
blocks. In this model instructions from different basic 
blocks are converted to straight-line code guarded by bool- 
ean predicates. Architectural support for predicated execu- 
tion varies from general support for predication in the 

Cydra 5 [ 161 and HPL PlayDoh architectures [ 1 l] to condi- 
tional skip instructions in the HP PA-RISC architecture [8], 
conditional nullify instructions in the Sun SPARC architec- 
ture [19], and conditional move instructions in the DEC 
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Alpha architecture [3]. In a general predicated execution 
model, the execution of an instruction is guarded by a bool- 

ean qualifying predicate. Each qualifying predicate can be 
regarded as a l-bit predicate register. An example of a 
predicated instruction is 

x=y+z if p 

where p is the qualifying predicate which controls whether 
the instruction executes and updates the architectural state. 
To explore predication, a compiler generally incorporates a 
technique called if-conversion, which eliminates branch 
instructions and converts affected instructions to 

appropriate predicated forms. If-conversion effectively 
converts control flow into data flow [I]. 

However, in order to achieve these benefits, predication 
presents a challenge to many conventional analysis and 
transformation phases performed in an optimizing 
compiler. For example, consider the code in Example 1. 

Example 1: 
Sl: p,q = cmpp.un.uc (a < b) 
s2: x=.. 

s3: y=.. 

s4: ..=x 

s5: ..=y 

if true 

ifp ’ 

if q 

if p 

if q IT 

The cmpp instruction sets p true and q false if the 
condition (a < b) is true and reverses these values if the 
condition is false. (The details of the architectural model 
are described in Section 2.) Variable x is defined and used 
under p and variable y is defined and used under q. A 
conventional live range analysis would find the live range 
of x from S2 to S4 and the live range of y from S3 to S5. 
Based on this analysis, a traditional register allocator 

would conclude that x and y interfere with each other and 
subsequently assign different physical registers to them. 
However, since p and q are complementary, x and y will 
never hold valid values at the same time and thus they can 
share the same physical register. The focus of this work is 
to develop a practical and efficient mechanism to track 
global predicate relations in an entire procedure. This 
mechanism can be used to improve data flow analysis and 
optimizations in the presence of predicated code. As an 
important application, we demonstrate how a register 
allocator can benefit from understanding and utilizing the 
predicate relations. 
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The IMPACT compiler uses a predicate hierarchy graph 
(PHG) to track the boolean equations for all of the 
predicates in a hyperblock [14]. The scope of their 
predicate analysis is a hyperblock and does not extend 

globally. When a companion data structure, like PHG, is 

maintained with the code, then it may require updating 
whenever the program is transformed. The work in [ 181 

proposes a reverse if-conversion scheme to map predicates 
from the data flow domain back to the more familiar 
control flow domain. A major drawback of this approach is 
that, during the remapping process, some originally non- 
existent control paths may be created. This typically occurs 
when code is if-converted and then permuted by instruction 
scheduling. When this code is reverse if-converted, non- 

existent paths may cause conservative treatment in 
subsequent analyses and transformations. The work in [7] 
solves this register allocation problem by representing 
predicates as P-facts -- logically invariant expressions. The 

mechanism concludes that two live ranges do not interfere 
if the intersection of the two sets of P-facts can be 
simplified to false using a symbolic package. This 
approach is also restricted to the scope of a hyperblock, 
and may have limited practicality given the potential 
exponential compilation time behavior with respect to the 

number of predicates. The authors in [lo] propose a 
representation called predicate partition graph to track the 
relations in predicates, and they describe how to construct a 
partition graph for the predicates in a hyperblock. Their 

work uses the partition graph to provide information to 
support data flow analysis. 

The false interference in Example 1 can be avoided by a 
predicate analysis which analyzes the local predicate 
relations in the straight-line code between two branches. 
The code fragment in Example 2 shows the importance of 
recognizing predicate relations in a global scope, where 
code may be partially if-converted based on the 
profitability model in an if-converter. Both of x and y are 
defined and used in different basic blocks. To check for 
interferences, one would propagate the use of x under p to 
the else-clause towards the definition of x under r. While 
crossing the definition of y under s during this process, an 
interference will be assumed between x and y unless one 
can assert that p and s are disjoint. Since p and s are defined 
in the then- and else- clauses, respectively, p and s can 
never both be true at the same time. However, it requires 
global analysis to systematically take control flow into 

account to assert the disjointness between p and s. This 
relation cannot be captured by a hyperblock or basic block 
based analysis. Further, with global predicate analysis, one 
can also assert that p and r are disjoint. Therefore, the 
definition of x under r can never reach the use of x under p, 
and this definition is dead. 

Our work is based on the predicate partition graph in 
[IO]. The main contributions of our work are as follows: 

(1) We uniformly track relationships describing both 
control flow and explicit uses of predicates at a global 

scope by mapping them to a single partition graph. To the 

best of our knowledge, this is the first global predicate 

analysis framework. (2) We have developed and 

implemented practical algorithms for global predicate 

analysis and global predicate-aware register allocation 
using a generalized data flow framework. (3) We have 
demonstrated the effectiveness and practicality of this 
approach through experiments which show significant 
benefits of predicate-aware register allocation. 

Example 2: 
p, q, r, s = false 

if ( . . ) then { 

p,q = cmpp.un.uc (...) 

x = . . 

} else { 

r,s = cmpp.un.uc (...) 
x = . . 
y = . . 

if true 

if p 

if true 
if r 
if s 

1 
. . = x if p 

. . = y if s 

The rest of the paper has the following structure: 
Section 2 illustrates the architectural model for predication. 

Section 3 provides a brief overview of the predicate 
partition graph which is used to track the relations of 
predicates. Section 4 discusses the details on how to 
construct a single connected partition graph including both 
control flow and explicit predicates in an entire procedure. 
Section 5 presents the details of a predicate-aware register 
allocator, which exploits the relations of predicates during 

live range analysis and interference graph construction. 
Section 6 shows the experimental results in comparing the 
predicate-aware register allocator against a conventional 
register allocator. Section 7 provides conclusions. 

2 Architectural Model 

In this paper, we will assume the architectural support 
of general predicated execution model provided in the HPL 
PlayDoh architecture [I 11, in which the execution of an 
instruction can be guarded by a qualifying predicate. The 

following form of compare instructions is provided to set 
predicates. 

pl, p2 = cmpp.<dlxd2> (a ret b) if qp 

Predicates pl and p2 are two destination predicates. Each 
of <dl> and <d2> is a two-letter descriptor that specifies a 
type and mode for the compare instruction. There are four 
comparison types: unconditional (u), conditional (c), par- 
allel-or (o), and parallel-and (a), specified by the first letter 
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of the descriptor. Each type has both a normal mode (n) 

and a complement mode (c), specified by the second letter 

of the descriptor. Descriptors <d I> and <d2> control desti- 
nation predicates pl and p2, respectively. The condition, (a 

rel b), is in the form of a logical comparison of two vari- 

ables a and b, where rel can be eq, ne, It, etc. Predicate qp 

is the qualifying predicate. 
To simplify the discussion, for the unconditional and 

conditional types, we assume they are always generated in 
form of cmpp.un.uc and cmpp.cn.cc, respectively. There- 
fort, for a comparison with the unconditional type, the val- 
ues of pl and p2 are complementary. If the comparison 

type is and (or) and qp is true, the an (on) target predicate 
(say pl) is equal to the result of (a rel b) “and’ed (“or”ed) 

with the old value of pl. 

Table 1. Behaviors of predicates in compare instructions 

qp (a rel b) un UC cn cc on oc an ac 
________________________________________---------------------------- 
F F F nc nc nc nc nc nc 
T G T F T F T nc nc F 
T F F T F T nc T F nc 

Table 1 is the summary on how the destination predi- 
cates are set in these compare instructions. In the table, T 

and F stand for true and false values, respectively. X means 

“don’t care” and nc means that the result is unchanged. We 
also assume that there is a special predicate register p0, 
where any read is always true and any write is discarded. 

P5 

S6 

(4 

11: p2, p3 = cmpp.un.uc (sl cond) if true 
12: p4 = cmpp.uc (sl cond) if true 
13: S2 if p2 
14: p5 = cmpp.uc (s2 cond) if p2 
15: p4 = cmpp.on (s2 cond) ifp2 
16: S3 if p3 
17: S5 ifp5 
18: S4 if p4 
19: S6 if true 

(b) 

Figure 1. (a) Control flow graph and (b) if-converted code. 

Figure 1 shows an example, which contains the original 
control flow graph and the if-converted code. The branch 
condition of basic block containing Sn is represented as 
(Sn cond). If-conversion converts all six basic blocks into a 

single basic block with predicated code. Each of the switch 

points at the respective basic blocks containing Sl and S2 

is converted to a compare instruction with an unconditional 
type. The merge (or confluence) point at the basic block 
containing S4 is converted to the combination of one com- 
pare instruction with an unconditional type and one com- 
pare instruction with an or type. 

3 Overview of Predicate Partition Graph 

In this work, we use the notion of predicate partition 

graph proposed in [lo] to track the relations among predi- 
cates. To simplify the discussion, we assume that predi- 
cates are in static single assignment (SSA) form, where 
each predicate is statically defined no more than once. 
However, this is not required by our implementation. For 
the example in Figure 1, p4 is defined twice. To describe 
references to p4 in SSA form, the related definitions and 
uses are translated into the following intermediate form. 

~4-1 = cmpp.uc (...) if true 
. . . 

px = cmpp.un(s2 cond) if p2 

~4-2 = ~4-1 I px if true 

s4 if ~4-2 

We use the concept of an execution set to describe the 
relations among predicates. We first define the following 
notations for straight-line code and extend them to 
incorporate control flow in the next section. An execution 

truce includes all of the instructions being executed from 

the beginning to the end in straight-line code. A trace 
belongs to the domain of predicate p, if all of the 
instructions on this trace are executed when p is true. The 
domain of p includes all such traces. If unambiguous, we 
will simply use p to mean the domain of p. A purfition of a 
predicate is a division of the domain of the predicate into 
multiple disjoint subsets, where the union of these subsets 
is equal to the domain. For example, the pictorial view of 
the relations among the predicates in instruction 
pl,p2=cmpp.un.uc ( . . . ) if p3 is in Figure 2. 

When p3 is true, the values of pl and p2 are always 

complementary. In another words, no trace exists where pl 
and p2 are both true. One can also derive that if pl or p2 is 
true, p3 must be true. 

GiGFrs 
Figure 2. Set relations between predicate domains. 
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In a predicate partition graph, G=(V, E), each node p in 
V represents predicate p and each edge (p, q) represents 
that there exists a partition in p such that q is a subset in 

this partition. An edge in G is directed and the edges cre- 
ated from the same partition are given the same label. For 
example, partition p0 = pl U p2 would be represented by 
two edges: PO->pl and PO->p2, where both edges are 
assigned the same label. G is a directed acyclic graph, and 
there may be multiple edges between two given nodes due 
to different partitions. A partition graph is complete if the 
universal set, p0, is the unique root. This makes every node 

reachable from the root as is required by the algorithms 

used in predicate analysis. Because the partition graph 
approximates predicate relations, one may construct differ- 
ent partition graphs with varying accuracy for a single code 
sequence. 

Figure 3. A partition graph for the example in Figure 1. 

Figure 4. Domains of predicates in Figure 1. 

A partition graph for the if-converted code in Figure 
l(b) is shown in Figure 3. The pictorial view of the parti- 
tions shown in Figure 4 helps understand how domains are 
partitioned. The root of the partition graph, p0, is parti- 
tioned into p2 and p3 in instruction II. Since instructions 11 
and 12 both have an unconditional compare type and check 
for the same condition, these two instructions are essen- 
tially value congruent. Therefore, p3 and ~4-1 always have 
the same value and can be mapped to the same predicate 
node. In 14, p2 is partitioned into p5 and an implicit predi- 
cate px, which is created to complete this partition. In 15, 
the union of px and ~4-1 makes up the domain for ~4-2. 
We can also find that the complement of ~4-2 is p5 and 
generate another partition with p0 as the parent predicate 
and ~4-2 and p5 as the child predicates. This step is neces- 
sary to make p4-2 reachable from the root. 

Once a partition graph is constructed, one can use sim- 

ple graph traversal algorithms to support a number of dif- 
ferent queries on predicate relations. Readers are referred 
to [lo] for further details on the properties of the partition 
graph and the implementation of various queries. We list 

below only the queries used in our predicate-aware register 
allocator. 

IsDisjoint (p, q): asks whether the domain of 
predicate p overlaps with that of predicate q. Two predi- 
cates are disjoint if they can reach a common ancestor 
through different edges of the same partition. For example, 

in Figure 3, p3 and p5 are disjoint, but p2 and ~4-2 are not. 

Note this is obvious from the domain relations in Figure 4, 

where px is a subset of both p2 and ~4-2. It is straightfor- 
wardtoextend thisquery to IsDisjoint(p,Q),where Q 
is a set of predicates, and the answer is true if p is disjoint 
from every predicate in Q. 

LeastUpperBoundSum (p ,Q) :adds predicate pto 
a set of predicates, Q. The domain of the resultant set is the 
smallest superset of the union of the domain of p and the 
domain of Q. The resultant set is expected to be simplified 
in the way that if all of the child predicates in a partition 

appear in the union of p and Q, these child predicates are 

replaced with their parent predicate. 
LeastUpperBoundDiff (p ,Q) : subtracts predi- 

cate p from a set of predicates, Q. The domain of the result- 
ant set is the smallest superset of the domain of Q 
subtracted by the domain of p. For the example in Figure 3, 
pxisequal to LeastUpperBoundDiff (p5,p2). 

4 Global Predicate Partition Graph and its 
Construction 

Previous work in predicate analysis are generally based 

on the scope of a hyperblock, which is an if-converted sin- 
gle-entry multiple-exit control flow region. In our work, 

each node in a control flow graph (CFG) is still a basic 
block, which is a single-entry single-exit straight line 
sequence of possibly predicated code. One advantage of 
this representation is that this is the most familiar represen- 
tation to compiler analyses and optimizations. We assume 
that a CFG has a single start node and a single stop node. 
Our global predicate analysis operates on an entire proce- 
dure. Global predicate analysis provides more precise 
predicate relations when predicates are defined and used in 
different basic blocks. 

We now extend previously defined notations to an entire 
procedure. A trace includes all of the executed instructions 
on an acyclic path from the start node to the end node in a 
CFG. A trace belongs to the domain of predicate p, if all of 
the instructions on this trace are executed when p is true. 
Analogous to predicates, we define the domain of a basic 
block to be all of the traces such that the basic block is exe- 

cuted. Therefore, when a basic block can be reached from 
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another basic block (or vice versa), the domains of these 
two basic blocks are not disjoint. This control flow reach- 
ability information is expressed in a global partition graph 
to track relations among basic blocks regardless of the 
existence of predicates. 

In order to uniformly treat control flow and predication, 

we assign a predicate to each basic block. We call a predi- 

cate assigned to a basic block a control predicate and a 

predicate which explicitly appears in the instruction stream 
a materialized predicate. A control predicate of a basic 
block is viewed as a predicate combining all of the condi- 
tions which control whether the basic block will be exe- 
cuted or not. We perform global predicate analysis based 
on building a single complete predicate partition graph 
which includes both control predicates and materialized 
predicates. This single partition graph allows us to uni- 
formly track the semantics of conditional execution 
through program branches as well as predicated execution. 
Note that our if-converter assures that if a control predicate 
is also materialized to a materialized predicate, they share 
the same domain and are mapped to the same node in the 
partition graph. This further improves the precision of the 
predicate analysis. 

The graph construction mechanism described below can 
be invoked anywhere throughout an optimizer. This can be 
done either before or after if-conversion. This flexibility is 

again due to that fact that we treat control flow and materi- 
alized predicates in a uniform way. Although if-conversion 

is the major source of creating materialized predicates, 
phases like expanding high level pseudo code may also 

emit predicated code. Data flow analyses both before and 
after if-conversion can be more precise for predicated code 
by knowing the global relations among materialized predi- 
cates. 

The above discussion associates the control flow and 
data flow aspects of predicates. The following two subsec- 
tions illustrate the construction of a partition graph for con- 
trol predicates and materialized predicates, respectively. 

4.1 Handling Control Predicates 

In order to analyze control flow, control predicates are 
assigned to basic blocks and partitions are formed at con- 
trol flow switch and merge points. Although special atten- 
tion is given to the following control flow structures, our 
predicate analysis handles any arbitrary control flow graph 
including irreducible graphs. 

Critical Edges - A critical edge is defined as an edge 
whose source has more than one successor and whose des- 

tination has more than one predecessor. For example, the 
edge from S2 to S4 in Figure l(a) is a critical edge. At a 
switch (merge) point, a critical edge prevents the use of the 
destination (source) node’s control predicate as a child 
predicate in the partition. This occurs because, on this criti- 

cal edge, the source (destination) node does not dominate 
(post-dominate) the destination (source) node. To resolve 
this problem, we conceptually create a node on a critical 
edge and assign an implicit predicate to the node. Note that 
this edge splitting is only done at a conceptual level with- 

out actually changing the CFG. With this virtual edge split- 

ting, all predecessors dominate their successors at switch 

points and all successors post-dominate their predecessors 

at merge points. This simplifies the creation of partitions. 
Note that if node p dominates or post-dominates node q, p 

can always be an ancestor of q in the partition graph. 
Back Edges - Back edges are those edges which com- 

plete cycles in a CFG. With current techniques, if we were 
to take back edges into account in predicate analysis, there 
is little useful information that we can derive for predi- 
cates. For example, for an if-then-else construct enclosed 

in a loop, the then- and else- clauses will never both be exe- 
cuted in the same iteration, but they may be in different 
iterations. Therefore, the predicates assigned to the two 
clauses are disjoint within a particular iteration, but not 
necessarily across iterations. The results of this predicate 
analysis are interpreted with back edges ignored. This has 
little impact on the accuracy of the analysis. This is par- 
tially due to the fact that the if-converter is already 
restricted to acyclic regions. Section 5 will discuss the 
approximation of data flow information through back 

edges. 
During partition graph construction, back edges are also 

split by assigning virtual nodes to them. Our analysis is 
also applicable to irreducible graphs. However, because the 
back edges are selected rather arbitrarily for an irreducible 
graph, the results may be less precise. 

Figure 5 presents an algorithm to construct a partition 
graph based on control predicates. The input is a CFG. 
Edge splitting is first performed on critical edges and back 
edges. Finding control equivalent nodes is not essential for 
correctness, but instead improves the accuracy of predicate 
analysis as predicates with equivalent domains are mapped 

to the same node. We then create partitions at all program 
switch and merge points to track the predicate relations. 
Finally, if any non-start node does not have a parent node, a 
partition is created to link it to its immediate dominator to 
make the partition graph complete. 

We now demonstrate how to construct the partition 
graph in Figure 3 based on the CFG in Figure l(a) in anal- 
ogy to an earlier discussion in Section 3 on constructing 

the same graph based on the if-converted code. Node S 1 is 
the start node in the CFG and is given p0 as its control 

predicate. Node S6 is control equivalent to Sl and is 
assigned with p0 as well. The control predicates assigned 
to the rest of nodes are as shown in Figure l(a). The a par- 
tition (as marked in Figure 3) is created due to the switch 

point at Sl. The edge from S2 to S4 is a critical edge, and 
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px is assigned to this edge to achieve edge splitting. The b 

partition is created due to the switch point at S2. The c and 
d partitions are created due to the merge points at S4 and 
S6, respectively. 

ConstructPartitionGraphForControlPredicates(CFG) ( 

Create a virtual node on each critical edge or back edge 

Find control equivalent nodes 

Assign a predicate to each set of control equivalent nodes 

for every node in the CFG ( 

v = current node 

p = control predicate assigned to v 

if( number of successors > 1) 

Create a partition with p as the parent predicate and 
predicates assigned to the successors as the child 

predicates 
if( number of predecessors > 1) 

Create a partition with p as the parent predicate and 

predicates assigned to the predecessors as the child 

predicates, if this partition has not been generated yet 

I 
if a non-start node, u, has no parent, create a partition with 

the immediate dominator of u as the parent predicate, and 
u and an implicit predicate as the child predicates 

I 

Figure 5. Algorithm of constructing partition graph for 
control predicates. 

4.2 Handling Materialized Predicates 

This subsection discusses the details of constructing a 

partition graph which captures local relations among mate- 

rialized predicates. The relations among materialized pred- 

icates are created at each point where predicates are 
defined, i.e. compare instructions. Figure 6 presents an 
algorithm to construct a partition graph for materialized 
predicates. The most common case of defining material- 
ized predicates is a compare instruction with an uncondi- 
tional type. In Figure 6, a partition is created with pp as the 

parent predicate and pl and p2 as the disjoint child predi- 
cates. If qp is p0, we can view that the current instruction is 

guarded by bp which is the control predicate of the basic 

block, and the union of the domains of pl and p2 is the 
domain of bp. Therefore, we build a partition with control 
predicate bp as the parent predicate. This is the key to 
establish the relations between control predicates and 
materialized predicates and to allow predicate analysis at a 
global scope. If qp is not p0, all of the control conditions 
affecting whether this instruction will be executed have 
been synthesized into the definition of qp. This is ensured 
in our implementation. Therefore, if qp is not p0, the union 

of pl and p2 is qp and there is no need to build a partition 

to link pi and p2 to bp. One can conclude that the domain 
of the actual predicate (pp) guarding the compare instruc- 
tion is always a subset of the domain of bp. 

The other three types of compare instructions involve 

updating a predicate, where the previous value of a predi- 
cate affects the new predicate result. We treat these com- 
pare types conservatively because they appear infrequently 
and are not easily modeled by the partition graph. For a 
compare instruction with a conditional type, if qp is p0, 
this instruction is effectively an unconditional type and is 

treated in the same way as the unconditional type. If qp is 

not p0, we simply map pl and p2 to a dummy predicate 

node and during queries to the predicate analysis they are 
treated in a conservative manner. Note that if both of on 

and oc (or an and ac) target predicates appear in a compare 
instruction, we treat them being split into two single-target 
cmpp’s, which are then processed separately. For an and 
type compare instruction, the domain of pl is always a sub- 
set of that of pl-old. For an or type compare instruction, 
the domain of p 1 is always a superset of that of p l-old and 
a partition is created to link pl to control predicate cp to 

make the partition graph complete. 

ConstructPartitionGraphForMaterializedPredicates 

(instruction stream + CFG) ( 

for every compare instruction in CFG ( 
cinst = current compare instruction 

qp = qualifying predicate of cinst 
bp = control predicate assigned to the basic block 

containing cinst 
pl = the first destination predicate 

pl-old = the old definition of pl if pl is an update 

p2 = the second destination predicate if exists 

pp = parent predicate 

if( qp == p0 ) pp = bp else pp = qp 

switch (compare type) ( 

case .un.uc: 

Create a partition with pp as the parent predicate 
and pl and p2 as child predicates 

case .cn.cc: 
if( qp == p0 ) process in the same way as a 

.un.uc case 
else map pl and p2 to a dummy predicate node 

case .an (.ac): 

Create a partition with pl-old as the parent predi- 

cate and pl and an implicit predicate as child pred- 

icates 
case .on (.oc): 

Create a partition with pl as the parent predicate 
and pl-old and an implicit predicate as child predi- 
cates 
Create a partition with pp as the parent predicate 
and pl and an implicit predicate as child predicates 

I 

Figure 6. Algorithm of constructing partition graph for 
materialized predicates. 
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Based on the algorithms in Figures 5 and 6, the parti- 
tion graph in Figure 7 is constructed to capture the global 
relations for predicates in Example 2. The basic block con- 

taining the if-clause is assigned with p0 as its control pred- 
icate to become the root of the partition graph. The tben- 
and else- clauses are assigned with p-then and p-else as 
their control predicates, respectively. The initialization of 

predicates to false does not create any predicate node in the 
partition graph. The a partition is created at the switch 
point in the control flow due to the if-then-else construct. 
The b partition is created due to the compare instruction 
assigning the materialized predicates, p and q, in the then- 
clause. The c partition is created due to the compare 
instruction assigning the materialized predicates, r and s, in 
the else-clause. This partition graph tracks the global pred- 
icate relation that p, q, r, and s are disjoint, which is neces- 
sary to assert that x and y do not interfere with each other. 

p t h!?\else 
7 \ 7 \ 

!u b 

P 4 r S 

Figure 7. The partition graph for Example 2. 

We have implemented the algorithms in Figures 5 and 6 

and used them in our predicate-aware register allocator to 
obtain the experimental results in Section 6. There are two 
common patterns of compare instructions generated by our 
if-converter. For a program switch point, a cmpp.un.uc 

instruction is generated, and the algorithm in Figure 6 
models this precisely. For an unstructured program merge 

point (often due to a critical edge), a combination of 
cmpp.un.uc and cmpp.on (or cmpp.oc) instructions is gen- 
erated. The algorithm in Figure 6 is always correct but may 
be conservative for a comparison instruction with an or 
type. This is because in this initial implementation we did 
not track the compare conditions controlling predicates nor 
apply value numbering on predicates as proposed in [lo]. 
For example, for the if-converted code in Figure l(b), with- 

out value numbering we do not recognize that p3 and ~4-1 
can be mapped to the same predicate node and are unable 
to obtain that ~4-2 is the union of ~4-1 and px. However, 
this type of unstructured merge only accounts for a small 
portion (< 10% in our experience) of the if-converted com- 
pare instructions. In the future, we will model comparison 
instructions with an or type more precisely. 

5 Predicate-aware Register Allocation 

The problem of global register allocation is well known 

[4, 5, 61 and good heuristic approximations have been 
developed to solve the problem. However, predication 

creates new challenges for the established techniques. In 
the quest for greater instruction level parallelism through 
predication many register live ranges are created which, 
with current analysis techniques, will appear to overlap. 
Without applying knowledge of the relationships among 
predicates a large number of false interferences will arise. 
Our experiments show the resulting register allocation will 

conservatively allocate far more registers than are neces- 

sary. 

Example 3: 

loop: 

Sl: p, q = cmpp.un.uc (a-zb) if true : ; 
s2: x = . . . ifp ’ : 
s3: y=... if q 
s4: . ..=x if p 
s5: . ..=y II ifq ; 
S6: z = . . . if true 1 : 
s7: . ..=z if true : : 
S8: w = . . . if true : 1 
s9: . ..=w if true : : 

Branch loop 
I I 

Example 3 illustrates the need for predicate-aware regis- 
ter allocation. This code sequence arises from if-conver- 
sion and simple list scheduling. As was pointed out in 
Section 1, without any knowledge of the relationship 
between p and q we will conservatively infer that x and y 
interfere. Additionally, it is difficult to conclude that a 
predicated definition ends a live range. To do so we must 
know that the definition’s qualifying predicate is a superset 
of all predicates under which it is currently live. In this 

example, the live range of y begins at S5 but, without track- 
ing all the predicates under which y is live, we cannot 

deduce that it is ended at S3. Conservative data flow anal- 
ysis will then cause the live range for y to extend around 
the back-edge of the loop to interfere with w at S8 and z at 
S6. This originally short live range now interferes with 
every other live range defined in the loop. If the number of 
live ranges within a loop body of this type is greater than n, 
where n is the number of registers available on the target 
machine, spilling must occur. This example is presented in 
terms of liveness around the back-edge of a loop but the 

same situation also occurs in straight-line code. 
When predicates cannot be accurately analyzed, the 

spilling of predicated code must be handled carefully to 
ensure that the graph coloring algorithm terminates. That 
is, if we are not able to infer the end of a predicated live 
range x correctly then we cannot do so for x’s predicated 
spill code either. 

Figure 8(b) shows the desired spill code for the two 
instruction sequence shown in Figure 8(a). To allow color- 
ing to progress after spilling, without predicate analysis 

and from the code stream alone, we must arrange for each 
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component of the spilled live range to be definitively ended 
by an unpredicated definition. To this end we insert 
unpredicated kill pseudo-ops to mark the end of live 
ranges. 

x= . . . if m y = . . . if m 

st[spill] = y if m 

. . . . . . 

Id z = [spill] if n 

. . . = X if n . . = if n 

(a) A 

Sl: <Kill y> 
52: y = . . . 
s3: st [spill] = y 

S4: . -.. <KIII z> 

s5: Id z = [spill] 

S6: . ..=z 

w 

if true 
if m 
if m 

if true 

if n 

if n 

Figure 8. Spill code difficulties: (a) Sequence to be spilled. 
(b) Desired spill code. (c) Worst case spill code. 

There are a great number of practical problems in per- 
forming register allocation for predicated code. We have 
enhanced traditional global data flow analysis and interfer- 

ence graph construction to address these problems. Sec- 
tion 5.1 describes extensions necessary to enhance a 

traditional register allocation scheme to build a predicate- 
aware interference graph for a single basic block using 
conservative data flow information. Section 5.2 describes 
enhancements to the traditional global liveness data flow 
calculation, procedure-wide interference graph construc- 
tion and the benefit of using global scheduling regions as 
boundaries for predicated live range analysis. Section 5.3 
discusses approximations which may occur in live range 
analysis. 

5.1 Local Analysis 

Register allocators typically construct an interference 
graph by first calculating a bit-vector of all currently live 
registers at each point in the CFG. The bit-vector is initial- 
ized at the bottom of each basic block to all those registers 
which were computed to be live our by a previous pass of 
data flow analysis. The bit-vector is then propagated 
through the instruction stream to the top of the basic block. 
At each instruction an interference is recorded between 
each def and all elements of the bit-vector, then the defs are 
removed from the bit-vector and all uses added. 

Our technique builds upon the standard bit-vector style 
interference graph construction algorithm. We first scan 
the basic block and collect the set of predicates used in the 
code stream and then augment the set with p0, the always 

true predicate. This set is termed the basis of analysis for 
the basic block or, more simply, the basis. We then allo- 
cate a bit-vector for each (predicate) element in the basis. 
This bit-vector represents liveness with respect to each of 
its basis elements. We call this data structure a LiveSet. 

We augment each LiveSet with an identifying basis rug to 

ease data flow propagation. In the absence of predicated 

code this scheme reduces to the traditional unpredicated 

case, since the basis contains only p0, and a LiveSet is a 
single bit-vector. 

W X Y z 

PO 
P 
9 

Figure 9. LiveSet for example in Example 3 after process- 
ing S4. 

Figure 9 depicts the LiveSet for Example 3 after pro- 
cessing the instruction marked S4 in the backward tra- 
versal. Liveness is indicated by the bit value 1. This 
LiveSet represents the fact that x is live only under p and y 
is live only under q at this point. At S3, y is defined under 
q. Since x is live under p, and p and q are disjoint, we dis- 
cover there is no interference between x and y. 

In the next few subsections we will develop the machin- 

ery necessary to build the interference graph in the pres- 

ence of predication. This machinery naturally extends 
from single basic blocks to arbitrary regions or entire pro- 
cedures. 

AssertLiveUnderPredicate(x, qp) { 
let A = ( p in the basis I x is live under p } 
/I Already live 
if qp is a member of A return 

// Minimize the liveness information 
B = leastUpperBoundSum(qp, A) 

mark x as dead under all predicates in 
the basis 

for each element r in B ( 

if r is in the basis 

II Add x to the LiveSet 
liveSet[r] += x 

else 
for each element s in the basis 

if (!isDisjoint(r, s)) 

// Approximation 
liveSet[s] += x 

1 

1 
Figure 10. Algorithm for asserting register liveness. 

AssertLiveUnderPredicate - For each register x used 
in an instruction we will update liveness under the qualify- 
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ing predicate qp. Instructions guarded by predicate true are 
treated as if they were predicated with the control predicate 

of the containing basic block. AssertLiveUnderPredicate is 

a function which asserts the liveness of a virtual register 

under a predicate. Pseudo code for this operation is shown 
in Figure 10 (All the pseudo code is written in an object- 

oriented manner: each method is assumed to be operating 
on a LiveSet). If x is already live under qp then no work is 

necessary. If x is not currently live under qp then we com- 
pute a minimal set of predicates which encapsulate the 
liveness of x by a call to 1eastUpperBoundSum. This 
allows us to keep the underlying representation compact. 
In the event that the minimal set contains a predicate which 
is not part of the basis we will conservatively update the 

liveness information to conform to the basis by checking 
disjointness with each basis element. This situation may 

arise due to the limiting the size of a basis. 
AssertDeadUnderPredicate - For each register x 

defined in an instruction we will update deadness under the 
qualifying predicate qp. AssetDeadUnderPredicate is a 
function which asserts that a virtual register has gone dead 
under a predicate. The pseudo code for this operation is 
shown in Figure 11. We always minimize the number of 
basis elements required to represent the liveness of a vari- 

able. Therefore, if x is already live under qp we simply 
remove liveness under qp and return. Otherwise, we form 

a set of all predicates under which x is currently live and 
subtract qp from the set by using 1eastUpperBoundDiff to 
keep the number of predicates involved to a minimum. As 
is the case with AssertLiveUnderPredicate, some approxi- 
mation may be introduced. 

AssertDeadUnderPredicate(x, qp) ( 

let A = ( p in the basis I x is live under p} 

if qp is an element of A { 

// Remove x from the IiveSet 

liveSet[qp] -= x 
return 

// Call to predicate analysis 
B = leastUpperBoundDiff(qp, A) 
mark x as dead under all predicates in the basis 
for each element r in B 

if r is in the basis 

II Add x to the liveSet 

liveSet[r] += x 
else 

for each element s in the basis 

if (!isDisjoint(r, s)) 
liveSet[s] += x // Approximation 

I 
Figure 11. Algorithm for recording register deadness. 

AllCurrentlyLive - In order to compute interferences 
or conservatively conduct an analysis across basic block 

boundaries we need to be able to produce a set of all regis- 
ters which are currently live under a given predicate qp. 
For example, each def of an instruction interferes with the 

set of registers given by AllCurrentlyLive(qp), where qp is 

the qualifying predicate of the instruction. Data flow infor- 

mation can be propagated conservatively across basic 

blocks by use of AllCurrentlyLive(p0). The pseudo code 
for this operation is shown in Figure 12. AllCurrentlyLive 
computes a single bit-vector which is the union of all bit- 
vectors within a LiveSet whose basis element is not dis- 
joint from qp. 

AIICurrentlyLive(qp) { 

s =I) 
for each p in the basis 

if (!isDisjoint(p, qp)) 
S += liveSet[p] It Set union 

return S 

I 
Figure 12. Algorithm for producing a list of all registers 
live with respect to a given predicate. 

Interference Graph Construction - The algorithm in 
Figure 13 describes, in general terms, how the interference 

graph is constructed in the presence of predicates. The 

method is quite similar to the traditional method of inter- 
ference graph construction -- it is simply augmented by the 

use of LiveSet’s and the support routines described above. 
By controlling the widths of the LiveSet’s, the runtime of 
this method is kept in harmony with compile speed require- 
ments’. 

BuildInterferenceGraph() { 
for each basic block bb in the program { 

It work is a LiveSet 

work = dataflowLiveOut[bb] 

for each instruction inst in bb in 

backward order ( 
qp = inst.qualifyingPredicate() 
if (qp == PO) qp=bb.homePredicate() 

S = work.AIICurrentlyLive(qp) 
for each def d in inst 

interfere(d, S) /I Add edge to d from set S 
for each def d in inst 

work.AssertDeadUnderPredicate(d, qp) 
for each use u in inst 

work.AssertLiveUnderPredicate(u, qp) 

I 

1) 
Figure 13. Algorithm for building the predicate-aware 
interference graph. 

1.h some cases the coloring algoridm as a whole can even be faster due to the 
simpler interference graph. 
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5.2 Global Analysis 

The local framework allows for detailed analysis of sin- 

gle basic blocks and is sufficient to analyze Example 3. 
However, to obtain higher degrees of ILP, aggressive opti- 

mizations, such as global scheduling [2] or trace schedul- 

ing [ 131, must be employed to move instructions into ILP- 
poor basic blocks. In this section we extend the local 
framework to a global framework. The scheduling tech- 

niques cited above generally restrict their region of analy- 
sis to sub-regions of the CFG. Our approach recursively 
merges the bases of analysis of basic blocks within global 
scheduling regions (GSR’s) to form a single common basis 

for data flow analysis. 

RegionSelection() ( 
for each interval I in the procedure 

in depth-first order { 

A = I) 
for each GSR R in I ( 
B = {basis for R} 
if I A+B I <= LIMIT { 

mark R as merged 
A+=B 

1 
1 
for each direct descendent interval J of I { 

C = {basis of J} 

if I A+C I <= LIMIT { 

mark J as merged 
A+=C 

I 
I 
set the basis of I and all merged GSR’s 

and intervals to A 

I 

1 
Figure 14. Algorithm for selecting analysis regions. 

Region Selection - Our approach is aimed at analyzing 
entire procedures. However, global analysis of predicated 
live ranges can be very expensive if limits are not placed on 
the algorithm. In practice, it may not be desirable to 
always analyze an entire procedure in an aggressive man- 
ner. We accommodate such cases by hierarchically build- 
ing the regions of analysis from the most deeply nested 
portions of the CFG. That is, bases for several basic blocks 

are merged only if the size of the resulting basis does not 
exceed some limit’. 

Good predication can be accomplished only with inti- 
mate familiarity with the underlying machine architec- 
ture. In our approach we assume that most interesting 
predicated live ranges will be created by an if-converter 

I .We used 32 as the limit in this study. 

and transported across basic blocks by a global instruction 
scheduler. Therefore, the scheduling regions used by a glo- 

bal scheduler will limit the scope of predicated code 

motion and hence the extent of predicated live-ranges2. 

Therefore, GSR’s are a natural building block for basis 

construction for register allocation. 
While GSR’s limit scheduling induced code motion and 

thus the length of live ranges, naturally occurring (e.g. pro- 
grammer created) live ranges will span many GSR’s. Lim- 
iting the scope of analysis strictly to GSR’s is too 
conservative. We recursively build-up the basis, first by 

attempting to coalesce the basis of all GSR’s within an 
interval [12], and then coalescing the bases of inner inter- 

vals into a single basis of analysis. Intervals are coalesced 
in a depth-first traversal of the interval tree. In the best 

case this recursive selection will result in the entire proce- 
dure being analyzed with a single basis. In the event that 

multiple regions are selected, data flow calculations can 
then be performed accurately within each region and sum- 
marized at region boundaries. Figure 14 shows pseudo- 
code for the region selection process. 

Finally, the basis used by each basic block in the pro- 
gram is recorded by tugging its LiveSet with a unique basis 

identifier. A bit-vector style data flow analysis can now be 

performed by extending traditional techniques. 

LiveSetUnion(Target, Source) ( 

if (Target.tag == Source.tag) 
for i=O to Target.setCount - 1 

I/ Set union 
Target.liveSet[i] += Source.liveSet[i] 

else 
It Conservative 

Target.liveSet[pO] += 
Source.AIICurrentlyLive(pO) 

Figure 15. Algorithm for computing the union of LiveSet’s. 

Data Flow Transfer Functions - Standard bit-vector 
liveness calculation techniques can be used by extending 
the algorithm to use LiveSet’s rather than simple bit-vec- 
tors. Some additional complication arises when propagat- 
ing the information across basic block boundaries. To pass 
predicated liveness information across basic blocks bound- 
aries we need two pieces of information about the source 
and target basic blocks: 

1 .The current liveness information. 
2.The analysis basis used. 
Information to identify identical bases is kept with each 

LiveSet as its basis tag. The liveness information is con- 
tained in the bit-vectors of each LiveSet. If the two 

2.Recursive motion between nested GSR’s may also occttr. The recursive nature 
of our region selection attempts to address this issue. 
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LiveSet’s use the same basis then data flow information can 
be transferred without approximation. Conservative hve- 
ness information is used otherwise. Figure 15 shows 
pseudo-code for a data flow LiveSet union operation. 
Other data flow operations are quite similar. 

5.3 Approximation 

In some cases the predicate analysis may return an 

answer containing predicates outside of the present basis. 
This can arise from levels of nesting outside the current 
region or from asymmetries in the CFG requiring internal 
predicate nodes to be generated (e.g. a critical edge) to rep- 
resent the missing symmetrical relationship. These cases 
are handled conservatively. 

Secondly, the analysis of predicate relations ignores 
back edges. Consequently, we cannot accurately analyze 
predicated live ranges which are defined on one iteration of 

a loop and consumed on a subsequent iteration. We detect 
such live ranges and use conservative data flow information 

for them at loop back edges. 

6 Experimental Results 

This section contains experimental measurements 
which show the effects of predicate-aware register alloca- 
tion on a large number of procedures. Several benchmarks 
from the SPECint-92 suite were compiled and the number 
of colors required for procedure-wide graph coloring regis- 

ter allocation with and without our technique were 

recorded. In all, we compiled 1009 procedures and 
observed that 248 cases (24.6%) showed improved register 
allocation when using our technique. Of those cases which 
improved, the average improvement was a 20.71% 
decrease in the number of colors required. The standard 
deviation was 15.10%. Figure 16 graphically depicts the 
distribution of improvement. While most procedures saw 
improvements in the l-35% range some procedures 
improved by as much as 75%. Some results of the experi- 

ments are shown in Table 2. The first column of Table 2 
shows the name of the function compiled. The second col- 
umn lists the number of colors required when using a tradi- 
tional predicate-unaware graph coloring register allocator 
on the predicated code. The third column shows the num- 
ber of colors required when using our predicate-aware reg- 
ister allocator. The fourth column shows the percentage of 
improvement. 

While many procedures improved with our technique 
the majority did not. The dominant cause was absence of 

any predicated code in the procedure due to the simple 
nature of the if-converter [ 151. With a more aggressive if- 
conversion technique [ 171 more programs should benefit 
from our work. Also, even when predicated code was 
present, it was sometimes of such a simple form as to allow 

the predicate-unaware method to achieve good results. 
Since graph coloring based register allocation is a heu- 

ristic approximation to an optimal solution we expected to 
see some cases which degraded simply due to the different 
structures of the interference graphs. That is, the heuristic 

approximation used to color the predicate-unaware inter- 
ference graph could use fewer colors than the same heuris- 

tic approximation used to color the predicate-aware 

interference graph. However, we have not observed any 
such case to date. 

As the number of predicated live ranges increase in pro- 
portion to the number of unpredicated live ranges the 
impact of our approach should be even more beneficial. 
Furthermore, predicate-aware register allocation will be 
even more important when register pressure is increased 

by aggressive function inlining. 

7 Conclusion 

To maximize the effectiveness of predicated execution, 

it is very important to take into account the semantics of 
predicates during compilation analysis, such as data flow 
analysis. In this paper, we have proposed global techniques 
to analyze the relations among predicates, and these rela- 
tions can then be queried by a subsequent compilation 
analysis or transformation phase. In contrast to previous 
work, our predicate analysis integrates the relations among 
control flow and predication. We have also developed a 

predicate-aware register allocator by naturally extending a 
traditional method. The precision of data flow analyses 

supporting this register allocator is greatly enhanced by 
taking into account global predicate relations. The impor- 
tance of a predicate-aware register allocator is demon- 
strated by the significant reduction in register pressure as 
shown in our extensive experimental results. For cases 
which show improvement, on average, our predicate-aware 
register allocator reduces the number of colors by 20.7 1%. 

Register Allocation Improvement 

/ 
5 1015202530354045505560657075 

Percentage Improvement 
L~~~~~~~~~~~. - -~-~ 

Figure 16. Distribution of register allocation improvement. 
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Table 2: Experimental results for register allocation 

dobindings 34 21 20.59% 

duple 25 20 20.0090 
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