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Abstract

Partons produced in the early stage of non-central heavy-ion collisions can develop a longitudinal

fluid shear because of unequal local number densities of participant target and projectile nucleons.

Under such fluid shear, local parton pairs with non-vanishing impact parameter have finite local

relative orbital angular momentum along the direction opposite to the reaction plane. Such finite

relative orbital angular momentum among locally interacting quark pairs can lead to global quark

polarization along the same direction due to spin-orbital coupling. Local longitudinal fluid shear

is estimated within both Landau fireball and Bjorken scaling model of initial parton production.

Quark polarization through quark-quark scatterings with the exchange of a thermal gluon is cal-

culated beyond small-angle scattering approximation in a quark-gluon plasma. The polarization

is shown to have a non-monotonic dependence on the local relative orbital angular momentum

dictated by the interplay between electric and magnetic interaction. It peaks at a value of relative

orbital angular momentum which scales with the magnetic mass of the exchanged gluons. With

the estimated small longitudinal fluid shear in semi-peripheral Au + Au collisions at the RHIC

energy, the final quark polarization is found to be small |Pq| < 0.04 in the weak coupling limit.

Possible behavior of the quark polarization in the strong coupling limit and implications on the

experimental detection of such global quark polarization at RHIC and LHC are also discussed.

PACS numbers: 25.75.-q, 13.88.+e, 12.38.Mh, 25.75.Nq
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I. INTRODUCTION

Collective phenomena and jet quenching as observed in high-energy heavy-ion collisions at

the Relativistic Heavy-ion Collider (RHIC) at the Brookhaven National Laboratory (BNL)

provide strong evidence for the formation of a strongly coupled quark gluon plasma [1, 2].

Elliptic flow or azimuthal anisotropy of the hadron spectra in semi-peripheral heavy-ion

collisions and its agreement with the ideal hydrodynamic calculations [3] indicate a near

perfect fluid behavior of the produced dense matter. Such an empirical observation of

small shear viscosity [4] is consistent with the large value of the jet transport parameter

as extracted from jet quenching study of both single and dihadron spectra suppression [5].

Study of the collective behavior is made possible by investigating hadron spectra in central

rapidity region in non-central or semi-peripheral heavy-ion collisions. Extending the study

to large rapidity region of non-central heavy-ion collisions should provide more information

not only about the initial condition for the formation of the dense matter [6] but also the

dynamical properties of the strongly coupled quark-gluon plasma.

Considering the longitudinal momentum distribution at various transverse positions in

a non-central heavy-ion collision, one will find a longitudinal fluid shear distribution rep-

resenting local relative orbital angular momentum. Recently, it has been pointed out that

the presence of such local orbital angular momentum of the partonic system at the early

stage of non-central heavy-ion collisions can lead to a global polarization of quarks and anti-

quarks [7] in the direction orthogonal to the reaction plane. Understanding the spin-orbital

interaction inside a strongly coupled system can open a new window to the properties of

quark-gluon-plasma (QGP). Although no detailed calculations have been carried out, an

estimate using a screened static potential model in the small angle approximation shows

qualitatively that spin-orbital coupling in Quantum Chromodynamics (QCD) can lead to a

finite global quark and anti-quark polarization. Such a global quark/anti-quark polarization

should have many observable consequences such as global hyperon polarization [7, 8] and

vector meson spin alignment [9]. Predictions have been made [7, 9] for these measurable

quantities as functions of the global quark polarization Pq in various hadronization scenar-

ios. Since the reaction plane in heavy-ion collisions can be determined in experiments by

measuring the elliptic and direct flows, measurements of the global hyperon polarization

or vector meson spin alignment become feasible. These measurements at RHIC are being

2



carried out and some of the preliminary results have already been reported [10–16].

The estimate of the global quark polarization in Ref. [7] was obtained by evaluating the

polarization cross section in the impact parameter space with small angle approximation in

an effective potential model. The analytical result,

Pq = −πµp/2E(E + mq) (1)

has an intuitive expression, where p is the average c.m. momentum of two partons with

an average transverse separation 1/µ due to the longitudinal fluid shear. However, for a

massless quark in a small longitudinal fluid shear, the obtained quark polarization Pq can

become larger than 1, indicating the breakdown of the small angle approximation. A more

realistic estimate in non-central heavy-ion collisions at RHIC indicates a small value of the

average longitudinal fluid shear. Therefore, it is imperative to have a more realistic estimate

of the quark polarization Pq beyond the small angle approximation. This will be the focus

of this paper.

The rest of the paper is organized as follows. In Sec. II, we calculate the average longitu-

dinal fluid shear in two different models of parton production. In a Landau fireball picture, a

wounded nucleon model of bulk parton production in heavy-ion collisions is used with both

simple hard-sphere and more realistic Wood-Saxon nuclear geometry. In the Bjorken scaling

scenario, we use HIJING Monte Carlo model to estimate the transverse shear of the rapidity

distribution of the produced parton in heavy-ion collisions at the RHIC energy which will be

used to estimate the longitudinal fluid shear in the local comoving frame of the plasma. In

Sec. III, we use the Hard Thermal Loop (HTL) resummed gluon propagator in the comov-

ing frame of the local longitudinal fluid cell to extend the calculation of quark polarization

in Ref. [7] beyond small angle approximation and discuss the relative contributions from

electric and magnetic part of quark-quark scattering. Finally in Sec. IV, we discuss the

numerical results and their implications for experimental measurements at RHIC.

II. ORBITAL ANGULAR MOMENTUM AND SHEAR FLOW

Let us consider two colliding nuclei with the projectile of beam momentum per nucleon

~pin moving in the direction of the z axis, as illustrated in Fig. 1. The impact parameter ~b,

defined as the transverse distance of the center of the projectile nucleus from that of the
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FIG. 1: Illustration of a non-central heavy-ion collision with impact parameter ~b. The global

angular momentum of the produced dense matter is along −ŷ, opposite to the reaction plane.

target, is taken to be along the x̂-direction. The normal direction ~nb of the reaction plane,

given by,

~nb ≡ ~pin ×~b/|~pin ×~b|, (2)

is along ŷ. For a non-central collision, the two colliding nuclei carry a finite global orbital

angular momentum Ly along the direction orthogonal to the reaction plane (−ŷ). How such

a global orbital angular momentum is transferred to the final state particles depends on the

equation of state (EOS) of the dense matter. At low energies, the final state is expected to be

the normal nuclear matter with an EOS of rigid nuclei. A rotating compound nucleus can be

formed when the colliding energy is comparable or smaller than the nuclear binding energy.

The finite value of the total orbital angular momentum of the non-central collision at such

low energies provides a useful tool for the study of the properties of superdeformed nuclei

under such rotation [17]. At high colliding energy at RHIC, the dense matter is expected

to be partonic with an EOS of the quark-gluon plasma. Given such a soft EOS, the global

orbital angular momentum would probably never lead to the global rotation of the dense

matter. Instead, the total angular momentum will be distributed across the overlapped

region of nuclear scattering and is manifested in the shear of the longitudinal flow leading

to a finite value of local vorticity density. Under such longitudinal fluid shear, a pair of

scattering partons will on average carry a finite value of relative orbital angular momentum

in the opposite direction to the reaction plane as defined in Eq. (2). According to Ref. [7],

quark (or antiquark) will acquire a global polarization after such scatterings through the

spin-orbital coupling in QCD.
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The magnitude of the total orbital angular momentum Ly and the resulting longitudinal

fluid shear can both be estimated within the wounded nucleon model of particle production

in which the number of produced particles is assumed to be proportional to the number of

participant nucleons. The transverse distributions (integrated over y) of participant nucleons

in each nucleus can be written as,

dNP,T
part

dx
=

∫
dydzρP,T

A (x, y, z, b), (3)

in terms of the participant nucleon number density ρP,T
A (x, y, z, b) in nucleus A in the coordi-

nate system defined above. The superscript P or T denotes projectile or target respectively.

The total orbital angular momentum Ly of the two colliding nuclei can be defined as,

Ly = −pin

∫
x dx(

dNP
part

dx
− dNT

part

dx
). (4)

where pin is the momentum per incident nucleon.

We assume the Woods-Saxon nuclear distribution,

fP,T
WS (x, y, z, b) = C

(
1 + exp

√
(x∓ b/2)2 + y2 + z2 −RA

a

)−1

. (5)

The participant nucleon number density is then

ρP,T
A,WS(x, y, z, b) = fP,T

WS (x, y, z, b)

{
1− exp

[
−σNN

∫
dzfT,P

WS (x, y, z, b)

]}
, (6)

where σNN ≈ 42 mb is the total cross section of nucleon-nucleon scatterings at the RHIC

energy, C is the normalization constant and a is the width parameter set to a = 0.54 fm.

Shown in Fig. 2 as the solid line is the numerical value of Ly as a function of b for the

Woods-Saxon nuclear distribution. As a comparison, we also plot as the dashed line the Ly

distribution with a hard-sphere nuclear distribution which was used in Ref. [7]. With the

hard-sphere nuclear distribution, the participant nucleon density is given by the overlapping

area of two hard spheres,

ρP,T
A,HS(x, y, z, b) = fP,T

A,HS(x, y, z, b)θ(RA −
√

(x± b/2)2 + y2 + z2), (7)

and

fP,T
A,HS(x, y, z, b) =

3A

4πR3
A

θ(RA −
√

(x∓ b/2)2 + y2 + z2), (8)
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where RA = 1.12A1/3 is the nuclear radius and A the atomic number. We note that there are

significant differences between two nuclear geometry in the total orbital angular momentum

Ly in the overlapped region of two colliding nuclei. In both cases, the total orbital angular

momentum is huge and is of the order of 104 at most impact parameters.
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FIG. 2: (Color online) The total orbital angular momentum of the overlapping system in Au + Au

collisions at the RHIC energy as a function of the impact parameter b. The solid and dashed curves

are from the Woods-Saxon and hard-sphere distributions, respectively.

Since RHIC data indicate the formation of a strongly coupled quark-gluon plasma [1],

we can assume that a partonic system is formed immediately following the initial collision

and interactions among partons will lead to both transverse (in x-y plane) and longitudinal

collective motion in the quark-gluon plasma (QGP). The total orbital angular momentum

carried by the produced system will manifest in the longitudinal flow shear or a finite value

of the transverse (along x̂) gradient of the longitudinal flow velocity. How the total angular

momentum is distributed to the longitudinal flow shear and the magnitude of the local

relative orbital angular momentum depends on the parton production mechanism and their

longitudinal momentum distributions. We consider two different scenarios in this paper:

Landau fireball and Bjorken scaling model.

By momentum conservation, the average initial collective longitudinal momentum at

any given transverse position can be calculated as the total momentum difference between

participating projectile and target nucleons. Since the total multiplicity in A+A collisions is
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FIG. 3: The average longitudinal momentum distribution pz(x, b) in unit of p0 =
√

s/[2c(s)] as

a function of x/(RA − b/2) for different values of b/RA with the hard sphere (upper panel) and

Woods-Saxon (lower panel) nuclear distributions.

proportional to the number of participant nucleons [18], we can make the same assumption

for the produced partons with a proportionality constant c(s) at a given center of mass

energy
√

s.

In a Landau fireball model, we assume the produced partons thermalize quickly and have

a common longitudinal flow velocity at a given transverse position of the overlapped region.

The average collective longitudinal momentum per parton can be written as

pz(x, b;
√

s) = p0

dNP
part/dx− dNT

part/dx

dNP
part/dx + dNT

part/dx
, (9)

where p0 =
√

s/[2c(s)]. The distribution pz(x, b;
√

s) is an odd function in both x and b

and therefore vanishes at x = 0 or b = 0. In Fig. 3, pz(x, b;
√

s) is plotted as a function of
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x at different impact parameters b. We see that pz(x, b;
√

s) is a monotonically increasing

function of x until the edge of the overlapped region |x± b/2| = RA beyond which it drops

to zero (gradually for Woods-Saxon geometry).

From pz(x, b;
√

s) one can compute the transverse gradient of the average longitudinal

collective momentum per parton dpz/dx which is an even function of x and vanishes at

b = 0. One can then estimate the longitudinal momentum difference ∆pz between two

neighboring partons in QGP. On average, the relative orbital angular momentum for two

colliding partons separated by ∆x in the transverse direction is ly ≡ −(∆x)2dpz/dx. With

the hard sphere nuclear distribution, ly is proportional to dp0/dx ≡ p0/RA =
√

s/[2c(s)RA].

In Au+Au collisions at
√

s = 200 GeV, the number of charged hadrons per participating

nucleon is about 15 [18]. Assuming the number of partons per (meson dominated) hadron is

about 2, we have c(s) ' 45 (including neutral hadrons). Given RA = 6.5 fm, dp0/dx ' 0.34

GeV/fm and we obtain l0 ≡ −(∆x)2dp0/dx ' −1.7 for ∆x = 1 fm. In Fig. 4, we show the

average local orbital angular momentum ly for two neighboring partons separated by ∆x = 1

fm as a function of x for different impact parameter b for both Woods-Saxon and hard-sphere

nuclear distributions. We see that ly is in general of the order of 1 and is comparable or

larger than the spin of a quark. It is expected that c(s) should depend logarithmically on

the colliding energy
√

s, therefore ly should increases with growing
√

s.

In a 3-dimensional expanding system, there could be strong correlation between longi-

tudinal flow velocity and spatial coordinate of the fluid cell. The most simplified picture

is the Bjorken scaling scenario [19] in which the longitudinal flow velocity is identical to

the spatial velocity η = log[(t + z)/(t − z)]. With such correlation, local interaction and

thermalization requires that a parton only interacts with other partons in the same region

of longitudinal momentum or rapidity y. The width of such region in rapidity is determined

by the half-width of the thermal distribution f(Y, pT ) = exp[−pT cosh(Y −η)/T ] [20], which

is approximately ∆Y ≈ 1.5 (with 〈pT 〉 ≈ 2T ). The relevant measure of the local relative

orbital angular momentum between two interacting partons is, therefore, the difference in

parton rapidity distributions at transverse distance of δx ∼ 1/µ on the order of the average

interaction range.

One needs a dynamical model to estimate the local rapidity distributions of produced

partons. For such a purpose, we use HIJING Monte Carlo model [21, 22] to calculate the

hadron rapidity distributions at different transverse coordinate (x) and assume that parton
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FIG. 4: The average orbital angular momentum ly ≡ −(∆x)2dpz/dx of two neighboring partons

separated by ∆x = 1 fm as a function of the scaled transverse coordinate x/(RA−b/2) for different

values of the impact parameter b/RA with the hard-sphere (upper panel) and Woods-Saxon (lower

panel) nuclear distributions.

distributions of the dense matter are proportional to the final hadron spectra. Shown in

Fig. 5 is the average rapidity 〈Y 〉 as a function of the transverse coordinate x for different

values of the impact parameter b. The distributions have exactly the same features as

given by the wounded nucleon model in Fig. 3. The variation of the rapidity distributions

with respect to the transverse coordinate is illustrated in Fig. 6 by the normalized rapidity

distributions

P (Y, x) =
dN/dxdY

dN/dx
, (10)

at different transverse coordinates, x = 0,±2 fm. At finite values of the transverse coordi-
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transverse coordinate x from HIJING Mont Carlo simulations [21, 22] of non-central Au + Au

collisions at
√

s = 200 GeV.
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FIG. 6: (Color online) The normalized rapidity distribution of particles P (Y, x) [Eq. (10)] at

different transverse position x from HIJING simulations of non-central Au+Au collisions at
√

s =

200 GeV.

nates x, the normalized rapidity distributions evidently peak at larger values of rapidity |Y |.
The shift in the shape of the rapidity distributions will provide the local longitudinal fluid

shear or finite relative orbital angular momentum for two interacting partons in the local

comoving frame at any given rapidity Y . To quantify such longitudinal fluid shear, one can
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calculate the average rapidity within an interval ∆Y at Y ,

〈Y 〉 ≈ Y +
∆2

Y

12

1

P (Y, x)

∂P (Y, x)

∂Y
. (11)

The average rapidity shear or the difference in average rapidity for two partons separated

by a unit of transverse distance ∆x = 1 fm is then,

∂〈Y 〉
∂x

≈ ∆2
Y

12

∂2 log P (Y, x)

∂Y ∂x
. (12)

0

0.002

0.004

0.006

-5 -2.5 0 2.5 5

Y

∂<
Y

>/
∂x b=1.0 RAx=0.0 fm

x=-3.0 fm
x=3.0 fm

FIG. 7: (Color online) The average rapidity shear ∂〈Y 〉/∂x within a window ∆Y = 1 as a function

of the rapidity Y at different transverse position x from HIJING calculation of non-central Au+Au

collisions at
√

s = 200 GeV.

Shown in Fig. 7 is the average rapidity shear as a function of the rapidity y at different

values of the transverse coordinate x for ∆Y = 1. As we can see, the average rapidity shear

has a positive and finite value in the central rapidity region. The corresponding local relative

longitudinal momentum shear is

∂〈pz〉
∂x

≈ pT cosh Y
∂〈Y 〉
∂x

. (13)

With 〈pT 〉 ≈ 2T ∼ 0.8 GeV, we have ∂〈pz〉/∂x ∼ 0.003 GeV/fm in the central rapidity region

of a non-central Au + Au collision at the RHIC energy given by the HIJING simulations,

which is much smaller than that from a Landau fireball model estimate.
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III. GLOBAL QUARK POLARIZATION

As we have discussed earlier, under the longitudinal fluid shear, a pair of interacting

parton will have a finite value of relative orbital angular momentum along the direction

opposite to the reaction plane. In this section, we will calculate quark polarization via

scatterings with fixed direction of the relative orbital angular momentum. We will assign a

fixed direction of the impact parameter ~xT between two interacting partons to reflect the

direction of the relative orbital angular momentum. The magnitude of the relative orbital

angular momentum will be charaterized by the relative longitudinal momentum p between

two partons separated by a transverse distance ∆x ∼ 1/µ on the order of the average

interaction range. With the averaged longitudinal fluid shear dpz/dx in the center of mass

frame of the two colliding nuclei in the Landau fireball model, we have p = ∆x(dpz/dx).

In the Bjorken scaling scenario with strong correlation between spatial and momentum

rapidity, the average local longitudinal shear in the comoving frame will be given by p =

∆xpT cosh(Y )∂〈Y 〉/∂x, where pT is the average transverse momentum.

A. Quark scattering at fixed impact parameter

We consider the scattering q1(P1, λ1) + q2(P2, λ2) → q1(P3, λ3) + q2(P4, λ4) of two quarks

with different flavors, where Pi = (Ei, ~pi) and λi in the brackets denote the four momenta

and spins of the quarks respectively. The cross section in momentum space is given by,

dσλ3 =
cqq

F

1

4

∑

λ1,λ2,λ4

M(Q)M∗(Q)(2π)4δ(P1 + P2 − P3 − P4)
d3~p3

(2π)32E3

d3~p4

(2π)32E4

, (14)

where M(Q) is the scattering amplitude in momentum space, Q = P3 − P1 = P2 − P4 is

the four momentum transfer, cqq = 2/9 is the color factor, and F = 4
√

(P1 · P2)2 −m2
1m

2
2 is

the flux factor. Since we are interested in the polarization of one of the quarks q1 after the

scattering, we therefore average over the spins of initial quarks and sum over the spin of the

quark q2 in the final state.

We work in the center of mass frame of the two quark system. For simplification, we

neglect thermal momentum in the transverse direction and assume the relative momentum of

the two quarks separated by a transverse distance ∆x of the order of the effective interaction

range 1/µ is simply given by the longitudinal fluid shear.
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One can integrate over the final momentum ~p4 of the quark q2 and the longitudinal

component p3z of the quark q1, and obtain

dσλ3 =
cqq

4F

1

4

∑

λ1,λ2,λ4

∑
i=+,−

1

E2|pi
3z|+ E1|pi

3z|
M(Qi)M∗(Qi)

d2~qT

(2π)2
, (15)

where p±3z = ±
√

p2 − qT
2, corresponding to two possible solutions of the energy-momentum

conservation in the elastic scattering process, p = |~p1| = |~p2|; and ~qT = ~p3T is the transverse

momentum transfer. For simplicity, we will suppress the summation notation over i = +,−
hereafter but keep in mind that the final cross section includes the two terms.

Since we would like to calculate the polarization of one final-state quark with a fixed

direction of the orbital angular momentum, or fixed direction of the impact parameter, we

will cast the cross section in impact parameter space by making a two dimensional Fourier

transformation in the transverse momentum transfer ~qT , i.e.,

d2σλ3

d2~xT

=
cqq

16F

∑

λ1,λ2,λ4

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

M(~qT )

Λ(~qT )

M∗(~kT )

Λ∗(~kT )
, (16)

where M(~qT ) and M(~kT ) are the scattering matrix elements in momentum space with four

momentum transfer Q = (0, ~q) and K = (0, ~k) respectively, and

Λ(~qT ) =
√

(E1 + E2)|p+
3z|. (17)

To calculate the quark-quark scattering amplitude in a thermal medium, we will use Hard

Thermal Loop (HTL) resummed gluon propagator [23, 25],

∆µν(Q) =
P µν

T

−Q2 + ΠT (x)
+

P µν
L

−Q2 + ΠL(x)
+ (α− 1)

QµQν

Q4
, (18)

where Q denotes the gluon four momentum and α is the gauge fixing parameter. The

longitudinal and transverse projectors P µν
T,L are defined by

P µν
L =

−1

Q2q2
(ωQµ −Q2Uµ)(ωQν −Q2Uν) , (19)

P µν
T = g̃µν +

Q̃µQ̃ν

q2
, (20)

with ω = Q·U , Q̃µ = Qµ − Uµω, q2 = −Q̃2, g̃µν = gµν − UµUν . Here U is the fluid velocity

of the local medium. The transverse and longitudinal self-energies are given by [23]

ΠL(x) = µ2
D

[
1− x

2
ln

(
1 + x

1− x

)
+ i

π

2
x

]
(1− x2) , (21)

ΠT (x) = µ2
D

[
x2

2
+

x

4
(1− x2) ln

(
1 + x

1− x

)
− i

π

4
x(1− x2)

]
(22)
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where x = ω/q and µ2
D = g2(Nc + Nf/2)T 2/3 is the Debye screening mass.

With the above HTL gluon propagator, the quark-quark scattering amplitudes can be

expressed as

M(~qT ) = uλ3(P1 + Q)γµuλ1(P1)∆
µν(Q)uλ4(P2 −Q)γνuλ2(P2), (23)

M∗(~kT ) = uλ1(P1)γαuλ3(P1 + K)∆αβ∗(K)uλ2(P2)γβuλ4(P2 −K). (24)

The product M(~qT )M∗(~kT ) can be converted to the following trace form,

∑

λ1,λ2

M(~qT )M∗(~kT ) = ∆µν(Q)∆αβ∗(K)Tr[uλ3(P1 + K)ūλ3(P1 + Q)γµ(P1/ + m1)γα]

×Tr[uλ4(P2 −K)ūλ4(P2 −Q)γν(P2/ + m2)γβ]. (25)

In calculations of transport coefficients such as jet energy loss parameter [24] and thermal-

ization time [25] which generally involve cross sections weighted with transverse momentum

transfer, the imaginary part of the HTL propagator in the magnetic sector is enough to

regularize the infrared behavior of the transport cross sections. However, in our following

calculation of quark polarization, total parton scattering cross section is involved. The con-

tribution from the magnetic part of the interaction has therefore infrared divergence which

can only be regularized through the introduction of non-perturbative magnetic screening

mass µm ≈ 0.255
√

Nc/2g
2T [26].

Since we have neglected the thermal momentum perpendicular to the longitudinal flow,

the energy transfer ω = 0 in the center of mass frame of the two colliding partons. This

corresponds to setting x = 0 in the HTL resummed gluon propagator in Eq. (18). In this

case, the center of mass frame of scattering quarks coincides with the local comoving frame

of QGP and the fluid velocity is Uµ = (1, 0, 0, 0). The corresponding HTL effective gluon

propagator in Feynman gauge that contributes to the scattering amplitudes is reduced to,

∆µν(Q) =
gµν − UµUν

q2 + µ2
m

+
UµU ν

q2 + µD
2
. (26)

The differential cross section can in general be decomposed into a spin-independent and

a spin-dependent part,
d2σλ3

d2~xT

=
dσ

d2~xT

+ λ3
d∆σ

d2~xT

. (27)

with
d2σ

d2~xT

=
1

2

(
dσ+

d2~xT

+
dσ−
d2~xT

)
, (28)
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d2∆σ

d2~xT

=
1

2

(
dσ+

d2~xT

− dσ−
d2~xT

)
. (29)

The spin-dependent part will mostly determine the polarization of the final state quark

q1 via the scattering. The calculation is involved. A simple estimate was given in Ref. [7],

using a screened static potential model and small angle approximation. In this case, the

cross sections can be written in a general form as,

d2σ

d2~xT

= F (xT , E), (30)

d2∆σ

d2~xT

= ~n · (~xT × ~p )∆F (xT , E), (31)

where ~n is the polarization vector for q1 in its rest frame. F (xT , E) and ∆F (xT , E) are

functions of both xT ≡ |~xT | and the c.m. energy E of the two quarks. We can show that

the quark-quark scattering with HTL propagators has the same form as that in the static

potential model [7]. But the detailed expressions of F (xT , ŝ) and ∆F (xT , ŝ) are much more

complicated.

In fact, one can show that these two parts of the cross sections should have the same form

as given in Eqs. (30) and (31) due to parity conservation in the scattering process. We note

that in an unpolarized reaction, the cross section should be independent of any transverse

direction. Hence dσ/d2~xT depends only on the magnitude of xT but not on the direction.

For the spin-dependent part, the only scalar that we can construct from the available vectors

is ~n · (~p× ~xT ).

We note that, ~xT × ~p is nothing but the relative orbital angular momentum of the two-

quark system, ~l = ~xT × ~p. Therefore, the polarized cross section takes its maximum when ~n

is parallel or antiparallel to the relative orbital angular momentum, depending on whether

∆F is positive or negative. This corresponds to quark polarization in the direction ~l or −~l.

As discussed in the last section, the average relative orbital angular momentum ~l of two

scattering quarks is in the opposite direction of the reaction plane in non-central A + A

collisions. Since a given direction of ~l corresponds to a given direction of ~xT , there should

be a preferred direction of ~xT at a given direction of the nucleus-nucleus impact parameter

~b. The distribution of ~xT at given ~b depends on the collective longitudinal momentum

distribution shown in the last section. For simplicity, we consider a uniform distribution of

~xT in all possible directions in the upper half xy-plane with x > 0. In this case, we need

to integrate d∆σ/d2~xT and dσ/d2~xT over the half plane above y-axis to obtain the average
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cross section at a given ~b, i.e.,

σ =

∫ +∞

0

dx

∫ +∞

−∞
dy

d2σ

d2~xT

, (32)

∆σ =

∫ +∞

0

dx

∫ +∞

−∞
dy

d2∆σ

d2~xT

. (33)

The polarization of the quark is then obtained as,

Pq =
∆σ

σ
. (34)

B. Small angle approximation

We only consider light quarks and neglect their masses. Carrying out the traces in

Eq.(25), we can obtain the expression of the cross section with HTL gluon propagators.

The results are much more complicated than those as obtained in Ref.[7] using a static

potential model. However, if we use small angle or small transverse momentum transfer

approximation, the results are still very simple. In this case, with qz ∼ 0 and qT ≡ |~qT | ¿ p,

we obtain the spin-independent (unpolarized) cross section ,

d2σ

d2~xT

=
g4cqq

8

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT (

1

q2
T + µ2

m

+
1

q2
T + µ2

D

)(
1

k2
T + µ2

m

+
1

k2
T + µ2

D

), (35)

and the spin-dependent differential (polarized) cross section,

d2∆σ

d2~xT

= −i
g4cqq

16

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

(~kT − ~qT ) · (~p× ~n)

p2

×(
1

q2
T + µ2

m

+
1

q2
T + µ2

D

)(
1

k2
T + µ2

m

+
1

k2
T + µ2

D

). (36)

We note that the polarized differential cross can be related to the unpolarized one by,

d2∆σ

d2~xT

= − 1

2p2
(~p× ~n) · ~∇T

d2σ

d2~xT

. (37)

Completing the integration over the transverse momentum transfer,
∫

d2~qT

(2π)2

ei~qT ·~xT

q2
T + µ2

m

=

∫
qT dqT

2π

J0(qT xT )

q2
T + µ2

m

, (38)

∫ ∞

0

qT dqT
J0(qT xT )

q2
T + µ2

m

= K0(µmxT ), (39)

where J0 and K0 are the Bessel and modified Bessel functions respectively, we obtain,

d2σ

d2~xT

=
cqq

2
α2

s[K0(µmxT ) + K0(µDxT )]2, (40)
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d2∆σ

d2~xT

=
cqqα

2
s

2

(~p× ~n) · x̂T

p2
[K0(µmxT ) + K0(µDxT )][µmK1(µmxT ) + µDK1(µDxT )], (41)

where x̂T = ~xT /xT is the unit vector of ~xT . We compare the above results with that in the

screened static potential model (SPM) where one also made the small angle approximation,

[ dσ

d2~xT

]
SPM

=
g4cT

4

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

1

q2
T + µ2

D

1

k2
T + µ2

D

, (42)

[d∆σ

d2~xT

]
SPM

= −i
g4cT

8

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

(~kT − ~qT ) · (~p× ~n)

p2(q2
T + µ2

D)(k2
T + µ2

D)
. (43)

We see that the only difference between the two results is the additional contributions from

magnetic gluons, whose contributions are absent in the static potential model. Using Eqs.

(38) and (39), we recover the results in Ref. [7],

[ dσ

d2~xT

]
SPM

= α2
scT K2

0(µDxT ), (44)

[d∆σ

d2~xT

]
SPM

= α2
scT

(~p× ~n) · ~̂xT

p2
µDK0(µDxT )K1(µDxT )). (45)

C. Beyond small angle approximation

Now we present the complete results for the cross-section in impact parameter space using

HTL gluon propagators without small angle approximation. The unpolarized and polarized

cross section can be expressed in general as,

dσ

d2~xT

=
g4cqq

64p2

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

f(~qT , ~kT )

Λ(~qT )Λ(~kT )
, (46)

d∆σ

d2~xT

= −i
g4cqq

64p3

∫
d2~qT

(2π)2

d2~kT

(2π)2
ei(~kT−~qT )·~xT

∆f(~qT , ~kT )

Λ(~qT )Λ(~kT )
, (47)

where the kinematic factor becomes Λ(~qT ) =
√

2p|p+
3z|; f and ∆f are given by,

f(~qT , ~kT ) =
Amm(~qT , ~kT )

(q2 + µ2
m)(k2 + µ2

m)
+

Aee(~qT , ~kT )

(q2 + µ2
D)(k2 + µ2

D)

+
Ame(~qT , ~kT )

(q2 + µ2
m)(k2 + µ2

D)
+

Ame(~kT , ~qT )

(q2 + µ2
D)(k2 + µ2

m)
; (48)

∆f(~qT , ~kT ) =
∆Amm(~qT , ~kT )

(q2 + µ2
m)(k2 + µ2

m)
+

∆Aee(~qT , ~kT )

(q2 + µ2
D)(k2 + µ2

D)

+
∆Ame(~qT , ~kT )

(q2 + µ2
m)(k2 + µ2

D)
− ∆Ame(~kT , ~qT )

(q2 + µ2
D)(k2 + µ2

m)
, (49)

17



Amm(~qT , ~kT ) = (~q · ~k)2 + 8p2(~q · ~k) + 8p3(qz + kz) + 16p4; (50)

Aee(~qT , ~kT ) = Amm(~qT , ~kT ) + 4p(qz + kz)[(~q · ~k) + p(qz + kz) + 2p2]; (51)

Ame(~qT , ~kT ) = Amm(~qT , ~kT ) + [−2qzkz(~q · ~k) + 4pkz(~q · ~k)− 2pq2
zkz

−2pqzkz
2 + 4p2kz

2 + 8p3kz)]; (52)

∆Amm(~qT , ~kT ) = −{[~q · ~k + 4p2 − 2p(qz + kz)](kz~qT − qz
~kT )

+2p(~q · ~k + 4p2)(~qT − ~kT )} · (~p× ~n); (53)

∆Aee(~qT , ~kT ) = ∆Amm(~qT , ~kT )− 4p(qz + kz)[(kz~qT − qz
~kT )− p(~kT − ~qT )] · (p̂× ~n); (54)

∆Ame(~qT , ~kT ) = ∆Amm(~qT , ~kT ) + 2pkz[2p(~kT − ~qT ) + (qz − kz)~qT

−(kz~qT − qz
~kT )] · (p̂× ~n) + 2qzkz(kz~qT − qz

~kT ) · (p̂× ~n), (55)

where p ≡ |~p|. It is useful to note that

Amm(~qT , ~kT ) = Amm(~kT , ~qT ), (56)

Aee(~qT , ~kT ) = Aee(~kT , ~qT ). (57)

Hence, f(~qT , ~kT ) is symmetric in its two variables

f(~qT , ~kT ) = f(~kT , ~qT ). (58)

Similarly from

∆Amm(~qT , ~kT ) = −∆Amm(~kT , ~qT ), (59)

∆Aee(~qT , ~kT ) = −∆Aee(~kT , ~qT ), (60)

we know that ∆f(~qT , ~kT ) is anti-symmetric,

∆f(~qT , ~kT ) = −∆f(~kT , ~qT ). (61)

As mentioned above, to get the average polarization for a fixed direction of the reaction

plane in heavy-ion collisions, we need to average over the distribution of ~xT . For this

purpose, we take the approach as in Ref. [7], and integrate dσ/d2~xT and d∆σ/d2~xT over the

half plane above the y-axis as shown in Eqs. (32) and (33). It is convenient to carry out

first the integration over x and y then that over ~qT and ~kT . To do this, we use the identity,

2

∫ +∞

0

dx

2π

∫ +∞

−∞

dy

2π
ei(~kT−~qT )·~xT = δ2(~kT − ~qT ) +

i

π
δ(ky − qy)P 1

kx − qx

, (62)
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where P denotes the principal value.

It is useful to note that δ2(~kT−~qT ) = δ2(~qT−~kT ) and P 1
kx−qx

= −P 1
qx−kx

. Therefore, only

the first term on the r.h.s. of Eq. (62) contributes to the total unpolarized cross section,

σ =
g4cqq

64p2

1

2

∫

qT≤p

d2~qT

(2π)2

f(~qT , ~qT )

Λ2(~qT )
. (63)

The polarized cross section ∆σ receives contribution only from the second term,

∆σ =
g4cqq

64p3

∫ p

−p

dqy

2π

∫ √
p2−qy

2

−
√

p2−qy
2

dqx

2π

∫ √
p2−qy

2

−
√

p2−qy
2

dkx

2π

1

kx − qx

∆f(qx, qy; kx, qy)

Λ(~qT )Λ(~kT )
. (64)

Changing the integration variable qT = p sin θ and ξ = sin2(θ/2) in the expression of the

total cross section σ, we obtain,

σ =
πcqqα

2
s

4ŝ

∫ 1

0

dξ

{
1 + ξ2

(ξ + βmT̃ 2)2
+

(1− ξ)2

(ξ + βDT̃ 2)2
+

2(1− ξ)

(ξ + βDT̃ 2)(ξ + βmT̃ 2)

}
, (65)

where βD = (µD/T )2 = 4παs(Nc + Nf/2)/3, βm = (µm/T )2 = 0.2552(4π)2α2
sNc/2, and

T̃ = T/
√

ŝ with
√

ŝ the center of mass energy of the qq-system. The integration can be

carried out analytically,

σ =
πcqqα

2
s

4ŝ

{
4 +

1

βmT̃ 2
+

1

βDT̃ 2
− 2

1 + βmT̃ 2
− 2(βmT̃ 2 +

1 + βmT̃ 2

βmT̃ 2 − βDT̃ 2
) ln(1 +

1

βmT̃ 2
)

−2(βDT̃ 2 +
βmT̃ 2 − 2βDT̃ 2 − 1

βmT̃ 2 − βDT̃ 2
) ln(1 +

1

βDT̃ 2
)

}
. (66)

Similarly, we make the variable substitutions qy = p
√

1− t2, qx = pt
√

1− ξ2, kx =

pt
√

1− η2 in the integration for ∆σ and obtain,

∆σ = −cqqα
2
s

8πŝ

∫ 1

−1

dt

∫ 1

0

dξ

∫ 1

0

dη
t2
√

ξη√
1− t2

√
1− ξ2

√
1− η2

×
{

(1− t2)(4 + tξ + tη)− 2(t2ξη + 1) + 2t(1 + ξη)(5 + t2ξη)/(ξ + η)

(1− tξ + 2βmT̃ 2)(1− tη + 2βmT̃ 2)

+
(1− t2)(tξ + tη) + 2(t2ξη + 1) + 2t(1 + ξη)(1 + t2ξη)/(ξ + η)

(1− tξ + 2βDT̃ 2)(1− tη + 2βDT̃ 2)

+
2(1− t2)(2 + tξ + tη) + 8t(1 + ξη)(1 + tη)/(ξ + η)

(1− tξ + 2βmT̃ 2)(1− tη + 2βDT̃ 2)

}
. (67)

Note that in the calculation of both the polarized and unpolarized cross sections we have

limited the range of integration over the transverse momentum due to energy conservation.

Such restriction is not imposed in the small angle approximation in Ref. [7]. We see that,
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at given βm and βD, both σ and ∆σ are functions of the variable T̃ = T/
√

ŝ. Since βm and

βD depend on αs, the polarization Pq = ∆σ/σ also depends on the value of αs.

We can now carry out the integration numerically to get the quark polarization Pq. Before

we show the numerical results, it is useful to look at two limits.

(1) High energy limit. At very high energies,
√

ŝ À T or T̃ ¿ 1, we have,

σ =
πcqqα

2
s

4ŝT̃ 2

{
1

(1 + 4βmT̃ 2)βm

+
1

(1 + 4βDT̃ 2)βD

+
2

βD − βm

ln
βD(1 + 4βmT̃ 2)

βm(1 + 4βDT̃ 2)

}
, (68)

∆σ = −4cqqα
2
s

πŝ

∫ 1

0
dt


 1√

t2 + 4βmT̃ 2

tan−1

√
1− t2

t2 + 4βmT̃ 2
+

1√
t2 + 4βDT̃ 2

tan−1

√
1− t2

t2 + 4βDT̃ 2




2

.

(69)

This is the case where the small angle approximation can be made. The above can also be

obtained from Eqs. (35-36) given in the last section by carrying out the integration over ~xT

in the half plane of x > 0.

(2) Low energy limit. In the limit
√

ŝ ¿ T , we have q2
T + µ2

D ≈ µ2
D and q2

T + µ2
m ≈ µ2

m,

the cross sections become

σ =
cqqα

2
s

8ŝ
π(

√
ŝ

T
)4

(
8

3β2
m

+
2

3β2
D

+
2

βmβD

)
, (70)

∆σ = −cqqα
2
s

16πŝ
(

√
ŝ

T
)4

[
− 1

β2
m

(
1

192
Γ4(

1

4
) +

1

2
Γ4(

3

4
)

)
+

1

β2
D

(
1

192
Γ4(

1

4
) + Γ4(

3

4
)

)

+
2

βmβD

(
1

192
Γ4(

1

4
) + Γ4(

3

4
)

)]
. (71)

Given the corresponding values of the Γ-function, one can obtain numerically,

∆σ ≈ −cqqα
2
s

16πŝ
(

√
ŝ

T
)4

(
−2.03

β2
m

+
3.15

β2
D

+
6.30

βmβD

)
. (72)

We see that in the low energy limit the magnetic part contributes with different sign from

the electric one. The polarization Pq = ∆σ/σ is given by

Pq ≈ − 3

2π2

−2.03β2
D + 3.15β2

m + 6.30βmβD

8β2
D + 2β2

m + 6βmβD

, (73)

which tends to be a constant in this low energy limit. In the weak coupling limit αs ¿ 1,

βD À βm the above constant Pq ≈ 0.04 is a small positive number.

It is also interesting to look at the contributions from the electric part only. The corre-

sponding cross sections, denoted with subscription E, are
(

dσ

d2~xT

)

E

=
g4cqq

64p2

∫
d2~qT

(2π)2

d2~kT

(2π)2

Aee(~qT , ~kT )ei(~kT−~qT )·~xT

Λ(~qT )Λ(~kT )(q2 + µ2
D)(k2 + µ2

D)
, (74)
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(
d∆σ

d2~xT

)

E

= −i
g4cqq

64p3

∫
d2~qT

(2π)2

d2~kT

(2π)2

∆Aee(~qT , ~kT )ei(~kT−~qT )·~xT

Λ(~qT )Λ(~kT )(q2 + µ2
D)(k2 + µ2

D)
. (75)

Carrying out the integration over d2~xT in the half plane with x > 0, we obtain,

σE =
πcqqα

2
s

4ŝ

∫ 1

0

(1− ξ)2dξ

(ξ + βDT̃ 2)2
=

πcqqα
2
s

4ŝ

[
2 +

1

βDT̃ 2
− 2(1 + βDT̃ 2) ln(1 +

1

βDT̃ 2
)

]
, (76)

∆σE = −cqqα
2
s

8πŝ

∫ 1

−1

dt

∫ 1

0

dξ

∫ 1

0

dη
t2
√

ξη√
1− t2

√
1− ξ2

√
1− η2

×
{

(1− t2)(tξ + tη) + 2(t2ξη + 1) + 2t(1 + ξη)(1 + t2ξη)/(ξ + η)

(1− tξ + 2βDT̃ 2)(1− tη + 2βDT̃ 2)

}
. (77)

In the high energy limit, where small angle approximation is applicable, we have,

σE =
πcqqα

2
s

4ŝβDT̃ 2(1 + 4βDT̃ 2)
, (78)

∆σE = −4cqqα
2
s

πŝ

∫ 1

0

dt

t2 + 4βDT̃ 2

[
tan−1

√
1− t2

t2 + 4βDT̃ 2

]2

. (79)

In the low energy limit, we have,

σE =
cqqα

2
s

12ŝβ2
D

π(

√
ŝ

T
)4, (80)

∆σE = −cqqα
2
s

16πŝ
(

√
ŝ

T
)4 1

β2
D

(
1

192
Γ4(

1

4
) + Γ4(

3

4
)

)
. (81)

The polarization in this case,

PE
q ≡ ∆σE/σE = − 3

4π2

(
1

192
Γ4(

1

4
) + Γ4(

3

4
)

)
≈ −0.24 (82)

is a negative constant which can also be obtained from Eq. (73) by taking the limit βm À βD.

D. Numerical results

We now carry out the integration in Eq. (67) numerically and obtain the results for the

quark polarization at intermediate energies between the high-energy and low-energy limit.

The results are shown in Fig. 8 as functions of
√

ŝ/T . The quark polarization (−Pq) along

the reaction plane approaches a small negative value as we have shown in the last subsection

in the low-energy limit. The value of the low energy limit varies with αs as given by Eq.

(73). Such a dependence on αs is a consequence of the magnetic and electric screening
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FIG. 8: (Color online) Quark polarization -Pq as a function of
√

ŝ/T for different αs’s.

masses in the polarized and unpolarized cross sections which have different dependence

on αs. However, from Eq. (73), the low-energy limit of the quark polarization becomes

independent of αs in the weak coupling limit αs → 0 when βm ¿ βD.

As one increases the relative c.m. energy, the quark polarization changes drastically with
√

ŝ/T . It increases to some maximum values and then decreases with the growing energy,

approaching the result of small angle approximation in the high-energy limit. This structure

is caused by the interpolation between the high-energy and low-energy behavior dominated

by the magnetic part of the interaction in the weak coupling limit αs < 1. Therefore, the

position of the maxima in
√

ŝ should approximately scale with the magnetic mass µm. This

is indeed the case as shown in Fig. 9.

To further understand the interpolation between the high and low-energy limits in the

numerical results, we also compare them in Fig. 10 with the results with the electric gluon

exchange only. Without the contribution from the magnetic gluon interaction, the quark
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FIG. 9: (Color online) Quark polarization -Pq as a function of
√

ŝ/µm for different values of αs.

polarization takes a relatively large value Pq ≈ −0.24 at low energies and then decreases

with
√

ŝ at high energies. The magnetic interaction in the low-energy limit apparently has a

different sign in the contribution to the polarized cross section relative to that of the electric

one. The net polarization is therefore reduced at finite αs to smaller negative values when

αs ¿ 1. The electric contribution to the net quark polarization also corresponds to the limit

µm À µD or αs À 1 in the full result. Even though our perturbative approach is no longer

valid in such a limit, it indicates that the net quark polarization remains a finite negative

value in the strong coupling limit as shown in Fig. 9.

In Fig. 11 we also compare the full numerical results (solid lines) with those of the small

angle approximation in the high-energy limit (dashed lines) as given by Eqs. (68) and (69).

These two groups of results indeed agree with each other at high energies. However, they

both are different from the results of the static potential model in the small angle limit

(dotted lines) [9] which does not have the energy conservation restriction in the integration

over the transverse momentum transfer.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have extended an earlier study [9] of the global quark polarization

caused by the longitudinal fluid shear in non-central heavy-ion collisions. We have calculated
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FIG. 10: (Color online) Quark polarization -Pq as a function of
√

ŝ/T with the full HTL gluon

propagator (solid) as compared to the results with the electric part of the interaction only (dashed).

the average local relative orbital angular momentum or longitudinal fluid shear with two

extreme models: Landau fireball and Bjorken scaling model. In the Landau fireball model,

we assumed a wounded nucleon model for local particle production with both the hard-

sphere and Woods-Saxon nuclear distributions. Each parton is then assumed to carry an

average longitudinal flow velocity calculated from the net longitudinal momentum at a given

transverse position. In the Bjorken scaling model we considered correlation between spatial

and momentum rapidity in a 3-dimensional expanding system for which we calculated the

average rapidity or longitudinal momentum shear (derivative of the average rapidity or the

longitudinal momentum) with respect to the transverse position x. The shear determines the

local relative orbital angular momentum in the comoving frame at a given rapidity. These

two model calculations provide estimates of the local fluid shear in two extreme limits.

We have also extended the calculation of the global quark polarization Pq within per-
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FIG. 11: (Color online) Comparison of the results obtained using HTL gluon propagator (solid

line) with those under small angle approximation (dashed line) and those using the screened static

potential model under small angle approximation (dotted line).

turbative QCD at finite temperature beyond the small angle approximation of the previous

study [9] which might not be valid for small values of the local longitudinal fluid shear or

the average c.m. energy
√

ŝ of a colliding quark pair. We found that the magnetic part

of the interaction in one-gluon exchange is particularly important at low energies which

cancels the contribution from the electric interaction and leads to smaller negative values

of the net quark polarization in the weak coupling limit (αs < 1). The final global quark

polarization therefore is small in both the low and high-energy limits. It can, however, reach

a peak value of about Pq ≈ −0.24 at an energy determined by the nonperturbative magnetic

mass
√

ŝ ∼ 4µm ≈ g2T
√

Nc/2. For
√

ŝ < µm, the average quark polarization becomes

significantly smaller.

In semi-peripheral Au + Au collisions (b = RA) at the RHIC energy, one can assume an
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average temperature T ≈ 400 MeV [27]. With αs ≈ 0.3, the global quark polarization reaches

its peak value at c.m. energy about 1.8 GeV. Since the magnetic interaction dominates the

quark-quark interaction in our calculation, we can assume that the average interaction range

in the transverse direction is given by the magnetic mass, ∆x ∼ 1/µm. According to our

estimates of the longitudinal fluid shear, the average c.m. energy of the quark pair under

such fluid shear is
√

ŝ ∼ 0.8 GeV2/µm ≈ 0.17 GeV (from Fig. 4) in the Landau fireball

model. In the Bjorken scaling model (from Fig. 7), the c.m. energy provided by the local

fluid shear is
√

ŝ ∼ 0.004〈pT 〉 cosh(y) fm−1/µm ≈ 0.001 GeV in the central rapidity region

(we assume 〈pT 〉 ∼ 2T ). In both cases, the longitudinal fluid shear is so weak that the global

quark polarization due to perturbative quark-quark scatterings is quite small according to

our numerical calculations that go beyond the small angle approximation.

In heavy-ion collisions at the Large Hadron Collider (LHC) energy
√

s = 5.5 TeV, the

average multiplicity density per participant nucleon pair was estimated to be about a factor

of 3 larger than that at the RHIC energy [28]. The corresponding longitudinal fluid shear

and the average c.m. energy of a quark pair will be about a factor 6 larger than that at the

RHIC energy in the Landau fireball model, assuming the temperature is about 1.44 higher.

One can also expect the average local longitudinal fluid shear in the Bjorken scenario at

LHC is similarly amplified compared to the RHIC energy in particular at large rapidity.

Therefore, the resulting net quark polarization should also be larger at LHC.

We want to emphasize that the above numerical estimate is based on a perturbative

calculation via quark-quark scatterings in the weak coupling limit. It is still possible that

quarks could acquire large global polarization through interaction in the strong coupling

limit, as hinted by our results with large values of the strong coupling constant even though

such a perturbative approach becomes invalid. The finite value of the quark polarization

could be detected via measurements of the global hyperon polarization or the vector meson

spin alignment with respect to the reaction plane. According to our estimate of the longitu-

dinal fluid shear, the effect is more significant at large rapidity under the Bjorken scenario

of the initial parton production.

In the limit of vanishing local orbital angular momentum provided by the longitudinal

fluid shear, the approach we used in this paper in the impact-parameter representation

might not be valid anymore. However, the final spin-polarization due to the spin-orbital

interaction should approach to zero in this limit, which is approximately the result of our
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full calculation.
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