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Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and
serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been
used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a
chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We
have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues
with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic
small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and
allosteric mechanisms, as well as disrupt protein–protein interactions in transcriptional regulatory complexes, emphasizing
the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

S
mall molecules can serve as versatile probes for perturbing the
functions of proteins in biological systems and are a primary
source of therapeutic agents to treat human disorders1.

Nonetheless, most human proteins still lack selective chemical
ligands and some classes of proteins are even considered undrug-
gable2. Covalent ligands offer one strategy to expand the landscape
of proteins amenable to targeting by small molecules. By combining
features of recognition and reactivity, covalent ligands have the poten-
tial to target sites on proteins that are difficult to address by reversible
binding interactions alone3. While original covalent probes often
target essential catalytic residues within the active sites of enzymes,
in particular, serine4 and cysteine5 residues of enhanced nucleophili-
city, more recent successes in covalent ligand development include
electrophilic small molecules that react with non-catalytic cysteines
across diverse protein classes, including kinases6,7, GTPases8 and
non-enzymatic proteins (for example, nuclear export factors9).
These efforts have culminated in the approval of several covalent
kinase inhibitors as drugs for treating diverse cancers6,7.

In attempts to understand the scope of proteins that may be tar-
geted by covalent ligands, we recently evaluated the proteome-wide
reactivity of a diverse set of cysteine-directed electrophilic frag-
ments, which were found, as a collection, to engage cysteine residues
on hundreds of proteins in human cell systems10. These proteins ori-
ginated from diverse classes, including those deemed historically
challenging to target with small molecules (for example, adaptor
proteins and transcription factors). The total number of proteins
harbouring liganded cysteines, however, still accounted for only
∼20% of all proteins quantified in the study, suggesting that the
realization of a more complete ligandability map of the human pro-
teome may require extending beyond cysteine as a source for
covalent probe development.

Among proteinaceous amino acids, lysine represents a potentially
attractive candidate for covalent ligand development, as the lysine
ε-amine is intrinsically nucleophilic and lysines are found at many
functional sites, including enzyme active sites11,12 and at interfaces

mediating protein–protein interactions13. Lysines also frequently
serve as sites for post-translational regulation of protein structure
and function through, for instance, acetylation14, methylation15,16

and ubiquitylation17. Individual lysine residues within functional
protein pockets are susceptible to modification by electrophilic
small molecules, including natural products such as wortmannin18,
which targets a lysine in the active sites of PI3K kinases, activated
esters that react with a lysine in transthyretin (TTR)19 and boronic
acid carbonyl antagonists of the apoptosis regulatory protein
MCL-1 (ref. 13). Additional electrophiles that have been shown to
react with proteinaceous lysine residues include dichlorotriazines20,21,
imidoesters22, 2-acetyl- or 2-formyl-benzeneboronic acids13,23,
isothiocyanates24,25, pyrazolecarboxamidines26,27, sulfonyl fluorides28,29

and vinyl sulfonamides30.
Despite the aforementioned examples, the full spectrum of

functional and ligandable lysines in the human proteome remains
poorly understood. Building on previous work describing a chemi-
cal proteomic platform for assessing cysteine reactivity on a global
scale31, initial attempts have been made to assess lysine reactivity
in human proteomes, but these data sets, which were generated
using aryl halide probes, were limited to quantifying a small
number of lysines (<100) (ref. 21). Given the frequency of lysine
residues in human proteins (∼6% of all residues32), we hypo-
thesized that the development of more advanced chemical proteo-
mic methods capable of quantifying a much larger number of
lysines in human proteomes would provide a deeper and more
complete portrait of lysine reactivity and ligandability, as well as
the potential relationship between these two parameters. Here,
we show that an amine-reactive pentynoic acid sulfotetrafluoro-
phenyl ester probe provides access to a very rich content of
lysines (>9,000 residues in total) in the human proteome. We
use this probe to quantify lysine reactivity and ligandability on a
global scale, leading to the discovery of functional lysines that
can be targeted by covalent ligands to perturb the activities of a
diverse range of proteins.
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Results
A chemical proteomic method for assessing lysine reactivity. We
have previously described a quantitative and site-specific chemical
proteomic method termed ‘isoTOP-ABPP’ (isotopic tandem
orthogonal proteolysis-activity-based protein profiling) for measuring
cysteine reactivity in native proteomes31. Here, we reasoned that
exchanging the cysteine-directed iodoacetamide alkyne probe for a
probe that shows preferential reactivity with amines would afford a
platform for global lysine reactivity analysis (Fig. 1a). Among
candidate amine-reactive groups, we considered activated esters as a
good potential probe class, as they should show preferred reactivity
with amines, display good solubility, and form stable, structurally
simple adducts with proteinaceous lysines for characterization by
MS methods. In an initial screen of alkyne-modified ester probes
(1–15, Supplementary Fig. 1), we found that sulfotetrafluorophenyl
(STP) and N-hydroxysuccinimide esters showed strong proteomic
reactivity, as evaluated by copper-catalysed azide-alkyne
cycloaddition (CuAAC, or click chemistry33) to a rhodamine-azide
tag, SDS–PAGE and in-gel fluorescence scanning (Supplementary
Fig. 1). Considering that tetrafluorophenyl esters are more stable in
aqueous solution than NHS esters34, we selected STP-alkyne 1 as a
probe for proteomic profiling of lysine reactivity.

We initially assessed the scope and selectivity with which 1
reacted with lysine residues in human cell proteomes. Two equal
amounts of proteomic lysate from the human breast cancer cell
line MDA-MB-231 were treated with 1 (100 µM, 1 h), CuAAC-con-
jugated to isotopically differentiated tobacco etch virus protease
(TEV)-cleavable, azide–biotin tags (heavy and light, respectively),
combined and analysed by isoTOP-ABPP. Measurement of the
MS1 chromatographic peak ratios for isotopically differentiated
light/heavy peptide pairs provided an isoTOP-ABPP ratio, or
R value, which centred on ∼1.0 for the more than 5,000 quantified,
probe 1-labelled peptides. As determined by tandem MS and differ-
ential modification analysis, >52% of 1-labelled peptides were
assigned as being uniquely modified on lysine residues, with 54%
of the remaining 1-labelled peptides being assigned with lysine
modifications as well as alternative residue modifications. Because
lysine modification creates a missed trypsin cleavage site, we
further assessed the fraction of alternative amino-acid modification
assignments for their occurrence on peptides harbouring a missed
lysine cleavage site. We found that most of the predicted non-
lysine modifications for 1 occurred on peptides with missed lysine
cleavage sites (Supplementary Fig. 1), indicating that they probably
represent mis-assignments of reactivity events that actually occurred
on lysine. Once the isoTOP-ABPP data were filtered to remove
peptide assignments with unmodified, missed lysine cleavage
events, lysine accounted for the vast majority of all assignments
for probe 1 modification (Fig. 1b). The remaining alternative
probe 1 modifications were mostly assigned to serine (∼8% of the
total 1-labelled peptides) and these occurred on fully digested
tryptic peptides (Fig. 1b), probably designating them as authentic
modifications. These results, taken together, indicate that 1 shows
broad reactivity and good selectivity for lysine residues in the
human proteome.

Quantitative profiling of lysine reactivity in human cell
proteomes. Previous isoTOP-ABPP studies have shown that the
human proteome possesses a specialized set of hyper-reactive
cysteine residues that are enriched in functional residues (for
example, catalytic residues, redox-active residues) compared to
bulk cysteine content31. Here, we assessed the intrinsic reactivity
of lysine residues in human cell proteomes by comparing their
concentration-dependent labelling with probe 1, where highly
reactive lysines would be expected to show nearly equivalent
labelling intensities at low versus high concentrations of probe 1,
with less reactive lysines displaying clear concentration-dependent

increases in labelling intensity. In brief, we treated proteomes
from three human cancer cell lines (MDA-MB-231, Ramos and
Jurkat cells) with low versus high concentrations of probe 1 (0.1
versus 1 mM, n = 4 per group) for 1 h and then analysed the
samples by isoTOP-ABPP, wherein high, medium and low reactivity
lysines were distinguished by their respective isotopic ratio values
(R10:1< 2, 2 < R10:1< 5, R10:1> 5, respectively). To minimize false
quantification events, we also required that lysines were detected in
control (0.1 versus 0.1 mM) experiments with R1:1 values of ∼1.0
(see Supplementary Methods for additional details).

In total, ∼4,000 lysine residues were assessed for intrinsic reactiv-
ity across the three tested cell lines (Supplementary Fig. 2), and indi-
vidual lysines showed consistent reactivity values for replicate
experiments performed within (Supplementary Fig. 2) and across
these cell lines (Supplementary Fig. 2). The majority of quantified
lysines showed strong, concentration-dependent increases in reac-
tivity with probe 1, indicative of residues with low intrinsic reactivity
(Fig. 1c). In contrast, a rare subset of the quantified lysines (<10%, or
310 total residues) exhibited heightened (hyper-) reactivity with
probe 1 (R10:1 < 2) (Fig. 1c). Most proteins contained only one
hyper-reactive lysine among several quantified lysines (Fig. 1d),
and the atypical hyper-reactivity of these lysines was further sup-
ported by comparing their R10:1 values to those of other lysines
quantified on the same protein (Supplementary Fig. 2). We con-
firmed the lysine hyper-reactivity determinations made by
isoTOP-ABPP by recombinantly expressing wild-type (WT) and
lysine-to-arginine mutant proteins and comparing their reactivity
by gel-based ABPP using fluorescent or alkyne-tagged activated
ester probes (Supplementary Fig 1). Each protein examined
showed strong labelling with activated ester probes and the labelling
of one or more of these probes was generally blocked, in many cases
completely, by mutation of the hyper-reactive lysine to arginine
(Fig. 1e, Supplementary Fig. 2 and Supplementary Table 1).
Considering that there were, on average, 30 lysine residues per
examined protein, the blockade of activated ester probe labelling
by mutation of a single lysine in each protein underscores the
unusual hyper-reactivity of these residues.

Features of hyper-reactive lysines. Hyper-reactive lysines were
found on proteins from all major classes and showed a
distribution similar to those of less reactive lysines (Fig. 2a).
Hyper-reactive lysines were not, as a group, more conserved
across organisms than lysines of lower reactivity, although this
analysis was complicated by the high median conservation
(∼80%) of all 1-labelled lysines across the species examined
(Supplementary Fig. 3). The primary sequence surrounding
hyper-reactive lysines also did not show evidence of any obvious
conserved motifs (Supplementary Fig. 3), indicating that higher-
order structural features in proteins are probably imparting
enhanced reactivity on these lysines. Consistent with this
hypothesis, the frequency of lysines found in functional sites on
proteins (for example, enzyme active sites, ligand-binding sites),
as assessed by analysis of three-dimensional protein structures,
was positively correlated with reactivity (Fig. 2b). Protein pockets
of uncharacterized function (as defined by AutoSite35 analysis of
protein structures) also contained a greater percentage of hyper-
reactive lysines compared to less reactive lysines (Supplementary
Fig. 3). Interestingly, we observed a striking inverse correlation
between lysine reactivity and evidence of ubiquitylation as
reported in the PhosphoSitePlus database36 (Fig. 2c), and a
similar, albeit more tempered trend was found for lysine
acetylation (Supplementary Fig. 3). These data, taken together,
indicate that the localization of lysines to pockets on proteins may
represent a prevalent mechanism for conferring heightened reactivity
and such distributions may further hinder post-translational
modification of the lysines, possibly due to limited surface exposure.
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We examined whether some of the hyper-reactive lysines located
in functional pockets contributed to protein activity. NUDT2, which
is a diadenosine tetraphosphate hydrolase implicated in cancer and
immune cell metabolism37, possesses a hyper-reactive lysine (K89)
that is highly conserved and predicted, based on an NMR structure
of NUDT2, to coordinate alpha-phosphate substrate binding38.
However, to our knowledge, the contributions of K89 to NUDT2
catalysis have not been investigated. We found that mutation of
K89 to arginine dramatically reduced the hydrolytic activity of
NUDT2 (Fig. 2d). A similar disruption of catalysis was observed
by mutation of the conserved, hyper-reactive lysine (K171) in the
pentose phosphate pathway enzyme glucose 6-phosphate 1-dehy-
drogenase (G6PD) (Fig. 2d), which is consistent with previous find-
ings39. Both K89 of NUDT2 and K171 of G6PD are active-site
residues (Supplementary Fig. 3) and we therefore wondered
whether hyper-reactive lysines located in potential allosteric
pockets might also affect enzyme function. As a case study, we
examined the hyper-reactive lysine (K688) in platelet-type phospho-
fructokinase (PFKP), which is located in an allosteric pocket >22 Å
away from the active site (Supplementary Fig. 3). Mutation of K688
to arginine in PFKP produced a partial, but significant reduction in
PFKP activity (Fig. 2d), pointing to a role for this lysine in allosteric
regulation of PFKP function.

Quantitative profiling of lysine ligandability in human cell
proteomes. We next applied isoTOP-ABPP in a ‘competitive’
format to assess the ligandability of lysines (Fig. 3a), where human
cell proteomes were pre-treated with a small library (∼30 member,
50–100 µM) of amine-reactive electrophilic fragments (activated

esters, such as pentafluorophenyl- (19–28), dinitrophenyl- (29–45)
and NHS esters (46) and N,N′-diacyl-pyrazolecarboxamidines
(49,50)26,27) as well as one non-electrophilic control compound 51
(Fig. 3b and Supplementary Fig. 4) or DMSO control, followed by
exposure to probe 1 (100 µM). Fragment-sensitive lysines were
identified as those showing substantial reductions (≥75%) in
enrichment by 1 in the presence of one or more fragments
compared to the DMSO control (R ≥ 4 for DMSO/fragment).

We quantified, on average, >2,700 lysines per data set and, in
aggregate, >8,000 lysines from 2,430 proteins across all data sets
(Fig. 3c and Supplementary Table 2). Each lysine was quantified,
on average, in 24 individual experiments (Supplementary Fig. 4
and Supplementary Table 2), providing a good initial assessment
of ligandability potential. We identified, in total, 121 liganded
lysines in 113 proteins (Fig. 3c). We quantified, on average, approxi-
mately four lysines per protein that reacted with probe 1 (Fig. 3d),
indicating that ligandability was a rare feature. A striking example
is PFKP, where a single liganded lysine was identified—the afore-
mentioned K688—along with nine additional quantified lysines
that showed no evidence of ligandability (Fig. 3e). Similarly, hexoki-
nase-1 (HK1) possessed a single liganded lysine K510 among six
quantified lysines (Supplementary Fig. 4). The majority of proteins
harbouring liganded lysines were not found in DrugBank (73%,
Fig. 3c) and these proteins showed a much broader class distribution
than the smaller fraction of DrugBank proteins containing liganded
lysines (27%), which were mostly enzymes (Fig. 3c). Prominent sub-
groups of non-DrugBank proteins with liganded lysines included
transcription factors and scaffolding proteins (Fig. 3c), which are
considered challenging to target with small molecules.
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Hyper-reactive lysines showed greater ligandability than less
reactive lysines, although many liganded lysines were also found
in the latter group (R10:1 > 2.0, Fig. 3f,g). Of note, only a small frac-
tion (∼20%) of proteins with liganded lysines were found to contain
liganded cysteines in a previous study10 (Fig. 3h). These results,
taken together, indicate that fragment electrophile interactions
with lysines depend on both reactivity and recognition and canvas
a distinct and complementary portion of the human proteome
compared to covalent chemistries targeting other nucleophilic
amino acids.

Structure–activity relationship analysis of lysine-fragment
electrophile interactions. Most of the liganded lysines (69%)
interacted with a limited fraction (<10%) of the tested fragment
electrophiles, although a small subset of lysines (8%) were
targeted by a substantial portion of the compounds (≥25%)
(Supplementary Fig. 5). Conversely, the fragment electrophiles
showed large differences in proteomic reactivity towards lysines
(Supplementary Fig. 5), ranging from 1 to 35% of the liganded
residues (Supplementary Fig. 5). No lysine reactivity was observed
for the non-electrophilic control fragment 51 (Supplementary Figs 4
and 5). The dinitrophenyl esters showed somewhat greater overall
reactivity compared to the corresponding pentafluorophenyl esters
(Supplementary Fig. 5), which correlated with the faster solvolysis
rates observed for the former class of compounds (Supplementary
Fig. 5). Despite these general trends, individual lysines displayed
markedly distinct structure–activity relationships (SARs) that, in
some cases, directly opposed the overall reactivity profiles of the
fragment electrophile library (Fig. 4a and Supplementary Table 2).
The hyper-reactive lysine K35 in the hormone-binding protein
transthyretin TTR, for instance, which has previously been shown to
be modified selectively in human plasma by activated (thio)ester and
sulfonyl fluoride ligands19,28, was preferentially targeted by the
dinitrophenyl ester fragment 31 over fragments that showed much
greater proteome-wide reactivity (for example, 29 and 30) (Fig. 4a
and Supplementary Fig. 5). Further evidence that recognition events
make substantive contributions to fragment–lysine interactions was
found in the distinct lysine reactivity profiles displayed by fragment
electrophiles bearing a common leaving group (Fig. 4b, left). We
confirmed these SAR assignments by gel-based ABPP with
recombinantly expressed proteins (Fig. 4b, right, and Supplementary
Fig. 5). The identity of the leaving group of activated ester fragments

also influenced reactivity, as reflected by a subset of lysines that were
preferentially liganded by pentafluorophenyl or dinitrophenyl esters
bearing the same recognition group (Supplementary Fig. 5). The
most distinctive lysine reactivity profiles were observed for
N,N′-diacyl-pyrazolecarboxamidine fragments 49 and 50, which,
despite sharing several targets with activated esters, also reacted
with 15 lysines in human cell proteomes that showed negligible
cross-reactivity with activated esters (see representative proteins
at the bottom of Fig. 4a and Supplementary Table 2). We
confirmed the reactivity of one of these lysines (K89 of NUDT2)
with N,N′-diacyl-pyrazolecarboxamidine fragments by recombinant
expression of the parent protein and competitive gel-based ABPP
(Supplementary Fig. 5).

We next set out to confirm fragment–lysine adducts by develop-
ing a quantitative, MS-based platform that simultaneously measured
both fragment electrophile modification of lysines in individual pro-
teins and the fractional occupancy and specificity of these reactions
(Fig. 5a). Proteins containing liganded lysines discovered by isoTOP-
ABPP were expressed with a Flag epitope tag in HEK 293T cells,
treated with fragment electrophiles or DMSO, enriched by anti-
Flag immunoprecipitation, proteolytically digested and the tryptic
peptides from fragment- and DMSO-treated samples then isotopi-
cally differentiated by reductive dimethylation (ReDiMe)40,41, com-
bined pairwise and analysed by LC-MS/MS. This protocol yielded
high average sequence coverage (>40%) for the six tested proteins
(PFKP, PNPO, HK1, HDHD3, XRCC6 and SIN3A) and, in each
case, we obtained definitive evidence that the liganded lysine
assigned by isoTOP-ABPP was directly adducted by the correspond-
ing electrophilic fragment (Fig. 5b and Supplementary Table 2). We
also observed depletion of the unmodified tryptic peptides contain-
ing the liganded lysines and/or adjacent peptides requiring the
liganded lysine as a cleavage site (Fig. 5b, blue dots). Other tryptic
peptides generated by a lysine cleavage event were unaffected by frag-
ment electrophile treatment (Fig. 5b, black dots), indicating the
specificity of fragment reactions with individual lysines on the
tested proteins (as also predicted by isoTOP-ABPP, Fig. 3d).

Functional analysis of fragment–lysine interactions. We next
aimed to determine the functional impact of fragment–lysine
interactions mapped by isoTOP-ABPP. As initial case studies,
we selected two enzymes with liganded active-site lysines—
pyridoxamine-5′-phosphate oxidase (PNPO) and NUDT2. PNPO
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catalyses the FMN-dependent oxidation of pyridoxamine-5′-
phosphate and pyridoxine-5′-phosphate to pyridoxal-5′-phosphate in
vitamin B6 synthesis42. PNPO possesses a hyper-reactive lysine K100
(R10:1 = 0.7, Supplementary Table 1) located in the enzyme’s active
site and shown in previous structural studies to interact with
substrate42 (Supplementary Fig. 6). Competitive isoTOP-ABPP
uncovered a highly restricted SAR for ligand engagement of K100,
with only two fragments (19 and 22) fully blocking probe 1 labelling
of this residue (Supplementary Fig. 6 and Supplementary Table 2).
We confirmed, by gel-based ABPP, that fragment 19 blocked probe
labelling of K100 in PNPO with an apparent half maximal inhibitory
concentration (IC50) value of 3 µM (Fig. 6a and Supplementary
Fig. 6). A similar IC50 value (∼5 µM) was measured for blockade of
PNPO catalytic activity by 19 using a substrate assay43 (Fig. 6a).
The inhibitory effect of 19 was not observed with a K100R
mutant of PNPO (Fig. 6a), which also did not label with amine-
reactive probes (Supplementary Fig. 6).

NUDT2 is responsible for the catabolism of nucleotide cellular
stress signals in human cells37 and was found to contain a hyper-

reactive and liganded lysine K89 that is located proximal to the
enzyme’s nucleotide-binding site (Supplementary Fig. 3). K89 also
exhibited a restricted SAR by isoTOP-ABPP, preferentially reacting
with the two N,N′-diacyl-pyrazolecarboxamidine fragments 49 and
50 (Supplementary Fig. 6 and Supplementary Table 2). We
confirmed by gel-based ABPP that fragment 49 blocked probe
labelling of NUDT2 with an apparent IC50 of 2 µM (Fig. 6b and
Supplementary Fig. 6), and an equivalent IC50 value was measured
for inhibition of NUDT2 activity using a substrate assay44 (Fig. 6b),
which was also used to determine a kobs/[I] (a kinetic parameter that
measures covalent binding interactions) value for 49 of 46.3 ± 1.3
M−1 s−1 (Supplementary Fig. 6). Because mutation of K89 to arginine
(K89R) inactivated NUDT2 in the substrate assay (Fig. 2d), we could
not test the inhibitory effect of 49 on the K89R mutant, but we did
confirmby gel-basedABPP that theK89Rmutant showed a substantial
reduction in amine-reactive probe labelling equivalent to that observed
following treatment of NUDT2 with 49 (Supplementary Fig. 6).

We next turned our attention to liganded lysines residing in more
poorly characterized sites on proteins, specifically, a putative
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allosteric pocket in PFKP and a protein–protein interaction site in
SIN3A. PFKP is responsible for the phosphorylation of fructose-
6-phosphate to fructose-1,6-bisphosphate, the committed step of
glycolysis45. Probe 1 labelling of the hyper-reactive lysine K688 in
PFKP was completely blocked by fragment 20, which otherwise
exhibited limited reactivity across the proteome (Fig. 4a and
Supplementary Figs 5 and 6). Gel-based ABPP confirmed that 20
blocked probe labelling of recombinant PFKP with an apparent
IC50 of 2 µM (Fig. 6c and Supplementary Fig. 6), and a loss in
probe reactivity was observed for the K688R mutant of PFKP
(Fig. 1e and Supplementary Fig. 6). Using an enzyme-coupled
assay monitoring the conversion of NAD+ to NADH by ultraviolet
absorbance46, we found that the activity of WT-PFKP, but not the

K688R-PFKP mutant was inhibited by 20 with an apparent IC50

of 2.9 µM (Fig. 6c and Supplementary Fig. 6). Fragment 20 inhi-
bition of the catalytic activity of WT-PFKP plateaued at ∼80%
reduction in substrate turnover (Fig. 6c and Supplementary
Fig. 6), indicating that ligand reactivity at the K688 allosteric site
substantially, but incompletely, blocks enzyme function.

SIN3A is a multidomain 145 kDa transcriptional repressor
involved in histone deacetylase regulation47 and suppression of
MYC-responsive genes48. We found that SIN3A contains a hyper-
reactive lysine K155 (R10:1 = 1.2, Supplementary Table 1) located
in the first paired amphipathic helix (PAH1) domain of the
protein (Fig. 6d). Our isoTOP-ABPP experiments revealed that frag-
ment 21 engages K155 in SIN3A (Fig. 6d, inset, and Fig. 6e), but
otherwise shows low proteome-wide reactivity (Fig. 6e and
Supplementary Fig. 5). We recombinantly expressed a Flag-tagged
SIN3A variant containing the N-terminal PAH1 and PAH2
protein–protein interaction domains (amino acids 1–400) in
HEK293T cells and found that treatment of cell lysates with 21 pro-
duced a site-specific and complete blockade of probe labelling of
K155 with an apparent IC50 of 5 µM (Fig. 6f and Supplementary
Fig. 7). We then used quantitative SILAC (stable isotopic labelling
with amino acids in cell culture49) proteomics to identify SIN3A-
interacting proteins that were sensitive to mutation of K155 and/
or treatment with 21. HEK293T cells metabolically labelled with iso-
topically differentiated amino acids were transfected with cDNA
constructs for Flag-SIN3A (heavy-labelled cells) or Flag-GFP
(light-labelled cells), collected, lysed and immunoprecipitated with
anti-Flag antibodies. Heavy- and light-labelled immunoprecipitates
were combined and subjected to tryptic digestion followed by LC-
MS/MS analysis, which furnished a set of SIN3A-interacting pro-
teins, defined as proteins that were substantially (more than fivefold)
enriched in the SIN3A-transfected compared to GFP-transfected
samples (Fig. 6g and Supplementary Table 2). Similar quantitative
proteomic experiments compared WT-SIN3A to a K155W-SIN3A
mutant and DMSO-treated WT-SIN3A to 21-treated WT-SIN3A.
The K155W mutant, which was generated to mimic incorporation
of a bulky hydrophobic group into the 21-sensitive pocket of
SIN3A, failed to substantially enrich two established SIN3-interact-
ing proteins—TGIF1 and TGIF2 (refs 50, 51)—that co-immunopre-
cipitated with WT-SIN3A (Fig. 6g and Supplementary Table 2).
Treatment with 21 also strongly blocked the TGIF1–SIN3A inter-
action, but only produced a marginal effect on TGIF2–SIN3A
interaction (Fig. 6g and Supplementary Table 2). Other known
SIN3A-interacting proteins that co-immunoprecipitated with WT-
SIN3A, such as MAX (ref. 52), MNT (ref. 52) and MXI1 (ref. 53),
were not affected by K155W mutation or 21 treatment (Fig. 6g).

We further evaluated the effect of 21 on SIN3A interactions with
TGIF1/TGIF2 by co-expressing these proteins with complementary
epitope tags (Flag and Myc, respectively). In this system, fragment
21 treatment, as well as K155W mutation, blocked the co-immuno-
precipitation of TGIF1 as measured by anti-Myc blotting (Fig. 6h,i).
The K155W mutant also strongly inhibited co-immunoprecipita-
tion of TGIF2 with SIN3A, while 21 exerted a partial blockade of
this association (Fig. 6i and Supplementary Fig. 7). Importantly,
mutation of K155 to arginine (K155R) conferred resistance to the
effects of 21 on the SIN3A–TGIF1 interaction (Fig. 6h,i and
Supplementary Fig. 7). Taken together, these data demonstrate
that covalent ligands targeting K155 in SIN3A can pharmaco-
logically disrupt a select subset of protein–protein interactions
implicated in gene regulation.

Discussion
Chemical proteomic technologies, such as ABPP, have proven valuable
for ligand/drug development by providing quantitative readouts of
target engagement and selectivity in native biological systems10.
Considering its nucleophilic side chain and prevalence in proteins,
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lysine is an attractive candidate amino acid for covalent ligand devel-
opment. pKa-perturbed lysine residues play important functional roles
in proteins54,55 and electrophilic compounds have been found to target
lysines in diverse types of proteins (for example, metabolic enzymes,
such as PGAM1 (ref. 56), hormone-binding proteins, such as TTR
(ref. 57), lipid kinases, such as PI3Ks (ref. 18) and adaptor proteins,
such as MCL-1 (ref. 13)). Nonetheless, our understanding of lysine
reactivity and ligandability across the human proteome remains
limited. We and others have used the chemical proteomic method
isoTOP-ABPP to measure the reactivity31 and covalent ligand inter-
actions of cysteine residues in native biological systems10,58–60. Here,
we have extended this platform to globally profile the reactivity and
ligandability of thousands of lysine residues in human cell proteomes.
Key to success was selection of an electrophilic group—the STP ester—
that displayed broad and selective reactivity with lysines over other
proteinaceous amino acids, which probably accounted for the much
deeper coverage of lysines compared to first-generation probes based
on aryl halide reactive groups21.

When combined with previous chemical proteomic studies of
cysteine reactivity31, our results provide further evidence that heigh-
tened reactivity of nucleophilic amino acids is a hallmark of func-
tionality and ligandability. Cysteine, however, is a much less
frequent amino acid in proteins compared to lysine and, in this
context, we find it noteworthy that hyper-reactive lysines could be
site-selectively modified by activated ester probes in proteins that
harbour 50+ other lysines (for example, Fig. 1e and
Supplementary Fig. 2). This feature enabled screening of these
hyper-reactive lysines for ligandability using convenient gel-based
assays (for example, Supplementary Fig. 5). On the other hand,
the greater frequency of lysine compared to cysteine in proteins
presents a technical challenge for achieving a complete inventory
of lysines in the proteome. This problem may not simply be over-
come by raising the concentration of activated ester probe in chemi-
cal proteomic experiments, which we have found instead tends to

increase the signals and coverage of lower-reactivity lysines in abun-
dant proteins (possibly at the expense of detecting high-reactivity
lysines on lower-abundance proteins). More promising might be
to perform additional upfront chromatography steps to better frac-
tionate the proteome before enrichment and MS analysis of peptides
containing probe-reactive lysines. Additionally, because probe reac-
tivity with lysines blocks tryptic cleavage sites, the use of alternative
proteases may uncover additional probe–lysine reactivity events that
evade detection in conventional tryptic digest protocols. Finally,
subsets of lysines can be selectively targeted with greater sensitivity
using tailored electrophilic probes that leverage recognition
elements to favour binding to functional protein pockets, such as
the ATP-binding sites of kinases11,29.

Our chemical proteomic experiments have also provided valu-
able initial insights into the global ligandability potential of
lysines in the human proteome. Most of the liganded lysines discov-
ered herein were found in proteins lacking small-molecule probes,
including proteins not present in DrugBank or targeted by
cysteine-reactive fragments in a previous study10. We also demon-
strated that lysine-reactive fragments can block the function of pro-
teins, including inhibition of enzyme activity by both active site
(PNPO, NUDT2) and allosteric (PFKP) mechanisms, as well as dis-
ruption of specific protein–protein interactions in transcriptional
regulatory complexes (SIN3A–TGIFs). The SIN3A–TGIF1 inter-
action has been found to contribute to invasiveness of triple negative
breast cancer50, suggesting that more optimized chemical probes
targeting K155 in SIN3A may exert anti-tumorigenic effects.

Based on our competitive isoTOP-ABPP results, we believe that a
broader effort to discover covalent ligands for lysines has the poten-
tial to substantially expand the druggable content of the human pro-
teome. The success of such a programme, however, may depend on
identifying alternative amine-reactive chemotypes, as the activated
esters tested herein are probably too prone to enzymatic and non-
enzymatic hydrolysis for development into cellular or in vivo
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probes. Alternative amine-reactive electrophiles, such as sulfonyl
fluorides28,29 or the N,N′-diacyl-pyrazolecarboxamidines explored
herein, may offer more suitable starting points for optimization of
lysine-targeting covalent ligands for cell biological studies.
Alternative electrophiles, when used as broad profiling probes,
may also provide access to additional lysine residues in the pro-
teome, although the chemoselectivity of such probes could present
a challenge. While our manuscript was under review, for instance,

Ward and colleagues characterized the proteomic reactivity of an
NHS-ester probe and found that, while this activated ester-labelled
lysines, it also showed substantive reactivity with several other
amino-acid residues (serine, threonine, tyrosine, arginine, cysteine)
across the mouse liver proteome61. These results are consistent with
our initial gel-based profiling experiments studies of a similar NHS
ester probe (8), which showed substantially higher overall proteomic
reactivity compared to STP probe 1 (Supplementary Fig. 1).
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immunoprecipitated before western blot analysis (h). Quantification of western blotting data for four biological replicates (i). Data represent

means ± standard deviation for four experiments. Statistical significance was calculated with unpaired Students t-tests comparing SIN3AWT+ 21 to

K155R + 21 groups: *P < 0.05, **P < 0.01. In f–i, Flag-SIN3A or the indicated Flag-SIN3A mutants correspond to amino acids 1–400 of SIN3A.
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In summary, we have described a quantitative chemical proteo-
mic platform to globally map the reactivity and ligandability of
lysine residues in the human proteome. Projecting forward, it is
interesting to speculate on the broader functional ramifications of
lysines that display heightened reactivity. Minimally, this feature
appears to correlate well with ligandability, which could reflect the
enriched presence of hyper-reactive lysines in pockets, where the
pKa of these residues can be presumably altered. On the other
hand, the localization of hyper-reactive lysines to pockets could
also restrict their access to post-translational machinery, such as ubi-
quitylation processes (Fig. 2c), which may instead mostly target
surface-exposed (that is, less reactive) lysines. We also believe that
our studies, despite having uncovered more than 100 lysines
targeted by fragment electrophiles, almost certainly still under-
estimate the global ligandability of lysines in the human proteome.
The development and evaluation of larger compound libraries dis-
playing more diversified recognition and amine-reactive elements,
including covalent-reversible electrophiles (for example, aldehydes),
in combination with surveying complementary cell types (for
example, primary immune cells62 and metabolic organs63), should
greatly enrich our understanding of functional and ligandable
lysines in the human proteome and, through doing so, extend its
druggable landscape for basic and translational research objectives.

Methods
A detailed Methods section is provided in the Supplementary Information.

Data availability. The data supporting the findings discussed here are available
within the paper, its Supplementary Information and Supplementary Tables 1 and 2,
as well as from the corresponding authors upon request.
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