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Abstract. This paper casts the global registration of multiple 3D
point-sets into a low-rank and sparse decomposition problem. This neat
mathematical formulation caters for missing data, outliers and noise, and
it benefits from a wealth of available decomposition algorithms that can
be plugged-in. Experimental results show that this approach compares
favourably to the state of the art in terms of precision and speed, and it
outperforms all the analysed techniques as for robustness to outliers.
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1 Introduction

The goal of multiple point-set registration is to find the rigid transformations
that bring multiple (n ≥ 2) 3D point sets into alignment, where each rigid
transformation is represented by an element of the Special Euclidean Group
SE(3), namely the semi-direct product of the Special Orthogonal Group SO(3)
with R

3. This is a fundamental problem in the reconstruction of 3D models of
objects, covering a wide range of applications, including (but not limited to)
cultural heritage, engineering modelling and virtual reality.

If n = 2 then we are dealing with a pairwise (two point-sets) registration
problem. The gold standard in this context is the Iterative Closest Point (ICP)
Algorithm [1,2], which computes correspondences between the point sets given
an estimate for the rigid transformation, then updates the transformation based
on the current correspondences, and iterates through these steps until conver-
gence – to a local minimum – is reached. See [3] for an overview of several variants
of the ICP Algorithm.

If n > 2 then we are dealing with a multiple point-set registration problem,
which is more complex than the n = 2 case due to the high amount of parameters
that have to be estimated. Among the initial attempts to address this problem
are the sequential techniques introduced in [2,4], that repeatedly register a new
point set into a growing model, until all the sets are considered. This approach
however returns suboptimal solutions since it does not take into account all the
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available constraints, e.g . the constraint between the last and first point set is
not used if the sets are obtained using a turntable. Global methods, on the other
hand, consider simultaneously all the points sets. They are able to exploit the
redundancy in the constraints between pairs of point sets, to compensate and
distribute the error, thereby preventing drift in the solution. Global registration
can be solved in point space or in frame space. In the former case, all the rigid
transformations are computed by optimizing a cost function that depends on
the distance between corresponding points. In the latter case, the optimization
criterion is related to the internal consistency of the network of rigid transfor-
mations applied to the local coordinate frames. This instance is also known as
motion synchronization [5] or motion averaging [6].

Early point-space solutions include the methods presented in [7–10]. More
recently, [11] solves the problem on the manifold of rotations with Gauss-Newton
iterations and then computes translations through least-squares. Such approach
is improved in [12] by reducing computational time and it is embedded in a
Bayesian framework in [13], in order to take into account reliability of corre-
spondences. A similar formulation is adopted in [14] where the authors cast
the registration problem to a semidefinite program, proving conditions for exact
and stable recovery of rigid transformations. In [15] a robust solution is derived
by minimizing a cost function based on the ℓ1-norm. A generalization of the
ICP Algorithm to n > 2 is described in [16], which builds on the Levenberg-
Marquardt ICP formulation of [17], while in [18] multiple point-set registration
is solved by combining ICP and Generalized Procrustes Analysis [19]. A related
approach employs rank minimization for global registration of multiple depth
images [20].

Frame-space methods originate from the pioneering works of [21], that dis-
tributes the error along all cycles in a cycle basis, and [22], that casts the problem
as the optimization of an objective function in SE(3) where rotations are parame-
terized as unit quaternions. The authors of [23] represent rigid transformations
as dual quaternions, and propose a graph diffusion algorithm where each trans-
formation is updated in turn through linear or geodesic averaging. In [6,24] the
Lie-group structure of SE(3) is exploited and an iterative scheme is proposed
in which at each step the rigid transformations are updated by averaging two-
view transformations in the tangent space. In [5,25] motion synchronization is
formulated as a null-space problem.

At the border between frame-space and point-space methods is the formula-
tion in [26], where 3D points are used to compute a second-order approximation
of the cost function, but they are not involved in subsequent computations.

Among the aforementioned methods, [11–14,21] first recover the rotation
component of the rigid transformations and then compute translations, while
[6,15,16,18,20,22,23,25,26] and our approach compute rotations and transla-
tions simultaneously, as elements of SE(3).

In this paper we concentrate on frame-space methods, for they are faster
and less memory-demanding than point-space ones. It goes without saying that
any optimal formulation must include points in the cost function, in analogy
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to bundle adjustment in the context of structure from motion. Nevertheless,
frame-space approaches yield a fairly accurate registration.

Many frame-space methods are deceived by gross errors (outliers), caused by
failure of ICP to estimate the correct transformation between two point-sets. To
overcome this drawback, we propose a global frame-space approach to multiple
point-set registration which is robust to outliers.

We show that the registration problem can be cast to a low-rank and sparse

(LRS) matrix decomposition. Our proposal is a general framework, not a spe-
cific method, since – in principle – any LRS decomposition algorithm can be
plugged-in. However, in order to make our approach concrete, we analyse three
LRS algorithms, namely R-GoDec [27], Grasta [28] and L1-Alm [29], showing
that they can be profitably applied to address the registration problem. Exper-
imental results show that our approach compares favourably to the state of the
art as for precision and speed, and it outperforms all the analysed techniques
in terms of robustness to outliers. Failure cases appear when the percentage of
missing data is extremely high.

This paper builds on [27] and extends it in two respects. From the theoretical
point of view, our approach generalizes to SE(3) the original formulation for
SO(3). From the experimental point of view, we tackle the problem of multiple
point-set registration, while [27] concentrates on structure from motion.

The next section provides the background on LRS decomposition, Sect. 3
defines the multiple point-set registration problem, whereas Sect. 4 describes
how such a problem can be translated into a LRS decomposition of an incom-
plete matrix, corrupted by noise and outliers. Experiments on synthetic and real
dataset are reported in Sect. 5, and conclusions are drawn in Sect. 6.

2 Low-Rank and Sparse Decomposition

Low-rank and sparse (LRS) matrix decompositions have become interesting to
researchers due to their profitable application in different areas, such as image
analysis, pattern recognition, and graph clustering. A survey of such decompo-
sitions and a wide overview of available algorithms can be found in [30]. LRS
decompositions work by imposing constraints on the rank and sparsity of the
addends and have the following general form

F(X̂) = F(L) + S + N (1)

where X̂ is a known data matrix, L is an unknown low-rank matrix representing
some meaningful structure contained into the data, S is an unknown sparse
matrix representing outliers, N accounts for a diffuse noise and F is a linear
operator. The goal is to recover L (and possibly S) under conditions on S, N

and F to be further specified.
Examples of LRS decompositions are Robust Principal Component Analysis

(RPCA) [31] and Matrix Completion (MC) [32,33]. RPCA looks for the lowest-

rank matrix L and the sparsest matrix S such that a given data matrix X̂ can
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be decomposed as X̂ = L + S + N . Note that this is an instance of Eq. (1) with
F being the identity operator. MC is concerned with the problem of recover-
ing missing entries of an incomplete low-rank data matrix X̂. Entries of X̂ are
specified on a subset of indices Ω (a.k.a. sampling set), namely Ωij = 1 if X̂ij

is specified and Ωij = 0 otherwise. MC can be cast as an instance of Eq. (1)
if S = 0 and F is the projection onto the space of matrices that vanish out of
Ω, namely F(X) = PΩ(X) = X ◦ Ω, where ◦ is the Hadamard (or entry-wise)
product.

We briefly recall some of the available approaches to compute LRS decom-
positions in the general form (1) with S, N �= 0, L of fixed rank r, and F = PΩ .

The R-GoDec algorithm [27] is a modified version of GoDec [34], which
was originally conceived to solve RPCA or MC problems separately. R-GoDec

expresses the sparse term S as the sum of two terms S1 and S2 having comple-
mentary supports: S1 has support on Ω and represents outliers, while S2 has
support on ℧ (the complementary of Ω) and it is an approximation of −P℧(L),
i.e. it represents completion of missing entries. The associated problem is

min
L,S1,S2

1

2

∥∥∥PΩ(X̂) − L − S1 − S2

∥∥∥
2

F
+ λ ‖S1‖1

s.t. rank(L) ≤ r, supp(S1) ⊆ Ω, supp(S2) = ℧

(2)

which is solved using a block-coordinate minimization scheme that alternates the
update of L (with S1, S2 fixed), and S1, S2 (with L fixed). L is computed as the

the rank-r projection of PΩ(X̂) − S1 − S2 using Bilateral Random Projections

[34], S1 is computed via soft-thresholding [35] of PΩ(X̂ − L), and S2 is updated
as −P℧(L).

Another option is to express the LRS decomposition problem in terms of
subspace identification, as done in [28,29]. The goal of subspace identification
methods is to identify the column space of the unknown low-rank term L. Indeed,
since any matrix L of fixed rank r admits a factorization of the form L = UY T

where U and Y have r columns, the problem of recovering L can be translated
into recovering U and Y . Specifically, the Grasta algorithm [28] solves

min
S,U,Y

‖S‖1

s.t. PΩ(X̂) = PΩ(UY T ) + S
(3)

with U belonging to the Grasmannian manifold, i.e. the set of all r-dimensional
subspaces of a Euclidean space. Grasta considers one data vector x̂ at a time,
representing one column of X̂, and alternates between estimating U and a triple
of vectors (s, y, w) which represent respectively the sparse corruptions in x̂, the
weights for the fit to the subspace U , and the dual vector. For computing U ,
Grasta uses gradient descent on the Grasmannian with (s, y, w) fixed, while
for computing (s, y, w), it uses the Alternating Direction Method of Multipli-
ers (ADMM) [36]. The L1-Alm algorithm presented in [29] exploits a similar
approach and solves instead
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min
U,Y

∥∥∥PΩ(X̂ − UY T )
∥∥∥

1
+ λ

∥∥Y T
∥∥

∗

s.t. UT U = Ir

(4)

where ‖·‖∗ denotes the trace-norm of a matrix, i.e. the sum of its singular values.
The trace-norm regularization term is introduced to improve convergence. The
optimization problem is solved via the augmented Lagrange multiplier (ALM)
method [37]. At each iteration, the augmented Lagrange function with orthogo-
nal U is minimized via the Gauss-Seidel iteration, then the Lagrange multiplier
and the dual parameter are updated.

3 Problem Definition

Let P = {pk}m
k=1 be a set of 3D points representing a given object expressed

in an absolute (world) coordinate system. Let {P i}n
i=1 denote multiple views of

the object taken from different positions and viewing directions, where each 3D
point set P i = {pi

k}k∈Vi
refers to a subset Vi ⊆ {1, . . . , m} of the original m

points. Let Mi ∈ SE(3) denote the 3D displacement between the local reference
frame of view i and the world coordinate system

Mi =

(
Ri ti

0T 1

)
∈ SE(3) (5)

where Ri ∈ SO(3) represents the rotation component of the transformation,
and ti ∈ R

3 represents the translation component. In this paper Mi ∈ SE(3) is
referred to as the absolute motion of view i. Using this notation, the (homoge-
neous) coordinates of the k-th point can be expressed in the reference frame of
view i as pi

k = Mipk and the relation between the coordinates of pk in references
i and j is given by

pi
k = MiM

−1
j p

j
k (6)

assuming that k ∈ Vi ∩ Vj , where the index set Vi ∩ Vj defines corresponding
points between Pi and Pj .

The goal of multiple point-set registration is to estimate the absolute trans-
formations Mi ∈ SE(3) starting from the knowledge of the point sets {P i}n

i=1.
Since P can be recovered from pi

k = Mipk by applying the inverse of absolute
motions to each point, the absolute motions can be viewed as the transforma-
tions that bring multiple point sets into alignment. The index sets {Vi}

n
i=1 are in

general unknown, and therefore they have to be computed beforehand or during
the registration process.

The registration problem can be profitably formulated in frame space without
involving 3D points [21–25]. Let Mij ∈ SE(3) denote the rigid transformation
between the reference frame of view i and that of view j, which is referred to as
the relative motion of the pair (i, j). It follows from Eq. (6) that the following
condition holds

Mij = MiM
−1
j (7)
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which means that the registration problem can be reduced to finding the absolute
motions Mi ∈ SE(3) given measurements of their ratios. Such a problem is
known in the literature as motion synchronization [5] or motion averaging [6].

Let E ⊆ {1, . . . , n} × {1, . . . , n} denote the set of available pairs, which can
be viewed as the set of edges of a finite simple graph G = (V, E) with V =
{1, . . . , n}, referred to as the measurement graph. Obviously, it is possible to
recover the absolute motions – up to a global transformation – only if such a
graph is connected. If G is a tree then there is no counteraction of the errors in
the solution. However, as soon as redundant measures are considered (i.e. the
graph has at least one cycle), they are exploited by the synchronization process
to globally compensate the errors.

4 Proposed Approach

Let X denote the 4n × 4n block-matrix containing the relative motions, let M

denote the 4n × 4 block-matrix containing the absolute motions, and let M−♭

denote the 4 × 4n block-matrix containing the inverse of absolute motions,
namely

X =

⎛
⎜⎜⎝

I4 M12 . . . M1n

M21 I4 . . . M2n

. . . . . .

Mn1 Mn2 . . . I4

⎞
⎟⎟⎠ , M =

⎡
⎢⎢⎣

M1

M2

. . .

Mn

⎤
⎥⎥⎦ , M−♭ =

[
M−1

1 M−1
2 . . . M−1

n

]

(8)
where I4 denotes the 4×4 identity matrix. Using this notation, the compatibility
constraint (7) can be expressed in a compact form as X = MM−♭, which implies
that rank(X) = 4.

Let M̂ij ∈ SE(3) denote an estimate of the true relative motion Mij ∈ SE(3).
In the presence of noise the measured relative motions will not satisfy Eq. (7),

thus the goal is to average them so as to maximally satisfy M̂ij ≈ MiM
−1
j . A

possible approach consists in formulating the following optimization problem

min
Mi∈SE(3)

∑

(i,j)∈E

∥∥∥M̂ij − MiM
−1
j

∥∥∥
2

F
(9)

where the Frobenius norm || · ||F defines a left-invariant metric on SE(3).

Let X̂ denote the 4n × 4n block-matrix containing the measured relative
motions M̂ij ∈ SE(3), and let A be the adjacency matrix of the measurement
graph G = (V, E), i.e. Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. In practi-
cal scenarios the measurement graph is not complete, since a point set do not
overlap with all the others, thus X̂ has missing entries, which are represented
as zero blocks. In other words, the available relative information is represented
by PΩ(X̂), where the sampling set has a 4 × 4 block-structure: Ω = A ⊗ 14×4

(14×4 is a 4 × 4 matrix filled by ones, and ⊗ denotes the Kronecker product).
Using this notation, the minimization problem (9) can be expressed as
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min
X

∥∥∥PΩ(X̂ − X)
∥∥∥

2

F

s.t. X = MM−♭, M ∈ SE(3)n.

(10)

This formulation can successfully average noisy relative motions, but it is not
resistant to outliers. For this reason we consider the following problem

min
X,S

∥∥∥PΩ(X̂ − X) − S
∥∥∥

2

F

s.t. X = MM−♭, M ∈ SE(3)n, S is sparse in Ω

(11)

where the additional variable S represents outliers, which are sparse over the
measurement graph (by assumption).

If the rank relaxation is adopted, i.e. all the constraints except of the rank
property are ignored, then the following relaxed optimization problem is obtained

min
L,S

∥∥∥PΩ(X̂ − L) − S
∥∥∥

2

F

s.t. rank(L) ≤ 4, S is sparse in Ω

(12)

where L denotes a low-rank matrix which approximates the theoretical X defined
in (8). Note that if the optimal solution to (12) satisfies L = MM−♭ with
M ∈ SE(3)n, then it is the global minimizer of (11). Otherwise, the optimal L

only provides an estimate for the theoretical X, since it solves a relaxed version
of Problem (11). In particular, the 4 × 4 blocks of L are not constrained to
be Euclidean motions, thus they need to be projected onto SE(3). Specifically,
every fourth row is set equal to [0 0 0 1] and 3 × 3 rotation blocks are projected
onto SO(3) through Singular Value Decomposition. Any block-column of the
resulting matrix can be taken as an estimate of M , as we already know that the
solution is up to a global rigid transformation.

Note that Problem (12) is indeed a LRS decomposition problem, since it

is associated to the general formulation (1) with F = PΩ , namely PΩ(X̂) =
PΩ(L) + S + N , thus the absolute motions can be recovered by means of any
algorithm that computes such decomposition.

5 Experiments

We evaluated our approach on both simulated and real datasets analysing
resilience to noise, robustness to outliers, sensitivity to missing data and com-
putational cost. We considered three LRS decomposition algorithms, namely
R-GoDec [27], Grasta [28] and L1-Alm [29], showing that they can be suc-
cessfully applied to perform multiple point-set registration in a robust and effi-
cient manner. We compared such algorithms to other registration techniques
which work in frame space (i.e. not requiring point correspondences), namely the
methods developed by Sharp et al . [21], Torsello et al . (Diffusion) [23], Bernard
et al . (Null-space) [25] and Govindu [6]. The codes of Grasta, L1-Alm and
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Diffusion are available online, the one by Govindu has been provided by the
author, while in the other cases we used our implementation. All the simulations
were performed in Matlab on a dual-core computer with 1.3 GHz processor.

5.1 Simulated Data

We evaluated the aforementioned methods assuming that pairwise motions have
been computed beforehand, thus 3D points are not involved in these simula-
tions. Specifically, we generated a redundant set of relative motions (possibly
corrupted by noise and/or outliers) – simulating the output of a pairwise regis-
tration algorithm such as ICP – which were given as input to all the techniques,
and we evaluated the final estimates of absolute motions.

We considered n absolute motions in which rotations were sampled from
random Euler angles and translation coordinates follow a standard Gaussian
distribution. The measurement graph G = (V, E) is a random graph drawn
from the Erdős-Rényi model with parameters (n, p), i.e. given a vertex set
V = {1, 2, . . . , n} each edge (i, j) is in the set E with probability p ∈ [0, 1],
independently of all other edges. Thus (1 − p) controls the degree of sparsity of
the graph (p = 1 corresponds to the complete graph). The inlier pairwise motions

were corrupted by a multiplicative noise M̂ij = MijEij , with Eij ∈ SE(3) rep-
resenting a small perturbation of the identity matrix. The rotation component
of Eij has axis uniformly distributed over the unit sphere and angle following
a Gaussian distribution with zero mean and standard deviation σR ∈ [1◦, 10◦],
and the translation components were sampled from a Gaussian distribution with
zero mean and standard deviation σT ∈ [0.01, 0.1]. All the results were averaged
over 50 trials. In order to compare estimated and theoretical absolute motions
we computed the transformation that aligns them by applying single averaging
[38] for the rotation term and least-squares for the translation term. We used
the angular distance and Euclidean norm to measure the accuracy of estimated
rotations and translations respectively, where the angular (or geodesic) distance
between two rotations R, S ∈ SO(3) is the angle (in the angle-axis space) of the
rotation SRT which lies in the range [0, 180◦].

It is hard to evaluate the performances of a registration method as a whole,
since several parameters are involved, thus in the following simulations we let
one parameter vary at a time and keep the others fixed.

Noise. In this experiment we evaluate the effect of noise on relative motions in
the absence of outliers. We considered n = 100 absolute motions and p = 0.3,
which corresponds to about 70% of missing pairs. Results with higher values of p

correspond to better conditioned problems, with the same qualitative behaviour
as p = 0.3, and hence they are not reported. Figure 1 shows the mean errors
on absolute motions (rotation errors are measured in degrees while translation
errors are commensurate with the simulated data) obtained by all the analysed
techniques, as a function of the standard deviation of noise. The worst resilience
to noise is achieved by Sharp et al . while LRS decomposition techniques and
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Fig. 1. Mean errors on absolute motions as a function of σR and σT .
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Fig. 2. Mean errors on absolute motions as a function of q.

the remaining algorithms return good estimates of absolute motions. A possible
explanation of such behaviour is that in Sharp et al .’s method the error is distrib-
uted among the motions but it is not reduced. The best accuracy is achieved by
non robust methods: Diffusion, Null-space and Govindu’s. In general, robust
techniques are not optimal with respect to noise, since they trade robustness for
statistical efficiency.

Outliers. In this experiment we study the robustness to outliers of our app-
roach. Each edge (i, j) ∈ E was designated as an outlier with uniform probability
q ∈ [0, 1], independently of all other edges. Outlier edges were assigned random
elements of SE(3). We considered n = 100 absolute motions sampled as before,
we chose p = 0.3 to define the density of the measurement graph, and we intro-
duced a fixed level of noise on relative motions (σT = 0.05, σR = 5◦). The proba-
bility q that an edge is outlier ranges from 0.05 to 0.5, which correspond to about
5% and 50% of effective outliers. Figure 2 shows the mean errors on absolute
motions as a function of q obtained by our approach, Diffusion, Null-space

and Govindu’s. The errors obtained by Sharp et al . are not reported in Fig. 2 so
as to better visualize differences between the remaining algorithms (the method
by Sharp et al . yields an average rotation error of 20◦ for q = 0.05 and 100◦
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Fig. 3. Mean errors on absolute motions as a function of (1 − p), with q = 0 (top) and
q = 0.2 (bottom). In the left sub-figures, the average rotation errors of R-GoDec are
approximately 90◦ for (1 − p) = 0.9 and 120◦ for (1 − p) = 0.95.

for q = 0.5). Figure 2 confirms that Diffusion, Null-space and the method
by Govindu are not robust, and it clearly shows the resilience to outliers gained
by R-GoDec, Grasta and L1-Alm. In particular, the errors obtained by LRS
decomposition techniques remain almost unchanged until q = 0.4 for rotations
and q = 0.3 for translations.

Missing Data. In this experiment we study how missing data influence the
performances of our approach. We considered n = 100 absolute motions sampled
as before and we introduced a fixed level of noise on relative motions (σT =
0.05, σR = 5◦). The sparsity parameter (1 − p) ranges from 0.5 to 0.95, which
correspond to about 50% and 95% of missing pairs. Results with lower values
of (1 − p) yield the same behaviour as (1 − p) = 0.5, and hence they are not
reported. We considered both the ideal case where outliers are absent (q = 0)
and a more realistic situation in which a fixed percentage of outliers is introduced
(q = 0.2). Results are reported in Fig. 3, which shows the mean errors on absolute
motions as a function of the sparsity parameter (1 − p). The errors obtained
by Sharp et al . remain constant as (1 − p) increases, showing no sensitivity to
missing data. The same holds for the method by Govindu, Diffusion and Null-

space, if outliers are not present. As for our approach, Grasta and L1-Alm

can tolerate up to 90% of missing pairs in the case q = 0.2, whereas R-GoDec
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Fig. 4. Execution times (seconds) as a function of n (top) and p (bottom). The right
figures are a magnification of the left ones.

breaks down with 80% of missing pairs. If there are no outliers (q = 0), all the
LRS methods can tolerate an extra 5% of missing data.

Execution Time. In this experiment we assess the computational efficiency of
all the methods in two scenarios. First, we kept the density level of the mea-
surement graph fixed (p = 0.3) and let n vary between 30 and 300. Then, we
kept the number of absolute motions fixed (n = 100) and let p vary between
0.05 (about 95% of missing data) and 0.95 (about 5% of missing data). In
both cases we introduced a fixed level of noise and outliers on relative motions
(σT = 0.05, σR = 5◦, q = 0.2). Diffusion is implemented in C++ (by the
authors), while the remaining algorithms are implemented in Matlab. Results
are reported in Fig. 4, showing that the method by Sharp et al . is remarkably
slower than the other techniques. In particular, L1-Alm is comparable to Dif-

fusion and faster than Govindu’s, while both R-Godec and Grasta are slower
than Null-space but faster than the other methods. The bottom row in Fig. 4
shows that the execution time of matrix decomposition techniques and Null-

space do not change significantly when p varies, whereas the other techniques
require more time as the measurement graph gets denser.

The rundown of these tests is that, collectively, motion synchronization meth-
ods based on LRS decomposition qualify among the fastest solutions and provide



500 F. Arrigoni et al.

Table 1. Mean errors (rotations in degrees, translations in millimetres) on absolute
motions for the Stanford repository. The number of point sets and the percentage of
missing pairs are also reported.

R-GoDec Grasta L1-ALM Govindu Diffusion Sharp et al . Null-space

Dataset n % miss. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra. rot. tra.

Bunny 10 0 0.82 2.9 0.84 1.9 0.78 1.6 1.07 3.7 1.07 3.7 1.07 4.5 1.07 3.7
Buddha 15 0 0.85 0.3 0.79 0.4 0.94 0.4 1.28 0.4 1.28 0.4 2.22 0.6 1.27 0.4
Dragon 15 0 0.79 0.3 0.91 0.4 0.77 0.4 1.52 0.4 1.52 0.4 1.45 0.6 1.51 0.4

Table 2. Execution times (seconds) of motion synchronization. The number of point
sets and the percentage of missing pairs are also reported.

Dataset n % miss. R-GoDec Grasta L1-ALM Govindu Diffusion Sharp et al . Null-space

Gargoyle 27 40 0.05 0.47 0.15 0.13 0.35 1.94 0.03
Capital 100 71 0.67 1.62 1.66 0.98 2.53 25.27 0.09

a good trade-off between statistical efficiency and resilience to outliers. However,
they are more affected than the other methods by the sparsity of the graph.

5.2 Real Data

In this section we report the outcome of tests on real datasets of range images.
Relative motion estimates were produced thanks to the Matlab implementation
of ICP (pcregrigid). The measurements graph was defined by discarding all the
pairs with registration error higher than a threshold. This produced a redundant
set of relative motions which were compensated by solving a motion synchro-
nization problem, returning the transformations that align the original point
sets. These estimates could have been improved by alternating motion synchro-
nization and computing relative motions, as suggested in [23,24]; however, such
a refinement was not applied in these experiments, i.e. we performed motion
synchronization only once. Experimentally we observed that LRS decomposi-
tions perform better when translation components have values comparable to
rotations, namely in the range [−1, 1]. For this reason, before performing motion
synchronization, we divided all the relative translations by the maximum of the
translations norm (and eventually multiplied the absolute translations by such
a scale). This normalization also improves the results of the other algorithms.

From the Stanford 3D Scanning Repository [39] we used the Bunny, Happy
Buddha (standing) and Dragon (standing) datasets, which contain 10, 15 and 15
point sets, respectively. As for the initialization of the ICP algorithm, we per-
turbed the available ground-truth motions by a rotation with random axis and
angle uniformly distributed over [0, 2◦], similarly to the experiments carried out
in [24]. Since ground-truth motions are available for these datasets, we evaluated
quantitatively the results by reporting the mean errors in Table 1. Differences
in execution time are meaningless for such relatively small datasets and are not
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Table 3. Cross-sections of registered point-sets.

Dataset R-GoDec Grasta L1-ALM Govindu Diffusion Sharp et al . Null-space
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reported. The errors obtained by R-GoDec, Grasta and L1-Alm are always
lower than the other techniques, highlighting the benefit of robustness.

In another experiment we considered two datasets, named Gargoyle and
Capital, which contain 27 and 100 point sets respectively. Since there is no
information about the scans, we simply initialized the ICP algorithm with iden-
tity matrices. Execution times are reported in Table 2. They are referred to
the motion synchronization step, i.e. computing absolute motions from relative
motions, and they do not include the time for computing relative motions, which
is the same for all the techniques. R-GoDec is slower than Null-space but
faster than the other solutions, the method by Sharp et al . is the slowest tech-
nique, while Grasta and L1-Alm are faster than Diffusion but slower than
Null-space and Govindu’s method.

The different registration techniques can be appraised qualitatively from the
cross-sections of output 3D models reported Table 3, as it is customary in the reg-
istration literature. The cross-sections obtained by our approach are crisper than
the others, proving the effectiveness of LRS decomposition in handling measure-
ment errors in the context of multiple point-set registration. In particular, the
best visual accuracy is achieved by L1-Alm and Grasta, while R-GoDec get
slightly worse results, yet better than the remaining methods. There is no signifi-
cant difference between the cross-sections obtained by Diffusion, Null-space

and Govindu’s, while the misalignment produced by Sharp et al . is evident,
especially for the Gargoyle dataset. Figure 5 shows the 3D models produced by
L1-Alm with different colours for each point cloud.

In summary, these experiments with real data confirms the conclusions drawn
from the simulations.
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(a) Bunny (b) Buddha (c) Dragon (d) Gargoyle (e) Capital

Fig. 5. 3D models obtained with L1-Alm. Different point sets are colour coded. (Color
figure online)

6 Conclusions

For the first time in the literature we formulated frame-space registration as a
low-rank and sparse decomposition problem that neatly caters for missing-data,
outliers and noise, and it benefits from a wealth of available decomposition algo-
rithms that can be seamlessly used as alternatives. Experimental results show
that this approach is efficient and provides a good trade-off between statistical
efficiency and resilience to outliers. However, it is more affected than the other
methods by the sparsity of the measurement graph. It must be said, though,
that the goal of synchronization is to exploit redundancy: if the measures are
barely sufficient the problem looses significance.

Acknowledgements. Thanks to Massimiliano Corsini (ISTI-CNR) for providing the
Gargoyle and Capital datasets, and to Avishek Chatterjee and Venu Madhav Govindu
for providing the Matlab implementation of [6].
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