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ABSTRACT: Human activity causes vibrations that propagate into the ground as high-

frequency seismic waves. Measures to mitigate the COVID-19 pandemic caused widespread 

changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. 

The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic 

seismic noise reduction on record. While the reduction is strongest at surface seismometers in 

populated areas, this seismic quiescence extends for many kilometers radially and hundreds of 

meters in depth. This provides an opportunity to detect subtle signals from subsurface seismic 

sources that would have been concealed in noisier times and to benchmark sources of 

anthropogenic noise. A strong correlation between seismic noise and independent 

measurements of human mobility suggests that seismology provides an absolute, real-time 

estimate of population dynamics. 

 

 

 ONE SENTENCE SUMMARY: Global changes in social and economic activity following 

COVID-19 lockdown measures caused significantly lower anthropogenic seismic noise levels. 
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Seismometers record signals from more than just earthquakes; interactions between the 

solid Earth and fluid bodies, such as ocean swell and atmospheric pressure (1,2), are now 

commonly used to image and monitor the subsurface (3). Human activity is a third source of 

seismic signal. Nuclear explosions and fluid injection/extraction result in impulsive signals, but 

everyday human activity is recorded as near-continuous signal especially on seismometers in 

urban environments. These complicated signals are the superposition of a wide variety of 

activities happening at different times and places at or near the Earth’s surface, but are typically 
stronger during the day than at night, weaker on weekends than weekdays, and stronger near 

population centers (4,5,6,7). Seismometers in urban environments are important to maximize 

the spatial coverage of seismic networks and to warn of local geologic hazards (8), even though 

anthropogenic seismic noise degrades their capability to detect transient signals associated with 

earthquakes and volcanic eruptions. Understanding urban seismic sources is therefore vital. 

However, research studies have been limited to confined areas or distinct events, such as road 

traffic (9,10), public transport (11,7), and “football quakes” (11,12). Broad analysis of the long-

term global anthropogenic seismic wavefield has been lacking. The impact of large, coherent 

changes in human behavior on seismic noise is unknown, as is how far it propagates and whether 

seismic recordings offer a coarse proxy for monitoring human activity patterns. Answering these 

questions has proven challenging: datasets are large, monitoring network heterogeneous, and 

the many possible noise sources likely vary spatially and overlap in time (13). 

The COVID-19 outbreak was declared a global health emergency in January 2020 (14) and 

a pandemic in March by the World Health Organisation. The outbreak resulted in emergency 

measures to reduce the basic reproduction rate of the virus (R0) (15), beginning in China, Italy, 

and then followed by most countries. These measures disrupted social and economic behavior 

(16), industry (17), and tourism (18). In this paper, we use “lockdown" to broadly encompass 
many types of emergency measures, such as full quarantine (e.g. Wuhan, China (19,20,21)), 

enforced physical distancing (e.g. Italy; UK), travel restrictions (22), widespread closure of 

services and industry, or any other emergency measures. These drastic changes to daily life 

provide a unique opportunity to study their environmental impacts, such as reductions in nitrous 

oxide emissions in the atmosphere (23). Recordings of human-generated seismic vibrations that 

travel through the solid Earth provide insights into the dynamics of pandemic lockdowns.  

We assessed the effects of COVID-19 lockdowns on high-Frequency (4–14 Hz) Seismic 

Ambient Noise (hiFSAN; (24)). We compiled a global seismic noise dataset using vertical-

component seismic waveform data from 337 broadband and individually-operated citizen 

seismometer stations (24), such as Raspberry Shakes (RS), with a self-noise well below the ground 

motion generated by anthropogenic noise (25), and flat responses in the target frequency band 

(Fig. 1). For 268 seismic stations, we obtained usable data (e.g. no large data gaps, working 

sensors) and found significant reductions in hiFSAN during local lockdown measures at 185 

stations (Fig. 2). Periods that are often seismically quiet include weekends, and the Christmas / 

New Year holidays for those locations where these are celebrated. We found a near-global 

reduction in noise, commencing in China in late Jan 2020, then followed by Europe and the rest 

of the world in Mar to Apr 2020. The noise level we observe during lockdowns lasted longer and 

was often quieter than the Christmas to New Year period.  

In China (Fig. 3A), the COVID-19 outbreak and subsequent emergency measures occurred 
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during Chinese New Year (CNY). In Enshi city, Hubei province, where the outbreak began (26), 

hiFSAN in 2020 clearly diverges from the normal annual reduction during CNY. The hiFSAN level 

remained at a minimum for several weeks after CNY. This minimum was demarcated by the start 

and end of quarantine in Hubei. While such strict quarantine measures were not enforced in 

Beijing, local hiFSAN reductions are stronger and longer than recent years. As of the end date of 

our analysis, Beijing has still not reached the average hiFSAN level of previous years, suggesting 

the impact of COVID-19 is still restricting anthropogenic noise there. We noticed a later hiFSAN 

lockdown reduction in Apr 2020 in Heilongjiang, in NE China, near the Russian border. 

While we see seismic effects of lockdown in areas with low population density estimates 

(<1 person per km², Fig. 1), the strongest hiFSAN reduction occurs in populated environments. 

For a permanent seismic station in Sri Lanka, a 50% reduction in hiFSAN occurred after lockdown, 

the strongest we observed in the available data from that station since at least July 2013 (Fig. 

S2). In Central Park, New York, on Sunday nights, hiFSAN was 10% lower during the lockdown 

compared to before it (Fig. S3).  

Seismic networks in populated areas allow us to correlate hiFSAN with other human 

activity measurements, such as audible recordings and flight data (24). At a surface station in 

Brussels, Belgium (Fig. 3B), we found a 33% reduction in hiFSAN after lockdown. We compared 

this with data from a nearby microphone, located close to a major road, that mainly records 

audible traffic noise. We found a high correlation between pre-lockdown hiFSAN and audible 

noise, both showing characteristic diurnal and weekly changes. However, during lockdown, 

audible noise reductions are more pronounced, suggesting that seismometers are sensitive to a 

wider distribution of seismic sources, not solely to the nearby traffic. Audible and hiFSAN levels 

then gradually increase after Apr 2020. Independent mobility data (24) provide insights into what 

cause these changes. Mobility correlates with hiFSAN at lockdown, with correlation coefficients 

exceeding 0.8 (24), except for time spent at places of residence (Google’s “residential” category), 
which is expected given the increased number of people spending more time at home due to 

government restrictions. 

Citizen seismometers provide a different urban ground motion dataset, with denser 

coverage in some places. Large hiFSAN drops especially occurred at schools and universities 

following lockdown-related closures (e.g. in Boston and Michigan (US) and Cornwall (UK)), Fig. 

S4). The hiFSAN level is even 20% lower than during school holidays, indicating sensitivity to the 

environment outside of the school. 

The pandemic impacted tourism, for example, during the holiday season in the Caribbean. 

In Barbados (Fig. 3C), hiFSAN decreased by ∼45% following lockdown on 28 March 2020, through 

April 2020 and stayed ∼50% below levels observed in previous years for the same period. 

However, seismic noise levels started to decrease 1–2 weeks before a local curfew started. Local 

flight data (24) imply travel to Barbados started decreasing after 21 March 2020 and the overall 

reduction in hiFSAN might be due in part to tourists repatriating. We also observed noise 

reductions due to reduced tourist activity at ski resorts in Europe (Zugspitze) and the US 

(Mammoth Mountain) (Fig. S5). 

While we saw lockdown effects most strongly at surface stations, we also detected them 

underground. Seismometers installed in boreholes to minimize the effects of anthropogenic 

noise on the data monitor potential hazards associated with the Auckland Volcanic Field, New 

Zealand (27,8,6). Station HBAZ is 380 m below the city, while MBAZ is at 98 m depth, 14 km from 
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the city center on the uninhabited Motutapu island (Fig. 3D). The hiFSAN level at both stations 

varies between weekdays and weekends before the lockdown, suggesting that both are sensitive 

to anthropogenic activity. While the island station is quieter overall, the lockdown instigated a 

reduction in hiFSAN by a factor of two for both stations. We attribute the remaining hiFSAN 

maxima on the island (mid Apr 2020; early May 2020) to strong winds and high waves. On 27 

April 2020, New Zealand lifted restrictions, with hiFSAN increasing to the pre-lockdown levels. 

The reduction of hiFSAN is weaker in less populated areas, such as at Rundu which is 

located along the Namibia-Angola border (Fig. 3E). After COVID-19 was confirmed in Namibia, an 

emergency was declared on 17 Mar 2020 to restrict mobility, followed by full lockdown on 27 

Mar 2020. These measures are reflected in >25% hiFSAN reduction compared to pre-lockdown. 

Despite Rundu having a population roughly eight and five times less dense than Brussels and 

Auckland, respectively (28), we observed a similarly high correlation between seismic and 

mobility data. The Black Forest Observatory in Germany is an even more remote station, located 

150–170 m below the surface in crystalline bedrock. Considered a reference low-noise laboratory 

(29), even there we found a small hiFSAN reduction during lockdown nights (Fig. S6), 

corresponding to the lowest hiFSAN since at least 25 Dec 2015. 

We have provided a global-scale analysis of high-frequency anthropogenic seismic noise. 

Global median hiFSAN dropped by as much as 50% during March to May 2020 (Fig. 4). The length 

and quiescence of this period represents the longest and most coherent global seismic noise 

reduction in recorded history, highlighting how human activities impact the solid Earth. A globally 

high correlation exists between changes in hiFSAN and population mobility (24), with correlations 

exceeding 0.9 for many categories. 

This distinct low-noise period will help to optimize seismic monitoring (4). Analyzing the 

full spectrum of seismogenic behavior, including the smallest earthquakes, is essential for 

monitoring fault dynamics over seismic cycles, and for earthquake forecasting and seismic hazard 

assessment. Small earthquakes should dominate datasets (30), but typical operational catalogues 

using amplitude-based detection lack many of the smallest earthquakes (31). This detection issue 

is especially problematic in populated areas, where anthropogenic noise energy interferes with 

earthquake signals. This problem is exemplified by recordings of a M5.0 earthquake at 15 km 

depth SW of Petatlan, Mexico during lockdown (Fig. S7). An earthquake with this magnitude and 

source mechanism occurring during daytime could typically only be observed at stations in urban 

environments by filtering the signal. However, the reduction of seismic noise by ∼40% during 

lockdown made this event visible without any filtering required at a RS station in Querétaro city, 

380 km away. Low noise levels during COVID-19 lockdowns could thus allow detection of signals 

from new sources in areas with incomplete seismic catalogues. Such newly identified signals 

could be used as distinct templates (30) for finding similar waveforms in noisier data pre- and 

post-lockdown. This approach also works for tremor signals masked by anthropogenic noise, yet 

vital for monitoring potential volcanic unrest (6). Although broadband sensors in rural 

environments are impacted less by anthropogenic noise, any densification of and reliance on low-

cost sensors in urban areas, such as RS and low-cost accelerometers (32), will require a better 

understanding of anthropogenic noise sources to suppress false detections. As populations 

increase globally, more people become exposed to potential natural and induced geohazards 

(33). Urbanization will increase anthropogenic noise in exposed areas, further complicating 

seismic monitoring. Characterizing and minimizing anthropogenic noise is increasingly important 
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for accurately detecting and imaging the seismic signatures of potentially harmful subsurface 

hazards. 

Anthropogenic seismic noise is thought to be dominated by noise sources less than 1 km 

away (34,5,6,7,11). Because population mobility generates time-varying loads that radiate 

energy through the shallow subsurface as Rayleigh waves (11), local effects, such as construction 

sites, heavy machinery, can impact individual stations. However, the unique 2020 seismic noise 

quiet period reveals that when considering multiple stations or whole networks over longer time-

scales, the anthropogenic seismic wavefield affects large areas. With denser networks and more 

citizen sensors in urban environments, more features of the seismic noise, rather than just 

amplitude, will become usable and will help to identify different anthropogenic noise sources 

(35,10). Characterizing these sources will be useful for imaging the shallow subsurface in 3D in 

urban areas using high-frequency anthropogenic ambient noise (36,37). Our finding of a 

distributed noise field is supported by the strong correlations with independent mobility data 

(Fig. 4). In contrast to mobility data, publicly available data from existing seismometer networks 

provide an objective absolute baseline of human activity levels. Therefore, hiFSAN can serve as a 

near-real-time technique for monitoring anthropogenic activity patterns with fewer potential 

privacy concerns than mobility data. In addition, industrial activities may not be captured in 

mobility data, but leave a seismic noise signature. The 2020 seismic quiet period is a baseline for 

using seismic properties (34) to identify and isolate the sources contributing to the anthropogenic 

noise wavefield, especially when combined with data indicative of human behavior. The seismic 

observations of human activity during the COVID-19 lockdown allow us to assess the impact of 

mitigation policies on daily life, especially the time to establish and recover from lockdowns. As 

such, hiFSAN may provide important constraints for health and behavioral science studies.  
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Figure 1: Worldwide seismic station locations.  

Locations of the 268 global seismic stations with usable data (e.g. no long data gaps, working 

sensors) we analyzed. Lockdown effects are observed (red) at 185 out of 268 stations. Symbol 

size is scaled by the inverse of population density (28) to emphasize stations located in remote 

areas. The stations we labelled are discussed in detail in the text.  
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Figure 2: Global temporal changes in seismic noise.  

Global daily median hiFSAN based on displacement data (24), normalized to percentage 

variation of the baseline before lockdown measures, and sorted by lockdown date. Data gaps 

are colored white. Location and country code of the station are indicated, while Fig. S1 also 

includes the network and station code. 
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Figure 3: Regional examples of the 2020 seismic noise quiet period.  

Examples showing different features of the lockdown seismic signal changes in regional 

settings. We filtered the hiFSAN data between 4 and 14 Hz and present temporal changes 

either as displacement (A), acceleration (D) or as percentage change compared to the baseline 

before lockdown (B, C and E) with the panels in (A) also comparing to the baseline of 

corresponding time periods in prior years. Individual seismic stations are identified by 

network.station codes (IC.ENH, BE.UCCS, etc.). The legends of (B-E) include correlation 

coefficients r with mobility data (24). (A) Lockdown effects at three stations in China compared 

to the Chinese New Year holiday in previous years. (B) Lockdown effects in hiFSAN compared 

with audible environmental noise and independent mobility data in Brussels, Belgium. (C) 

Lockdown effect in Barbados compared to noise levels in the last decade (in grey) and 
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correlation with local flight data at the Grantley Adams International Airport (TBPB) (24). (D) 

Lockdown noise reduction recorded on borehole seismometers in Auckland, New Zealand. (E) 

Lockdown noise reduction in a region of low population density in Rundu, Namibia.  
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Figure 4: Global changes in seismic noise compared to population mobility trends.  

(A) Comparison between temporal changes in global daily median hiFSAN based on the 185 

stations that observed lockdown effects and population mobility changes (24). (B) Scatter plot 

to illustrate the correlation between the binned (10% bins) time series of seismic noise changes 

and all categories of mobility data in (A). Percentage changes are given relative to a pre-

lockdown baseline. All categories show a strong positive correlation, apart from time spent in 

residential premises, which is anti-correlated. 
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Materials and Methods 

Seismic ambient noise data 

In this study, we consider data from vertical seismometer components. Most 

traditional stations comprise broadband seismometers, whilst a handful of stations 

comprise short-period geophones and strong-motion accelerometers (see Supplementary 

Files). Analysis of a subset of stations showed that using the horizontal component data 

of seismometers produces similar results to those from vertical components. Since most 

Raspberry Shake (RS) individual and school seismometer stations (13) comprise only 

single, vertical-component seismic sensors, using vertical component data in our analysis 

allows us to combine and compare the broadband and RS datasets. To test the 

applicability of citizen and school seismometer stations to study lockdown effects, we 

demonstrate that co-located broadband and RS sensors show similar hiFSAN drops (e.g. 

Figs. S8, S9). The continuous seismic data processed are available from FDSN 

(International Federation of Digital Seismograph Network) webservices for most stations. 

An overview of stations and corresponding data sources are provided in the 

Supplementary Text and Tables. 

 

For many countries, especially those in China and Western Europe (e.g. UK, 

Belgium, Germany, Switzerland), whilst the majority of stations in the corresponding 

national seismic networks showed noise reductions associated with lockdown, we 

decided not to include every station in our global analysis to try to ensure a more uniform 

spatial sampling. In total, we studied data from 337 seismic stations; 185 showed clear 

lockdown noise-reduction indications. Stations with less obvious daytime lockdown 

effects, but where lockdown effects are still visible at night, are also marked as lockdown 

stations in the Supplementary Files. For 83 stations, we did not observe any noise level 

decrease associated with a lockdown or in-country emergency measures. These are 

labelled as blue symbols in Figure 1 in the main text and are listed separately in the 

Supplementary Files. For 69 stations, observation of a noise level decrease was not 

observed due to data gaps, station hardware problems, or by masking due to longer-term 

seasonal effects. 

 

Audible sound data 

In Brussels, audible sound recordings are made available by the regional 

environment authority “Bruxelles Environnement” (https://environnement.brussels/; last 
accessed July 2020). In a preprocessing step, the audible noise is convolved with the 

response of the human ear in the 20 Hz - 20 kHz band. 

 

Mobility data 

Mobility data are based on proprietary mobile phone usage data from Google (38) 

(https://www.google.com/covid19/mobility, last accessed July 2020) and from Apple 

(https://www.apple.com/covid19/mobility, last accessed July 2020). These two datasets 

comprise anonymized daily percentage changes for a variety of different categories, such 

as those based on the respective mapping apps. Google data are available from 2020-02-

15; Apple data from 2020-01-13. These data are likely heavily biased by members of the 

population carrying their phones and actively using the mapping apps. To plot the 
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mobility results in figures, we combine similar mobility categories from Google and 

Apple: 

• Transport: mean of Google’s “transit stations” and Apple’s “driving” and 
“transit” 

• Retail & recreation: mean of Google’s “grocery and pharmacy”, “retail and 

recreation” and “parks” 

• Workplaces: Google’s “workplaces” 

• Residential: Google’s “residential” 

The correlation coefficient r is calculated using linear least-squares regression between 

each mobility time series and the seismic noise data, both expressed as “percentage 
changes” from baseline. The baseline is defined during the pre-lockdown period for both 

series.  

 

Flight data 

Flight data for Barbados were retrieved for the period Nov 2019 to May 2020 from 

the OpenSky net-work archive (39) over a 2.8 degree longitude by 1.6 degree latitude box 

centered on Grantley Adams International Airport (TBPB). This flight data is freely 

available to researchers upon registering at the OpenSky website. The number of take-

offs and landings at TBPB was computed using the methods described in (40). For flights 

that operated across midnight (UTC), the flight counted for the statistics on the day of 

departure for take-offs or the day of arrival for landings. Due to the method of data 

acquisition, some flights are not included in the dataset but this does not affect the overall 

pattern of flight reductions due to COVID-19. A high level openly available dataset of 

flights from January 2020 onwards over Europe, North America and, with limitations, 

other parts of the world is available from OpenSky 

(http://doi.org/10.5281/zenodo.3928550) to extend our observations and interpretations 

for the global data set. 

 

Noise computation approach 

The quality of seismic stations is often determined using power spectral density 

(PSD) estimates of their records. When aggregated over hours or days, the PSD is a 

reasonable quantification of the noise levels in different frequency bands. Evaluations of 

station noise levels at different frequencies have been carried out for decades, but this has 

recently been made easier for continuous time series by the release of PQLX(“IRIS-

PASSCAL Quick Look eXtended”) (41, 42). 

For this study, we chose not to apply the default PQLX parameters (43) and apply 

less smoothing to obtain a finer frequency resolution together with more dynamic spectra. 

The PSD are computed using the ObsPy implementation (44–46), equivalent to that in 

PQLX. A single PSD is computed from 30-minute windows with 50 percent overlap. The 

PSD of each windowed time series (47) is computed using Welch’s method (48). This 

method reduces numerical noise in the power spectra at the expense of reducing the 

frequency resolution because of frequency binning, but this effect is minimized with a 

robust smoothing parametrization. The windowed segments are then converted to a 

periodogram using the squared magnitude of the discrete Fourier Transform. The 

displacement spectral power (Dpow) is related to the acceleration PSD in decibel (AdB) by 

the following relation:  
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The RMS (Root-Mean-Square) of the time-domain displacement (drms), band-passed 

between fmin and fmax, is related to the power spectral amplitude (Dpow) by Parseval’s 
identity: 

 
For many stations, we tested a range of frequency bandpass filters (0.1-1.0 Hz, 1.0-

20 Hz, 4-14 Hz,4-20 Hz). Whilst the frequency spectrum of the lockdown effect might 

vary between different stations, we found that we were able to see the lockdown effect 

for most stations using the 4-14 Hz filter. The high-pass corner of the filter is set to >>1 

Hz to prevent leakage of microseism, especially at island stations, many of which are 

included in our dataset (Figure 1). Thus, drms (t) filtered between 4 and14 Hz is the 

hiFSAN parameter discussed throughout the text. This frequency range allowed us to 

obtain a large dataset of noise changes, especially enabling 40 samples per second at 

higher data to be analyzed. Where only 20 samples per second seismic data were 

available for a handful of stations, data were bandpass filtered between 4 and 9 Hz. 

HE.HEL2 in Helsinki, Finland, is the only station for which drms (t) reduction was only 

visible between 60 and 90 Hz. 

A standardized processing strategy and parametrization was defined in order to 

obtain global comparable results. Our processing workflow is as follows: 

• selecting the seismic channel and data provider of the seismometer data of 

interest; 

• downloading the seismic waveform data for the time period of interest; 

• computing daily probabilistic PSDs (PPSD) from the downloaded data; 

• processing PPSDs and extracting the RMS of the time-domain displacement 

of the selected time period for different frequency bands; 

• manual assessment of long-term hiFSAN; 

• creating data analysis figures to demonstrate noise variation over time using 

different visualizations (pre-lockdown and lockdown hourly displacement 

variation, monthly variation). Figures were made using Matplotlib (49). 

Due to the heterogeneity of global seismic networks and the vast quantity of data 

downloading and processing required, we invited members of the seismological 

community via social media and traditional word-of-mouth in a democratized scientific 

approach (50). All authors have accessed and processed seismic data following the data 

analysis instructions presented in the Methods Section. All authors have read and 

commented during the development of this manuscript. This processing workflow has 

been made publicly available in Jupyter Notebooks (51) published on GitHub (52); 

(https://github.com/ThomasLecocq/SeismoRMS; last accessed July 2020). The final 

notebooks will be added to seismo-live.org (53). 

In this paper, we focus on computing changes in ground displacement. Similar 

results have been obtained by computing velocity or acceleration noise changes. For 
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plotting the global comparisons in Figure 2 and Figure S1, data are normalized to the 15-

85th percentiles of the pre-lockdown period and clipped above the 99th percentile for 

remaining outliers. 
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Fig. S1. Global temporal changes in seismic noise.  

Global daily median hiFSAN based on displacement data, normalized to percentage 

variation of the baseline before lockdown measures, and sorted by lockdown date. Data 

gaps are colored white. Location and country code of the station are indicated on the left; 

network and station codes on the right. Stations with long data gaps over the period are 

not shown. 
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Fig. S2. Long term evolution of hiFSAN in Sri Lanka. 

A) Long term seismic noise evolution. B) Zoom-in of noise in 2020. 
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Fig. S3. Lockdown effects on seismic noise in Central Park, NY. 

(A) Evolution of seismic noise at station LD.CPNY in Central Park, New York for the 

Dec 2019 - May 2020 period based on displacement data. (B) The same as (A) but shown 

in an hourly grid representation. (C) 24h clock plots showing average displacement 

variation for each day of the week for the period before lockdown (left) and after 

lockdown started (right). 
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Fig. S4.  Temporal changes in hiFSAN at schools and universities. 

(A) Boston College (US). (B) University of Michigan campus (US). (C) Truro School 

(Cornwall, UK). Time periods like the Christmas break and Spring break / half term are 

easily identified as periods of lower seismic noise. Note the large drop in hiFSAN up to 

more than 50 % change after classes are cancelled and campuses are closed. 
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Fig. S5. Lockdown effects on seismic noise in touristic ski resort areas. 

Temporal changes of hiFSAN at two touristic ski resort areas: Mammoth Mountain (USA 

- station NC.MCY) and Zugspitze (Germany, station BW.ZUGS), showing the effect of 

the complete stop of the resorts' lifts or cog-wheel railway 
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Fig. S6. Temporal changes in hiFSAN at the Black Forest Observatory, Germany. 

Long-term noise evolution at the Black Forest Observatory, Germany (GR.BFO) based 

on median nighttime (23:00-04:00) RMS noise from displacement data. The purple 

dashed line indicates the minimum noise observed during the 2020 lockdown period. 

Note the logarithmic y-axis. 
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Fig. S7. Increased earthquake detection capability in Mexico. 

(A) Temporal changes in hiFSAN at Raspberry Shake station AM.R6BB7 (city center of 

Querétaro, Mexico). (B) Earthquakes at Las Guacamayas (15/11/2019, M4.8 and 28 km 

depth) and Petatlan (07/04/2020, M5.0 and 15 km depth) recorded before (left column) 

and after the lockdown (right). The insert in the center indicates the locations of the 

earthquakes and Raspberry Shake station.  
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Fig. S8. Comparison of lockdown effects on Raspberry Shake and broadband 

stations on the surface. 

Temporal changes in seismic noise at the co-located AM.RCABD Raspberry Shake 

station (A) and NE.WES broadband station (B) at the Weston Observatory, Boston 

College seismic pier in the United States of America.  
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Fig. S9. Comparison of lockdown effects on Raspberry Shake and broadband 

stations in a borehole. 

Temporal changes in hiFSAN at broadband station G.UNM and Raspberry Shake station 

AM.RBFF6, both installed in a 20m deep borehole in the Ciudad Universitaria in Mexico 

City. The evolution of Google mobility data for the city are shown for comparison as 

dashed lines.  
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Movie S1 

Movie version of Figure 2 and Figure S1. The time evolution of the amplitude of hiFSAN 

for each station is shown as bars with variable height. The lockdown dates (LD1) for each 

country appear on the left side. 

Introduction to the Tables  

The supplementary tables give an overview of the seismic stations for which data 

were analyzed in this study. Each author provided lockdown (LD) information (DateLD1, 

TimeLD1, DateLD2, TimeLD2) for the seismometer location. Population density data 

show interpolated estimates of human population count for the year 2020 (54). These grid 

data are consistent with national census and population registers. popden30s gives 

population counts within 30 arc-second grid cells (cell size of roughly 1 km at the 

equator); popden2.5min gives population counts within 2.5 arc-minute grid cells (cell size 

of roughly 5 km at the equator; the inverse of this data column is used in Fig. 1). 

Population data for each station were extracted from grid data using QGIS (55). Station 

locations (latitude, longitude) in all tables were extracted from FDSN websites. The three 

files contain: 

Additional Data table S1 (separate file) 

Stations where lockdown noise reduction was observed; these 185 stations are 

shown in Figures 1 and 4 and in Figure S1; ’yes’ in columnplottedinfig2 indicates that the 

station was displayed in Figure 2; ’No/double’ means that another close by station in the 

area of interest is used; 

Additional Data table S2 (separate file) 

Stations where lockdown noise reduction was not observed. These 83 stations are 

also shown in Figure 1; 

Additional Data table S3 (separate file) 

Stations where data gaps, station hardware problems, or longer-term seasonal effects 

prohibited a conclusion on noise changes. These 69 stations are not plotted in Figure 1.  

 


