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Global quantification of mammalian gene
expression control
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& Matthias Selbach1

Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and
proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a
genome-wide scale. Here we simultaneouslymeasured absolutemRNA and protein abundance and turnover by parallel
metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated
better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have
obtained the first genome-scale prediction of synthesis rates ofmRNAs andproteins.We find that the cellular abundance
of proteins is predominantly controlled at the level of translation. Geneswith similar combinations ofmRNA and protein
stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints.
Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater
understanding of the underlying design principles.

The four fundamental cellular processes involved in gene expression
are transcription, mRNA degradation, translation and protein degra-
dation. It is now clear that each step of this cascade is controlled by
gene-regulatory events1,2. Although each individual process has been
intensively studied, little is known about how the combined effect of all
regulatory events shapes gene expression. The fundamental questionof
how genomic information is processed at different levels to obtain a
specific cellular proteome has therefore remained unanswered.
With regard to a quantitative description of gene expression,

numerous previous studies comparingmRNA and protein levels con-
cluded that the correlation is poor3,4. However, the available data
suffer from several limitations. Most studies are limited to a few
hundred genes, mainly due to the technical challenges involved in
large-scale protein identification and quantification. Also, protein
levels measured in one experiment are typically compared to
mRNA levels determined in a different experiment performed at a
different time in a different laboratory, making it difficult to interpret
why the correlation is low. Finally, mRNA and protein levels result
from coupled processes of synthesis and degradation. Therefore, ana-
lysis of mRNA and protein levels alone cannot provide sufficient
information to understand gene expression comprehensively.
mRNA and protein turnover can be measured with drugs to inhibit
transcription or translation5,6, but this has severe side effects. Studies
based on artificial fusion proteins are problematic because tagging can
affect protein stability7.
To overcome these limitationswe sought to quantify cellularmRNA

and protein expression levels and turnover in parallel in a population
of unperturbed mammalian cells. Pulse labelling with radioactive
nucleosides or amino acids is regarded as the gold standard method
to determine mRNA and protein half-lives. Recently, variants of this
approach based on non-radioactive tracers have been established8–10.
In stable isotope labelling by amino acids in cell culture (SILAC), cells
are cultivated in amedium containing heavy stable-isotope versions of
essential amino acids11. When non-labelled (that is, light) cells are
transferred to heavy SILACgrowthmedium, newly synthesized proteins
incorporate the heavy label while pre-existing proteins remain in the

light form. This strategy can be used tomeasure protein turnover12–14 or
relative changes in protein translation15,16. Similarly, newly synthesized
RNA can be labelled with the nucleoside analogue 4-thiouridine (4sU).
4sU-containing mRNA can be purified and compared with the pre-
existing fraction to compute mRNA half-lives10.

Pulse labelling of proteins and mRNAs

We used parallel metabolic pulse labelling with amino acids and 4sU
to measure simultaneously protein and mRNA turnover in a popu-
lation of exponentially growing non-synchronized NIH3T3 mouse
fibroblasts (Fig. 1a). Protein samples were collected at three time
points, measured by liquid chromatography and online tandem mass
spectrometry (LC-MS/MS) and analysed with the MaxQuant soft-
ware package17. We identified 84,676 peptide sequences and assigned
them to 6,445 unique proteins (false discovery rate,1% at the peptide
and protein level). A total of 5,279 of these proteins was quantified by
at least three heavy to light (H/L) peptide ratios (Fig. 1b). Tissue-
specific amino acid precursor pools and recycling rates, a pervasive
problem for in vivo pulse labelling experiments9,18,19, did not appre-
ciably affect our results (Supplementary Fig. 1). For constant incorp-
oration rates the logarithm of H/L ratios should increase linearly with
time (Fig. 1c). Ninety-three per cent of proteins showed excellent
linear correlation indicated by a variability of the linear regression
slope smaller than 1% (Fig. 1d). Protein abundance did not influence
H/L ratiomeasurements (Supplementary Fig. 2). In total, we obtained
a confident set of 5,028 protein half-lives calculated from the slope of
the regression line. Cycloheximide chase experiments for selected
proteins spanning a representative range of half-lives agreed well with
half-lives determined by pulsed labelling and mass spectrometry
(Supplementary Fig. 3). In parallel, we pulse labelled newly synthe-
sized RNA for 2 h with 4sU. RNA samples were fractionated into the
newly synthesized and pre-existing fractions. Both fractions and the
total RNA samplewere analysed bymRNA sequencing and quantified
bymapping reads to their exonic region20. We calculated mRNA half-
lives based on the ratios of newly synthesized RNA/total RNA ratio
and the pre-existing RNA/total RNA10.
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Proteinswere, on average, five timesmore stable (median half-life of
46 h) thanmRNAs (9 h) and spanned a bigger dynamic range (Fig. 2a).
Because very long (.200 h) and very short (,30min) protein half-
lives cannot be accurately quantified from our three time points, the
true dynamic range of protein stabilities may be even higher. Notably,
we foundno correlation betweenprotein andmRNAhalf-lives (Fig. 2c,
R25 0.02, log–log scale).

Absolute mRNA and protein copy numbers

We calculated absolute cellular mRNA copy numbers based on the
number of sequencing reads in theunfractionated sample in conjunction

with information on cellular mRNA content20. Absolute protein copy
numbers can be inferred from mass spectrometry data21,22. To this end,
we used the sum of peak intensities of all peptides matching to a specific
protein. When divided by the number of theoretically observable pep-
tides, this value provides an accurate proxy for protein levels (‘intensity-
based absolute quantification’ or iBAQ, see Supplementary Methods).
Levels of detected proteins spanned more than five orders of

magnitude (Fig. 2b). Relatively few proteins had less than 100 copies
per cell, indicating that some proteins of low abundance escaped
detection. Indeed, we observed a moderate detection bias (Sup-
plementary Fig. 4) and therefore restricted our analysis to genes that
were identified at both the mRNA and protein level. In this subset,
proteins were, on average, about 2,800 times more abundant than
corresponding transcripts. Despite a huge spread, mRNA and protein
levels were clearly correlated (Fig. 2d, R25 0.41, log–log scale). This
correlation is considerably higher than in any previous study inmam-
mals3,4,23. An attempt to improve this correlation further by nonlinear
transformation resulted only in a marginal increase (R25 0.44,
Supplementary Fig. 5). It seems that for our data set, this is about
the maximum correlation between mRNA and protein that can be
achieved without additional information.

Reproducibility

To investigate the experimental noise we performed a second inde-
pendent large-scale experiment and measured mRNA and protein
levels and half-lives again. The overall correlation of half-lives and
levels between both replicates was good (Supplementary Fig. 6 and
Supplementary Table 1). Removing less-consistent data points did
not increase correlation between mRNA and protein levels or half-
lives (Supplementary Fig. 7). Thus, noise has little impact on the
observed correlation betweenmRNA and protein levels and half-lives.
We also validated absolute mRNA and protein copy numbers using
independent methods. For mRNA copy numbers we used the
NanoString technology, which captures and counts individual tran-
scripts without enzymatic reactions24. Correlation between sequen-
cing and NanoString data was high (r5 0.79, see also Supplementary
Fig 8a). Absolute protein quantification was validated by spike-in
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Figure 1 | Parallel quantification ofmRNA and protein turnover and levels.
a, Mouse fibroblasts were pulse labelled with heavy amino acids (SILAC, left)
and the nucleoside 4-thiouridine (4sU, right). Protein andmRNA turnover was
quantified bymass spectrometry and next-generation sequencing, respectively.
b, Mass spectra of peptides from a high- and low-turnover protein reveal

increasing heavy to light (H/L) ratios over time. c, Protein half-lives were
calculated from log H/L ratios at all three time points using linear regression.
d, Variability of linear regression slopes assessed by leave-one-out cross-
validation was small.
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Figure 2 | mRNA and protein levels and half-lives. a, b, Histograms of
mRNA (blue) and protein (red) half-lives (a) and levels (b). Proteins were on
average 5 times more stable and 2,800 times more abundant than mRNAs and
spanned a higher dynamic range. c, d, Although mRNA and protein levels
correlated significantly, correlation of half-lives was virtually absent.
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experiments using a mixture of 48 proteins with known concentra-
tions (Supplementary Fig. 8b). iBAQ values correlated well with
known absolute protein amounts over at least four orders of mag-
nitude and had a higher precision and accuracy than alternative mea-
sures of absolute protein abundance (data not shown)21,22. We also
assessed degradation and synthesis rates for mRNAs and proteins by
actinomycin D and cycloheximide treatment, respectively. For high
turnover proteins and mRNAs we obtained results consistent with
pulse labelling data (Supplementary Fig. 8c–f).

A quantitative model of gene expression

Our data allow us to calculate average synthesis rates of mRNAs and
proteins for thousands of genes using a mathematical model (Fig. 3a
and Supplementary Methods). The experimental data are based on a
population of non-synchronized cells. Therefore, our estimated rates
provide an average over the population and time.
Average cellular transcription rates predicted by the model spanned

two orders ofmagnitude with amedian of about twomRNAmolecules
per hour (Fig. 3b). An extreme example wasMdm2withmore than 500
mRNAs per hour. Amicroscopic study on the cytomegalovirus (CMV)
promoter reported transcription termination rates of 5.8 to 8.7mRNAs
per hour25. These values are above the median of our predictions, as
perhaps expected for a strong promoter system. Next, we calculated
translation rate constants; that is, how many proteins are made from
each mRNA template per hour (Fig. 3c). We find a median translation
rate constant of about 140 proteins per mRNA per hour. Several
proteins involved in translational regulation—such as the translation
initiation factor eIF4G1, fragile X syndrome related protein Fxr2 and
tuberin—had extremely low rate constants and were translationally
repressed. Plotting translation rate constants against protein levels
revealed that abundant proteins are translated at least 100 times more
efficiently than those of low abundance (Fig. 3d). Hence, different trans-
lation efficiencies contribute to the higher dynamic range of proteins
compared to mRNAs (Fig. 2b). Intriguingly, translation rate constants
saturated at around 1,000 protein copies per mRNA per hour. To our

knowledge, the maximal translation rate constant in mammals is not
known. On the basis of ref. 1, the estimated maximal translation rate
constant in sea urchin embryos is 140 copies per mRNA per hour,
which is lower than the prediction of our model.

Control of gene expression

A long-standing question is how much protein abundance is con-
trolled at the transcriptional, post-transcriptional, translational and
post-translational levels. Until now, this has mainly been addressed
indirectly by analysing mRNA and protein sequence features. Features
related to translation initiation (for example, Shine–Dalgarno, Kozak
and 39 untranslated region (UTR) sequences), elongation (for example,
codon bias) and protein stability (for example, degrons) have been ana-
lysed and reported to correlate partially with protein/mRNA ratios in
bacteria, yeast and mammals23,26,27. We also observed sequence features
characteristic of mRNA and protein stability and found that mRNAs
with long 39UTRs are, on average, less stable (Supplementary Fig. 9). In
addition, the density of AU-rich elements and binding motifs of a spe-
cific RNA-binding protein (pumilio 2) correlated negatively with
mRNA stability (Supplementary Fig. 10). Highly structured proteins
were more stable than unstructured ones (Supplementary Fig. 11a).
We also identified amino acids over-represented in unstable proteins
(Supplementary Fig. 11b).
Sequence features are at best indirect proxies for mechanisms con-

trolling protein abundance. Howmuch efficiencies of different steps in
the gene expression cascade contribute to variance of cellular protein
copy numbers can only be revealed by direct parallel genome-scale
measurements of mRNA and protein levels and half-lives which were
not available previously. In our data the coefficient of determination
(R2) between mRNA and protein copy numbers is 0.41 (Fig. 2d).
Assuming the absence of technical and biological noise, this means
that ,40% of the variance in protein levels is explained by mRNA
levels—considerably more than previously thought (Fig. 4a). Most of
this 40% is due to different transcription rates, whereasmRNAstability
has a smaller role. Considering translation rate constants markedly
boosts R2 to 0.95. Thus, translation rate constants have the dominant
role for control of protein levels. Unexpectedly, the impact of protein
degradation is rather small.
In the above analysis the same experimental data were used to

calculate synthesis rates and to estimate their impact on protein levels.
To avoid this over-fit and to assess reliability of the model predictions
we performed the same analysis with data from the biological replicate
experiment. In the replicate the coefficient of determination between
mRNA and protein levels was 0.37 (Fig. 4b). We then used the model
including the estimated parameters from the first experiment to pre-
dict protein levels from mRNA levels in the replicate data. Predicted
protein levels agreed very well with measured protein levels
(R25 0.85, Fig. 4c). Therefore, the model explains,85% of the vari-
ability in protein copy numbers in an independent experiment. The
correlation is very similar to the direct comparison of protein levels in
both experiments (R25 0.84, Supplementary Fig. 6d). We conclude
that technical and biological noise in our data are low, and that the
model faithfully predicts protein levels from mRNA levels in mouse
fibroblasts. It also indicates that the estimated impact of transcription,
mRNA stability, translation and protein stability on protein abund-
ance is reproducible. We finally assessed howmuch of the efficiencies
of the various steps in gene expression are retained in a different cell
type and organism. To this end, we quantified mRNA and protein
abundance in the human breast cancer cell line MCF7 by RNA-seq
and mass spectrometry, respectively. A total of 2,030 human genes
from theMCF7 data set had orthologues in the mouse fibroblast data.
We then used rates from themouse fibroblastmodel to predict protein
levels from mRNA levels in human breast cancer cells. In MCF7 cells,
the model predicted,60% of the variability in protein levels (Fig. 4a).
Although the fraction explained by themodel is smaller than inmouse
fibroblasts, this indicates that translation and degradation rates are to
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Figure 3 | Quantitative model of gene expression in growing cells.
a, mRNAs are synthesized with the rate vsr and degraded with a rate constant
kdr. Proteins are translated and degraded with rate constants ksp and kdp,
respectively. b, Calculated mRNA transcription rates show a uniform
distribution. c, Calculated translation rate constants are not uniform.
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some extent independent of the cell type and conserved betweenmouse
and human. It is noticeable, however, that the drop in prediction is
mainly due to the fact that the translation part of the model performs
less well.

Half-lives and gene function

Degradation of proteins is critically involved inmany cellular processes
including cell-cycle progression, signal transduction and apoptosis28–30.
Similarly, mRNA stability is important for the temporal order of gene
induction10,31. Genesmay have evolved specific combinations ofmRNA
and protein half-lives under functional constraints10,31,32. We therefore
asked if geneswith specific combinations ofmRNAandprotein stability
have distinct biological functions.We grouped genes according to their
half-lives and used gene ontology to find enriched biological processes
(Fig. 5; see Supplementary Table 2 for a complete list).
Genes with stable mRNAs and stable proteins were enriched in

constitutive cellular processes like translation (that is, ribosomal
proteins), respiration and central metabolism (glycolysis, citric acid
cycle). Hence, many housekeeping genes tend to have stable mRNAs
and proteins. In yeast energy costs keep transcription and translation
rates under selective pressure33. We reasoned that energy constraints
may explain why housekeeping genes tend to have stable mRNAs and
proteins. On the basis of the model, we calculated the theoretical
energy required to maintain cellular mRNA and protein levels by
recycling from their building blocks (nucleotide monophosphates
and amino acids, respectively) in terms of high energy phosphates.
This is a conservative estimate as splicing, folding and transport are
not included. Protein synthesis consumes more than 90% of the
energy whereas less than 10% is needed for transcription. A total of
20% of the proteins consumed 80% of the energy for translation
(Pareto principle or 80/20 rule). Consistent with optimization under
energy constraints, abundant proteins were significantly more stable
than less abundant ones (Supplementary Fig. 12a, P, 10215,
Wilcoxon test). This is not necessarily expected because the overall
contribution of protein stability to protein levels is very small

(Fig. 4a). In addition, abundant proteins were significantly shorter
(Supplementary Fig. 12b). Shuffling protein half-lives and lengths
markedly increased theoretical energy consumption (Supplementary
Fig. 12c).Collectively, theseobservations indicate thatmammalian gene
expression evolved under energy constraints.
The subset of genes with unstable mRNAs and proteins was strongly

enriched in transcription factors, signalling genes, chromatinmodifying
enzymes and genes with cell-cycle-specific functions (Fig. 5). Because
mRNAs and proteins are information carriers, their degradation can be
interpreted as a built-in timer that controls the persistence of genetic
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information34. It therefore makes intuitive sense that many regulatory
genes have short mRNA and protein half-lives. However, it must be
stressed that population-level data cannot provide information about
individual cells or molecules.
The group of genes with stable proteins but unstable mRNAs was

strongly enriched in terms related to processing ofmRNAs, tRNAs and
non-coding RNAs. Hence, many mammalian RNA-binding proteins
are stable whereas their encoding transcripts are short lived, as also
found in yeast35. Because many RNA-binding proteins bind their own
message36, this observation is indicative of a post-transcriptional nega-
tive feedback loop for RNA-binding proteins. Consistently, we found
that unstablemRNAs are enriched for bindingmotifs of RNA-binding
proteins (Supplementary Fig. 10).
Finally, the subset of geneswith stablemRNAsandunstable proteins

was rich in extracellular proteins. This is expected, as secreted proteins
have a short cellular half-life. Additionally, this group contains proteins
involved in cellular homeostasis, defence response and proteolysis. This
set contains two ferritin proteins that are rapidly upregulated in res-
ponse to iron37. Ferritins are classic examples of translationally regu-
lated genes. As translational regulation is not dependent on mRNA
half-lives, genes with stable mRNAs can still be dynamically regulated
as long as their protein half-lives are short. It is tempting to speculate
that other homeostasis genes in this group are regulated at the level of
translation.

Discussion

Although gene expression is one of themost fundamental processes in
biology it has never been quantified comprehensively.We provide the
first analysis of mRNA and protein levels, half-lives, transcription
rates and translation rate constants for thousands of genes. In the
future, additional methods like sequencing of nascent transcripts
and ribosome profiling may further refine this picture38,39.
We found that mRNA levels explain around 40% of the variability

in protein levels. This fraction is higher than in previous studies on
mammals3,4,23. We found that in mouse fibroblasts, translation effi-
ciency is the single best predictor of protein levels. Hence, protein
abundance seems to be predominantly regulated at the ribosome,
highlighting the importance of translational control40,41. Whether this
observation is valid in other cell types is not known. A recent study on
embryonic stem cells revealed that changes in protein levels are not
accompanied by changes in corresponding mRNAs42. It is also not
clear how much translation rate constants change under different
conditions. Our observation that themousemodel can to some degree
predict levels of orthologous proteins in MCF7 cells suggests that
translation efficiency is partially ‘hard-coded’ in the genome and is
not subject to change.
Compared to translational control, protein stability seems to have a

minor role in cellular protein abundance in our system. This is sur-
prising as protein degradation is involved in the regulation of many
cellular processes28–30. From the global perspective, the dominance of
translational regulation makes sense given the high energy costs
associated with protein synthesis. However, it should also be stressed
that our data set represents average values derived from a population
of dividing, non-synchronized cells. At the single cell level, the role of
protein degradation for protein abundance may be higher. Similarly,
protein degradation may be more important upon perturbation.
Gene expression may follow certain design principles for optimal

evolutionary fitness. Intriguingly, we found that genes with certain
combinations of mRNA and protein half-lives share common func-
tions, indicating that they evolved under similar constraints. One of
these constraintsmay be energy efficiency33. Consistently, we observed
that the theoretical energy needed for gene expression is much lower
than random. A second constraint may be the ability of genes to
respond quickly to a stimulus.We find thatmany transcription factors
and genes with cell-cycle-specific function have unstable mRNAs
and proteins, predisposing them to rapid transcriptional and/or

translational regulation. In addition, genes with stable mRNAs but
unstable proteins can be regulated quickly at the level of translation.
These observations are consistent with the idea that many fast-
responding genes have short protein and/or mRNA half-lives10,31,32,43.
The global picture is that most mRNAs and especially proteins are
stable unless genes need to respond quickly to a stimulus. Owing to
the trade-off between dynamic regulation and energy efficiency, this
may be an optimal design.
Our data provide a rich resource for the scientific community that

can be mined in many ways that are beyond the scope of this study
(see Supplementary Table 3 for the entire data set). For example, we
provide by far the largest data set on protein copy numbers, which
contains valuable information for modelling of cellular processes and
stoichiometry of protein complexes22. Half-lives of proteins and
mRNAs can be used to search for properties of unstable mRNAs or
proteins, and we provide a first analysis of characteristic sequence
features (Supplementary Figs 9 and 10). Genome-scale quantitative
data on absolutemRNA and protein levels and half-lives will certainly
help to understand the complex relationships between thousands of
genes and their products in biological systems.
Note added in proof:While this paper was in revision, another paper44

reported that changes in mRNA levels in dendritic cells are mainly
determined by transcription rates. This result is consistent with our
findings in fibroblasts. Notably, mRNA half-lives reported in ref. 44
are considerably shorter (see Supplementary Information for a brief
discussion).

METHODS SUMMARY
NIH3T3 cells grown in light (L) SILAC medium were simultaneously pulse-

labelled with heavy (H) amino acids and 4-thiouridine (4sU). For proteome
analysis, proteins were extracted, separated by SDS–polyacrylamide gel electro-
phoresis (PAGE), trypsin-digested andanalysed byLC-MS/MSonhigh-resolution

instruments (LTQ-Orbitrap XL and Velos, Thermo Fisher). Raw files were pro-
cessed by MaxQuant (version 1.0.13.13) for peptide/protein identification and

quantification. In total 3,588,163 fragment spectra led to 972,333 peptide identi-
fications (84,676 unique peptide sequences) that were assigned to 6,445 unique
proteins (false discovery rate of 1% at the peptide and protein level). Average

absolute mass deviation was 0.29 parts per million (p.p.m.). Absolute protein
amounts were calculated as the sum of all peptide peak intensities divided by
the number of theoretically observable tryptic peptides (intensity based absolute

quantification, or iBAQ).RNAwas extracted and separated into newly synthesized
and pre-existing fractions based on the incorporated 4sU. Total, pre-existing

and newly synthesized RNA samples were processed according to an mRNA
sequencing protocol (two rounds of oligo(dT) enrichment) and analysed on a
Solexa GAIIX sequencing platform (36 cycles). Reads were mapped to the mouse

genome reference sequence (mm9, July 2007) using SOAP2 with a maximum of
two mismatches allowed. Only uniquely mapped reads were retained. For more
details on data acquisition, processing, analysis andmodelling see Supplementary

Methods.
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Corrigendum: Global quantification of mammalian gene expression
control
Björn Schwanhäusser, Dorothea Busse, Na Li, Gunnar Dittmar, Johannes Schuchhardt, Jana Wolf, Wei Chen & Matthias Selbach

Nature 473, 337–342 (2011); doi:10.1038/nature10098

Mark Biggin of the Lawrence Berkeley National Laboratory contacted
us, noting that our mass-spectrometry-based protein copy number
estimates are lower than several literature-based values. We therefore
re-analysed the scripts used for data processing, and found a scaling
error that occurred during the conversion of normalized protein
intensity values into absolute copy number estimates. As described
in the original Article, slope and offset for scaling were calculated
by linear regression based on an in-solution digest with spiked-in

proteins of known concentrations. We erroneously used the slope
and the offset from an unrelated experiment to scale protein levels,
resulting in a systematic underestimation of protein levels and derived
translation rate constants. We apologize for this error and any con-
fusion it may have caused.
When the error was corrected, the median levels of detected pro-

teins increased about threefold and the ratio of average protein to
messenger RNA increased from 900 to 2,800. The median and ap-
parent maximum translation rate constants increased from 40 to 140
and from 180 to 1,000 proteins per mRNA per hour, respectively.
Consequently, the estimated maximum translation rate constant in
sea urchin embryos at 15 uC (140 proteins per mRNA per hour) is
lower than our corrected prediction for mouse fibroblasts (1,000
proteins per mRNA per hour). All our conclusions about global gene
expression control (correlations between mRNA and protein levels
and half-lives, predominant control of protein abundance at the level
of translation, functional properties of genes with specific half-life
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Figure 1 | Comparison of LC-MS/MS-based protein copy number estimates
in NIH3T3 cells with alternative methods. a, Representative western blots of
cellular proteins with dilution series of purified protein standards. Standards
were diluted in a way that one-fold corresponds to the amount expected from
the average of the LC-MS/MS-based estimates. The asterisks indicate the
position of the GST–fusion proteins. b, Comparison of estimates based on
western blots (blue, n$ 3) and selected reaction monitoring (red, n5 3) with
our LC-MS/MS data (n5 2). Error bars show standard deviations.
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Figure 2 | This figure shows the corrected panels for Figs 2b and d, 3c and d
and 4b and c of the original Article. We note that although the distribution of
data in the original and corrected figures appears very similar, the axes are different.
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combinations and so on) are unaffected. Figure 2 of this Corrigendum
shows the corrected Figs 2b and d, 3c and d and 4b and c. Supplemen-
tary Figs 5a and b, 6d and f, 8f, 12a and b, and Supplementary Tables 1
and 3 of the originalArticle have been corrected. Protein copynumbers
and translation rate constants in the text and figures in the HTML and
PDF versions of the original Article have been corrected.
To further validate copy numbers in NIH3T3 cells we performed

western blots with a dilution series of purified human proteins as
standards (Fig. 1a of this Corrigendum). Briefly, cells were washed,
harvested by trypsinization, counted independently by two persons,
lysed in radioimmunoprecipitation assay buffer (containing 1% SDS)
and separated by SDS–polyacrylamide gel electrophoresis (PAGE).
As standards, defined amounts of human glutathione-S-transferase
(GST)-tagged HDAC3, TUBB (Abnova), RHOA, RAC1 or CDC42
(purified in house and quantified spectrophotometrically) or purified
ACTB (Biotrend) were diluted in SDS sample buffer containing
0.07 mg Escherichia coli lysate per microlitre to minimize protein loss
during dilution. Antibodies against HDAC3 (2632), CDC42 (2466)
and Rac1/2/3 (2467) were from Cell Signalling; the ACTB (A5441)

and TUBB (T8328) antibodies were from Sigma and the anti-RHOA
antibody (SC-418) was from Santa Cruz. Protein abundance in
NIH3T3 cells was estimated densitometrically, based on the dilution
series as a standard curve (Scion Image).We also used selected reaction
monitoring to quantify two additional proteins (p100 and p105). To
this end, cells were lysed (6M urea, 2M thiourea) and lysates mixed
with synthetic-stable-isotope-labelled proteotypic peptides (SpikeTides,
JPT Peptide Technologies). Samples were digested and analysed on a
Q-Trap 5500 system (AB Sciex) in three technical replicates moni-
toring three transitions per peptide. Quantification was performed
usingMultiquant 1.2 (AB Sciex) based on the twomost intense transi-
tions. Overall, copy number estimates of the eight proteins obtained
by alternative approaches correlated well with our data derived from
liquid chromatography and tandem mass spectrometry (LC-MS/MS)
(Fig. 1b of this Corrigendum), even though the two measurements
based on selected reactionmonitoring lie above the diagonal. The data
are in good agreement with the expected precision and reproducibility
of our large-scale absolute protein quantification approach (see
Supplementary Figs 6d and 8b of the original Article).
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