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Abstract
We propose a novel algorithm to register multiple 3D point sets within a common reference frame
using an manifold optimization approach. The point sets are obtained with multiple laser scanners
or a mobile scanner. Unlike most prior algorithms, our approach performs an explicit optimization
on the manifold of rotations, allowing us to formulate the registration problem as an unconstrained
minimization on a constrained manifold. This approach exploits the Lie group structure of SO3 and
the simple representation of its associated Lie algebra so3 in terms of R

3.
Our contributions are threefold. We present a new analytic method based on singular value decom-
positions that yields a closed-form solution for simultaneous multiview registration in the noise-free
scenario. Secondly, we use this method to derive a good initial estimate of a solution in the noise-
free case. This initialization step may be of use in any general iterative scheme. Finally, we present
an iterative scheme based on Newton’s method on SO3 that has locally quadratic convergence. We
demonstrate the efficacy on our scheme on scan data taken both from the Digital Michelangelo project
and from scans extracted from models, and compare it to some of the other well known schemes for
multiview registration. In all cases, our algorithm converges much faster than the other approaches,
(in some cases orders of magnitude faster), and generates consistently higher quality registrations.

1. Introduction

Constructing a 3D computer model of a real object
from 3D surface measurement data has various appli-
cations in computer graphics, virtual reality, computer
vision and reverse engineering. To construct such a
model, a single view of the object is often insufficient
due to self occlusion, the presence of shadows and lim-
itations of the field of view of the 3D scanner. Mul-
tiple partial views of the object from different view-
points are therefore needed to describe the entire ob-
ject. Typically the views are obtained from multiple
scanners or from a single scanner stationed at differ-
ent locations and orientation, or even a fixed scanner
taking time-sampled images of an object on a moving
turntable. The images are often simplified as a set of
features such as points and the relative position and
orientation (pose) between views are only known im-
precisely (if at all). Thus, these partially overlapping
views need to be registered within a common reference
frame to determine the unknown relative pose.

Two-view (pairwise) registration is a well studied

problem in the literature. It is known that a closed-
form solution can be obtained in this case; this was
shown by Faugeras and Herbert [FH86], Horn [Hor87],
and Arun et al. [AHB87]. An overview of these tech-
niques can be found in [Kan94] and a comparison of
these methods has been presented in [LEF95].

Multiview registration is a more difficult problem.
There are two strategies towards solving the problem,
local (sequential) registration and global (simultane-
ous) registration. The sequential registration approach
(of which ICP [BM92] is the most well-known) involves
the alignment of two overlapping views at a time fol-
lowed by an integration step to ensure all views are
combined. This widely used approach does not give
an optimal solution because errors can accumulate and
propagate, as other researchers have pointed out. On
the other hand, global registration attempts to aligns
all scans at the same time by distributing the regis-
tration error evenly over all overlapping views.

The particular problem of multiview registration is
that the function to be minimized is a nonconvex func-
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tion of a set of rotations (translations can usually be
eliminated, as we shall see). Any algorithm that mini-
mizes this function must also maintain the constraint
that the rotations remain so during the course of an
iterative procedure†. Thus, standard optimization ap-
proaches either use Lagrange constraints or have to
perform projection steps after each iteration to ensure
that this (nonlinear) constraint is maintained.

A different approach that has been considered is to
perform the minimization directly on the constraint
manifold. R

n is a manifold, albeit of very special type,
and by translating the usual notions of derivatives
and tangents in their differential-geometric generaliza-
tions, it is conceivable that standard numerical meth-
ods like Newton/Gauss iterations and conjugate gradi-
ents can be translated into their manifold-based ana-
logues. This area has received considerable attention
over the past few decades. Much work has gone into
both theoretical and practical approaches to manifold-
based optimization, and although a detailed review
of the literature is beyond the scope of this paper, a
good review can be found in the work by Edelman,
Arias and Smith [EAS99] on implementing Newton’s
method and conjugate gradients on the Grassman and
Stiefel manifolds.

In graphics, vision, and robotics, the “natural” con-
straint manifolds arise from transformations groups
like SO3, SE3 and the like. The group structure al-
lows us to view these manifolds as Lie groups, with
associated Lie algebras. For SO3 in particular, many
of the relevant formulae (the exponential map, the
logarithmic map, geodesic curves) are easy to write
down, making this approach very tractable both math-
ematically and computationally. There are now sev-
eral examples of the use of Lie group methods in ar-
eas like pose estimation [LM04, Gov04], path plan-
ning [Agr05], and animation [Ale02].

1.1. Our Work

In this paper, we consider the simultaneous registra-
tion of multiview 3D point sets with known correspon-
dences between overlapping scans.

We address the global registration task as an uncon-
strained optimization problem on a constraint mani-
fold. Our novel algorithm involves iterative cost func-
tion reduction on the smooth manifold formed by the
N -fold product of special orthogonal groups. The opti-
mization is based on locally quadratically convergent
Newton-type iterations on this constraint manifold.

† Other approaches have been proposed; Pottmannet
al. [PHYH04] suggest using the underlying affine space,
applying the rigidity constraints only towards the end.

The proposed algorithm is fast, converges at a local
quadratic rate, computation per iteration is low since
the iteration cost is independent of the number of data
points in each view.

In addition, we present a new closed form solution
based on singular value decomposition for simultane-
ous registration of multiple point sets. In the noise
free case, it gives correct registrations in a single step.
In the presence of noise an additional projection step
to the constraint manifold is required. This analytical
solution is a useful initial estimate for any iterative
algorithm.

Paper Outline We start with a review of prior art
in the area in Section 2. After a high level overview
of our method (Section 3, we formulate and simplify
the problem in Sections 5 and 6, following which we
describe our analytic noise-free solution and our noisy
initialization steps (Section 7. Following some mathe-
matical background (Section 8, we present our itera-
tive scheme in Sections 9 and 10. Experimental evalu-
ation follows in Section 11. In Section II, global mul-
tiview registration of multiple 3D point sets is for-
mulated as an unconstrained optimization-on-a- con-
straint manifold. In Section III, the derivation of the
Hessian and the gradient are presented. Section IV il-
lustrates the proposed algorithm in details. In Section
V, we propose a novel analytic solution based on sin-
gular value decomposition that gives an exact solution
in the noise free case in a single step and can be used
as a good initial estimate for any iterative algorithm.
Outline of algorithm can be found in Section VI and
its convergence properties are analyzed in Section VII.
This is followed by simulation results and conclusion.
In the Appendix, we provide rigorous mathematical
proof of the local quadratic convergence of the algo-
rithm.

2. Related Work

The first work on pairwise scan alignment was done
by Faugeras and Herbert [FH86], Horn [Hor87],
and Arunet al. [AHB87]. In all cases, the au-
thors obtained simple closed form expression for the
single transformation minimizing the least squares
error between the registered scans. Such pair-
wise schemes were used as modules in general
multiview approaches like ICP [BM92] and the
work of Chen and Medioni [CM92]. Simultane-
ous multiview registration schemes were considered
by numerous researchers [MY95],[CM92],[BSGL96],
[EFF98],[Pul99],[SLW04],[SBB03]; among the more
recent are papers by Benjemaa and Schmitt [BS98]
and Williams and Bennamoun [WB01], the former
group formulating the optimization in quaternion
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space, and the latter deriving a similar approach us-
ing matrix representations. A comparative study of
simultaneous multiview registration schemes was per-
formed by Cunnington and Stoddart [CS99]; however
this comparison predates the work of Williams and
Bennamoun.

Registration of corresponding points is not the only
approach to solving multiview registration in general.
ICP itself uses other heuristics to align surfaces, and in
many cases matching a point to a surface can provide
a better fit than simple point-point matching [RL01]
Due to space limitations, we will not discuss these ap-
proaches further.

The most directly relevant prior art is a paper by
Adler et al. [ADM∗02] that considers the problem
of spine realignment. There, the problem is to de-
termine correct poses for individual vertebrae on the
spinal cord such that misalignment between adjacent
vertebrae is minimized and a balance criterion (ex-
pressed as an affine condition over the poses) is main-
tained. They demonstrate that a good solution to this
problem closely resembles a healthy spinal alignment.
Their approach, like ours, is to view the problem as
a minimization over a product manifold of SO3, and
use a Newton-type method to solve it. The specifics
of their approach are different in that they derive an
iterative scheme from first principles by using the co-
variant derivative ∇X on the manifold; our approach
uses the Lie-algebraic representation of the tangent
space to yield an more direct approach.

3. Overview and Intuition

To help explain our algorithms, we present a brief
overview of how to perform Newton-type methods on
manifolds. This is intended to capture the intuition
behind our methods and is not intended to be mathe-
matically rigorous. A reader familiar with Lie groups
and basic differential geometry may go directly to the
algorithm description.

A traditional unconstrained or constrained opti-
mization methods performs searches in R

N . Directions
of motion are computed using Newton’s method (or
other approaches) and a small step is made in this
direction. The standard iterative step is of the form
xk+1 = xk + aωk, where xk is the kth iterate, a is a
scalar, and ωk is a descent direction. The descent direc-
tions lie in the tangent space of R

N , which is R
N itself,

a crucial fact that allows us to combine the terms xk

and ωk.

When we move to a general manifold, almost ev-
ery aspect of the above iteration needs to be reinter-
preted. Firstly, the descent direction ωk lies in the tan-
gent space at xk, which is in general different to the

tangent space at any other point, and is different in
general from the manifold itself. Thus, some mapping
is needed to pull back the tangent to the manifold.
Secondly, the operator + is specific to R

N as a group
operator that takes two elements of a group and maps
to a third element.

For a Lie group, the tangent space at a point can
be expressed in terms of the associated Lie algebra.
For SO3, the associated Lie algebra so3 is the space
of three dimensional skew-symmetric matrices. Thus
the descent direction can be represented by a skew-
symmetric matrix. The pull back operator is called
the exponential map. For matrices, it is in fact the
function eA (see Section 4 for the definition). The
operator + is replaced by the group operator ◦ of
the Lie group (which for SO3 is matrix multiplica-
tion). What we then obtain is an iteration of the form
Rk+1 = Rk ◦ eaA, where once again, a is a scalar. We
will additionally exploit the isomorphism of so3 with
R

3, allowing us to parametrize the matrix A by coor-
dinates in R

3.

4. Preliminaries

We introduce some common matrix operators that we
will use in subsequent sections. If M is an n × k ma-
trix, then vec(M) is a nk×1 vector formed by writing
down the columns of M one at a time. The Kronecker
product or tensor product A ⊗ B of two matrices A
and B is the matrix formed by replacing each element
aij of A by the matrix aijB. This is different from the
direct sum ⊕ of matrices, which is equal to a block
diagonal matrix with the individual matrices as the
diagonal blocks. Let tr(A) =

P
i aii denote the trace

of a square matrix A. The following identities are well-
known: tr(AB) = tr(BA) if A and B are both square,
(X⊗Y )> = X>⊗Y >, (X⊗Y )−1 = X−1⊗Y −1 when
the inverses exist, (X⊗Y )(A⊗B) = (XA⊗Y B), and
vec(XY Z) = (Z> ⊗ X) vec(Y ). A useful fact is that
tr(X>Y ) = tr(XY >) = vec>(x) vec(Y ), which im-
plies that for vectors u, v, the dot product u · v = u>v
can be written as u · v = tr(uv>). The exponential eA

of a matrix A is defined as eA =
P

i
Ai

i!
.

5. The Problem Formulation

Given possibly noisy surface measurements from mul-
tiple 3D images and point correspondences among
overlapped images, the registration process is to find
the rigid body transformations between each image
coordinate frame in order to align sets of surface mea-
surements into a reference frame.
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5.1. 3D Object Points and Multiple Views

Consider a 3D object as a set of 3D points W :=
{wk ∈ R

3 | k = 1, 2, · · · , n} in a ‘world’ reference
frame (Fig. 1(a)). Throughout the paper we indicate
the kth point in a set by a superscript k.

Now consider multiple views of the object, each
view being from a different vantage point and view-
ing direction and each viewing being of possibly
only a subset of the n 3D points. For N views, let
us denote the relative rotations and translations as
(R1, t1), · · · , (RN , tN ), that is, relative to the ‘world’
reference frame, where Ri is a 3 × 3 rotation matrix,
satisfying R>

i Ri = I3, det(Ri) = +1, and ti ∈ R
3 is a

translation vector.

The ith view is limited to ni points Wi = {wk
i ∈

R
3 | k = 1, 2, · · · , ni} ⊂W and is denoted Vi = {vk

i ∈
R

3 | k = 1, 2, · · · , ni} and consists of the images of
the ni points in Wi with relative rotation matrices
and translation vectors given by (Ri, ti). Thus in the
noise free case,

wk
i = Riv

k
i + ti, k = 1, 2, · · · , ni. (1)

Let Wij = Wi∩Wj be the set of nij points in Wi for
which there are corresponding points in Wj , for i, j =
1, · · · , N . That is, Wij = Wji consists of nij = nji

points wk
ij = wk

ji ∈ R
3, k = 1, · · · , nij . In view Vi the

set of images of these points is denoted Vij := {vk
ij ∈

R
3 | k = 1, 2, · · · , nij} ⊂ Vi and of course for view Vj it

is denoted Vji := {vk
ji ∈ R

3 | k = 1, 2, · · · , nij} ⊂ Vj .
In the noise free case, it is immediate that

wk
ij = Riv

k
ij + ti = Rjv

k
ji + tj

∀ i, j = 1, 2, · · · , N, k = 1, 2, · · · , nij ,
(2)

5.2. Registration Error Cost Function

When there is measurement noise, it makes sense to
work with a cost functions that penalizes the error
(Riv

k
ij + ti) − (Rjv

k
ji + tj) for all i, j = 1, 2, · · · , N

and k = 1, 2, · · · , nij . Trivially the error is zero for
i = j. The cost index for all the registrations which
first comes to mind is given by the sum of the squared
Euclidean distances between the corresponding points
in all overlaps,

g(R, T ) =

NX

i=1

NX

j=i+1

nijX

k=1

‖(Riv
k
ij + ti)− (Rjv

k
ji + tj)‖

2,

=
NX

i=1

NX

j=i+1

nijX

k=1

(‖Riv
k
ij −Rjv

k
ji‖

2

+ 2(ti − tj)
>(Riv

k
ij −Rjv

k
ji) + ‖ti − tj‖

2).

(3)

6. A More Compact Reformulation

Let ei denote the ith column of the N × N identity
matrix IN and let eij := ei − ej . Let

R :=
ˆ
R1 R2 · · · RN

˜
∈ R

3×3N (4)

and

T :=
ˆ
t1 t2 · · · tN

˜
∈ R

3×N (5)

then we have

Ri = R(e>i ⊗ I3), ti = T ei, ti − tj = T eij . (6)

Let ak
ij := (ei ⊗ I3)v

k
ij − (ej ⊗ I3)v

k
ji. Substituting the

value of Ri from Eq.(6),

Riv
k
ij −Rjv

k
ji = Rak

ij

and thus

‖Riv
k
ij −Rjv

k
ji‖

2 = Rak
ij · Rak

ij

Similarly substituting the value of ti, we can rewrite
the inner expression of Eq.(3) as

Rak
ij · Rak

ij + 2T eij · Rak
ij + T eij · T eij

Let
»

A B

B> C

–
=

NX

i=1

NX

j=i+1

nijX

k=1

»
ak

ij

eij

– h
ak>

ij e>ij

i
≥ 0 (7)

Using the fact that u · v = tr(uv>), we can now
rewrite Eq.(3) as

g(R, T ) = tr(RAR> + 2RBT > + T CT >)

= tr

„ˆ
R T

˜ »
A B

B> C

– »
R>

T >

–«
≥ 0,

(8)

or equivalently, as

g(R,T ) = tr(RAR>) + 2 vec>(T ) vec(RB)

+ vec>(T )(C ⊗ I3) vec(T ),
(9)

since tr(XY >) = vec>(X) vec(Y ).

6.1. Eliminating T

Equation (9) is a quadratic function of vec(T ). This
function is convex (and thus has a unique minimum)
iff C ⊗ I3 is positive definite. An element cii of C isP

k 6=i nik and cij = −nij for j 6= i. Unfortunately,
this implies that C is singular, since C1 (where 1 is
the all-ones vector) vanishes.

This is a consequence of the fact that we can only
recover relative transformations from our input, not
absolute transformations. We can fix (say) the first
reference frame (Ri, ti) = (I3,0), where 0 is the zero
vector, and eliminate the first row and column from all
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the matrices. We will abuse notation by continuing to
use the same variables for R, T cal and other matrices.

Eliminating the first row and column from C leaves
a matrix that is symmetric and strictly diagonally
dominant i.e., each diagonal element is in absolute
value strictly larger than the sum of the absolute val-
ues of off-diagonal entries in that row. It is a ba-
sic property that such matrices are positive definite,
which consequently implies that C⊗I3 is positive defi-
nite, and thus g(R, T ) has a unique minimum for fixed
R and varying T . The minimizing value of T is then

vec(T ∗(R)) = −(C−1 ⊗ I3) vec(RB) = −vec(RBC−1)

T ∗(R) = −RBC−1. (10)

Substituting T ∗(R) from Eq.(10) into (8) leads to
a registration error cost function depending only on
rotations,

f(R) := g(R, T (R)) = tr(RMR>)

= vec>(R>)(I3 ⊗M) vec(R>)

(11)

where M := A−BC−1B>.

7. Initialization

Here we present a new closed form solution based on
singular value decomposition that simultaneously reg-
isters all range images which is used as the initial guess
for the proposed iterative algorithm of the previous
section. In the noise free case, it gives optimal and
thus exact rotation matrices in a single step. In the
presence of noise, this step leads to an ‘optimal’ ma-
trix R ∈ R

3×3N but such that Ri /∈ SO3 for some i
typically. Thus, an additional projection step to the
manifold is required.

7.1. Noise Free Solution

In the noise free case, for R ∈ SON
3 , the optimal value

of the cost function (11) is zero, as

vec>(R>) vec(MR>) = 0⇒ vec(MR>) = 0

⇒ MR> = 0.
(12)

SinceM is symmetric, a singular value decomposition
gives

M =UΣU> =
ˆ
Ua Ub

˜ »
Σa 0
0 0

– »
U>

a

U>
b

–

⇒MUb = 0.

(13)

To obtain R such that R1 = I3, let bU :=
ˆ
I3 0

˜
Ub,

then the closed form solution is

R = bU−>U>
b . (14)

7.2. Initialization in Noisy Case

In the presence of noise, the optimal cost function is
no longer equal to zero. In this case, Ub is chosen to
be the set of right singular vectors associated with
3 least singular values of M, which may not be zero.
These singular vectors might not be on SON

3 . Thus, an
additional projection step is required. Denoting Gi :=
bU−>Ub(ei ⊗ I3), we have

Ropt
i = arg min

Ri∈SO3

‖Ri −Gi‖ = arg max
Ri∈SO3

tr(R>
i Gi).

(15)
By applying a singular value decomposition on Gi, we
obtain

Gi = WΛZ>, Ropt
i = W

»
I2 0

0 det(WZ>)

–
Z>,

(16)
where det(Ropt

i ) = +1.

8. The Product Manifold of SO3

Here we review the geometry of the special orthogonal
group and its product manifold. Let SO3 denote the
group of 3 × 3 orthogonal matrices with determinant
+1, then Ri ∈ SO3 for i = 1, · · · , N .

Definition 8.1 (Lie Group) A Lie group is a differ-
ential manifold G equipped with a product · : G×G →
G that satisfies the group axioms of associativity,
identity, and has an inverse p−1. Further, the maps
(p, r) 7→ p · r, p 7→ p−1 are smooth functions.

Definition 8.2 (Lie Algebra) A Lie algebra g is a
linear space V equipped with a Lie bracket, a bilinear
skew-symmetric mapping

[·, ·] : V × V → V

that obeys the properties

Skew Symmetry. [F, G] = −[G, F ]
Scalar Multipliers, [αF, G] = α[F, G] ∀α ∈ R

Bilinearity. [F + G, H] = [F, H] + [G, H]
Jacobi’s identity. [F, [G, H]] + [G, [H, F ]] +

[H, [F, G]] = 0

Avector field on a manifold G is a function that
maps a point p on G to an element of the tangent
space Tp(G). A left-invariant vector field X is a vec-
tor field such that for all g ∈ G, XLg = LgX, where
X is viewed as a differential operator and Lg[f ](x) =
f(g · x). The vector space of all left-invariant vector
fields over a Lie group G is a Lie algebra with the
operator [X, Y ] = XY − Y X, and is said to be the
associated Lie algebra g.

SO3 is a Lie group with the group operator being
matrix multiplication. Its associated Lie algebra so3 is
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the set of 3× 3 skew symmetric matrices of the form,

Ω =

2
4

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

3
5 . (17)

There is a well known isomorphism from the Lie al-
gebra (R3,×) to the Lie algebra (so3, [., .]), where ×
denotes the cross product and [., .] denotes the ma-
trix commutator. This allows one to identify so3 with
R

3 using the mapping in (17), which maps a vector
ω =

ˆ
ωx ωy ωz

˜
∈ R

3 to a matrix Ω ∈ so3. Denot-
ing

Qx :=

2
4
0 0 0
0 0 −1
0 1 0

3
5 , Qy :=

2
4

0 0 1
0 0 0
−1 0 0

3
5 and

Qz :=

2
4
0 −1 0
1 0 0
0 0 0

3
5

(18)

note that

Ω = Ω(ω) = Qxωx + Qyωy + Qzωz. (19)

An identity that we will make use of later is:vec(Ω>) =
Qω. In this paper we will consider the N-fold product
manifold of SO3 which is a smooth manifold of dimen-
sion 3N , given by

SON
3 =

N timesz }| {
SO3 × · · · × SO3 . (20)

8.1. Tangent Space of SON
3

First recall that the tangent space of SO3 at Ri is
given as TRi

SO3 = {RiΩi | Ωi ∈ so3} and the affine
tangent space is T aff

Ri
SO3 = {Ri + RiΩi | Ωi ∈ so3}.

Define

eΩ := Ω1 ⊕ Ω2 ⊕ · · · ⊕ ΩN , Ωi ∈ so3. (21)

Due to isomorphism, the tangent space of SON
3 at

R = [R1 R2 · · · RN ] ∈ SON
3 can be identified

as, TRSON
3 = ReΩ and the affine tangent space is

T aff
R SON

3 = R +ReΩ.

8.2. Local Parameterization of SON
3

LetN (0) ⊂ R
3 denotes a sufficiently small open neigh-

bourhood of the origin in R
3, and let Ri ∈ SO3. Then

the exponential mapping

µ : N (0) ⊂ R
3 → SO3, ωi 7→ Rie

Ωi(ωi), (22)

is a local diffeomorphism from N (0) onto a neighbour-
hood of Ri in SO3. Due to isomorphism, the product

manifold SON
3 at R ∈ SON

3 can be locally parameter-
ized by

ϕ :N (0)× · · · × N (0) ⊂ R
3N → SON

3 ,

ω =

2
6664

ω1

ω2

...
ωN

3
7775 7→ R

“
eΩ(ω1) ⊕ eΩ(ω2) ⊕ · · · ⊕ eΩ(ωN )

”

= Re
eΩ(ω) (23)

9. Constructing A Local Approximation

We are now ready to present our algorithm. Firstly, we
construct a local approximation of f , using a second
order Taylor expansion. Instead of differentiating f ,
we will use the local parametrization of SO3 described
earlier, performing the approximation on the function
f ◦ϕ, whose domain is R

3N . Intuitively, the use of the
local parametrization ϕ ensures that we always stay
on the manifold.

The second order Taylor approximation of f ◦ ϕ is
given by the function j

(2)
0 (f ◦ ϕ) : R

3N → R,

ω 7→

„
(f ◦ ϕ)(tω) +

d

dt
(f ◦ ϕ)(tω)

+
1

2

d2

dt2
(f ◦ ϕ)(tω)

«˛̨
˛̨
t=0

. (24)

As with a univariate Taylor expansion, the above
expression can be written in the form (f ◦ ϕ)(tω) +
ω>∇+ 1

2
ω>Hω, where ∇ is the gradient and H is the

Hessian of the function f ◦ ϕ.

The first term in (9) is (f◦ϕ)(tω)|t=0 = tr(RMR>).
The second term is

d

dt
(f ◦ ϕ)(tω)

˛̨
˛̨
t=0

= 2 tr(ReΩMR>)

= 2ω>∇(f ◦ ϕ)(0),

(25)

Recall that tr(ReΩMR>) can be written as

vec>(eΩR>) vec(MR>).

vec>(eΩR>) = [vec(eΩR>)]>

= [vec(I3N
eΩR>)]>

= [(R ⊗ I3N ) vec(eΩ)]> (26)

Let eQ := Qe1
⊕Qe2

⊕· · ·⊕QeN
, Qei

:=

2
4

ei ⊗Qx

ei ⊗Qy

ei ⊗Qz

3
5.

Then, using (18), we have vec(eΩ) = eQω, and then (26)
can be written as

vec>(eΩR>) = ω>J
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where J := (R⊗ I3N ) eQ. Substituting back into (25),

∇(f ◦ ϕ)(0) = J> vec(MR>) (27)

Finaly, the quadratic term in (9) consists of a sum
of two terms. The first term is given as

tr(ReΩMeΩ>R>) = ω> bH(f◦ϕ)(0)ω, (28)

and the second quadratic term is

tr(ReΩ2MR>) = vec>(eΩ>) vec(MR>ReΩ)

= ω> eH(f◦ϕ)(0)ω
(29)

By applying similar methods as above, we obtain the
Hessian of f ◦ ϕ evaluated at zero:

H(f◦µ)(0) = bH(f◦µ)(0) + eH(f◦µ)(0), (30)

where

bH(f◦ϕ)(0) = J>(I3 ⊗M)J � 0 (31)

eHf◦ϕ)(0) = − eQ>(I3N ⊗MR
>R) eQ. (32)

Note that H is a sum of the positive semidefinite
term bH and the term eH. Since eH is nonzero, we cannot
guarantee that f has a global minimum. However, the
fact that we can decompose H as a sum of a positive
definite term and another term will prove to be useful
in the iterative algorithm we present next.

We note that eH vanishes when there are only two
views, illustrating the known fact that the two-view
registration problem can be solved optimally.

10. The Algorithm

The proposed algorithm consists of the iteration,

s = π2 ◦ π1 : SON
3 → SON

3 , (33)

where π1 maps a point R on the product manifold
SON

3 to an element in the affine tangent space that
minimizes j

(2)
0 (f◦ϕ)(0) and π2 maps that element back

to SON
3 by means of the parametrization ϕ. The map-

ping π1 is a standard iterative scheme that uses a mod-
ified Newton method to determine a descent direction
and a line search to move along this direction. In what
follows, we describe this approach in brief; the reader
is referred to the text by Nocedal and Wright [NW99]
for more details.

10.1. Optimization in Local Parameter Space

Optimization in the local parameter space consists of
two steps. First we calculate a suitable descent direc-
tion, and then we search for a step length that en-
sures reduction in cost function. These two steps are
described by the mapping

π1 = πb
1 ◦ πa

1 : SON
3 → R

3N×3N . (34)

In the first step, πa
1 is used to obtain a descent direc-

tion,

πa
1 : SON

3 → R
3N×3N , R 7→ R+ReΩ(ωopt),

where ωopt is given by the Newton direction

ωopt(ϕ(ω)) = −H−1
(f◦ϕ)(ω)∇(f ◦ ϕ)(ω), (35)

or a Gauss direction

ωopt(ϕ(ω)) = − bH−1
(f◦ϕ)(ω)∇(f ◦ ϕ)(ω). (36)

Once an optimal direction is computed, an approxi-
mate one dimensional line search is carried out in this
direction, denoted by the mapping πb

1. We proceed
with a search that ensures that the cost function is re-
duced at every step. We use backtracking line search
([NW99]) for this purpose. Since we are using a de-
scent direction, choosing a sufficiently small step size
will ensure that the cost function goes downhill. Back-
tracking line search first tries a step size of 1, and if
this is unacceptable, it reduces the step size accord-
ing to a specific formula ([NW99]), until an acceptable
step length is found. Thus,

πb
1 : R

3N×3N → R
3N×3N ,

R+ReΩ(ωopt) 7→ R+ReΩ(λoptωopt) (37)

where λopt is the step length that reduces the cost
function in direction ωopt, and is found using the sim-
ple backtracking line search.

10.2. Projecting back via parametrization

Once the descent direction and downhill step size is
obtained, we map the resulting point back to the man-
ifold via the parametrization π2 : R

3N×3N → SON
3 :

R+ eΩ(λoptωopt) 7→ Re
eΩ(λoptωopt)

= R
“
e(Ω1(λoptω

opt
1

)) ⊕ · · · ⊕ eΩN (λoptω
opt
N

)
”

(38)

since ωopt =
h
ωopt>

1 · · · ωopt>

N

i>

.

We summarize the algorithm in Algorithm 10.1:

Theorem 10.1 Consider the iteration Rk+1 = s(Rk)
defined by a single step of Algorithm 10.1 and denote
R∗ = ϕ(0) as belonging to the set of local minima of

j
(2)
0 (f ◦ ϕ)(ω). Further assume that R∗ is an isolated

minimum in that H−1
(f◦ϕ)(0)

exists. Then s converges
locally quadratically to R∗.

We omit a detailed proof. The reader may refer to
Lee’s thesis ([Lee05]) for more details.

Implementation Notes We use a simple eigenvalue
computation to determine whether the Hessian H is
positive definite. This is not the most efficient ap-
proach; other, more sophisticated numerical methods
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Algorithm 10.1 Iterative Algorithm

Initialize R = R0 = [R1 R2 · · · RN ] ∈ SON
3 using

the initialization procedure described in Section 7.2
repeat
{/* Step 1: Carry out optimization */}
Compute ∇(f ◦ϕ)(0), H(f◦ϕ)(0) via (27), (30) re-
spectively.
if H(f◦ϕ)(0) � 0 then

ωopt = H−1
(f◦ϕ)(0)

∇(f ◦ ϕ)(0) {Newton step}
else

ωopt = bH−1
(f◦ϕ)(0)∇(f ◦ ϕ)(0) {Gauss step}

end if
Compute optimum step size λopt in direction ωopt.
Set R′ ← πb

1(Rk) (37)

{/* Step 2: Map back to manifold */}
Rk+1 ← π2(R

′) (38)
until ‖∇(f ◦ ϕ)(0)‖ > ε

can simplify this step, and even avoid computing the
Hessian directly. We defer a detailed implementation
study to an extended version of this paper. To reduce
computational effort per iteration of the algorithm,
the sparse matrix J (27) that we use for Hessian and
gradient computation can be manipulated further as
follows. Recalling Ω from (17),

J =
ˆ
(R1 ⊗ I3N )Qe1

(R2 ⊗ I3N )Qe2
· · · (RN ⊗ I3N )QeN

˜

=

2
4
Ω(ē>1 R1)⊕ Ω(ē>1 R2)⊕ · · · ⊕ Ω(ē>1 RN )
Ω(ē>2 R1)⊕ Ω(ē>2 R2)⊕ · · · ⊕ Ω(ē>2 RN )

Ω(ē>3 R1)⊕ Ω(ē>3 R2)⊕ · · · ⊕ Ω(ē>3 RN )

3
5 .

(39)

In general, determining a suitable modification to a
non-positive-definite Hessian to make it positive defi-
nite is the core of the modified Newton method that
we employ. It is interesting that for this problem, the
Hessian decomposes cleanly into positive definite and
non-positive-definite portions, and this might be a sign
of further structure in the problem that a better iter-
ative scheme might exploit.

11. Experimental Evaluation

We now present an experimental study of our algo-
rithm, focusing primarily on the quality of the regis-
trations it produces, and the convergence rate of the
method.

Methods We will compare our algorithm (which
we will refer to as MBR (Manifold-based registra-
tion)) to the schemes proposed by Benjemaa and
Schmitt [BS98] (QUAT) and Williams and Ben-
namoun [WB01] (MAT). MBR and MAT are ma-
trix based and are written in MATLAB. MAT, which

uses quaternions in its formulation, is written in C.
Our method of comparison will be both visual quality
as well as iteration counts and error convergence rates
(we will not use clock time).

Data Our first data set consists of actual 3D models
from the Stanford 3D Scanning Repository. For each
of three models, we generated a collection of views as
follows: we first generate a unit vector (representing
a view) and extracted the points on all front-facing
triangles with respect to this view. Next, each view is
randomly rotated and translated into a local coordi-
nate system. Finally, each point in each view is ran-
domly perturbed using a Gaussian noise model. This
yields a collection of views that possess a global noisy
registration. With this data, we have ground truth (ex-
act correspondences) since we have the original model.
Table 1 summarizes the statistics of this data.

Our second data set consists of 3D range scan
data from the Digital Michelangelo Project [LPC∗00].
The individual scans come with an original alignment
(stored in .xf files). We perform ICP on pairs of scans,
using the routines built into scanalyze, and retain all
pairs of scans that have at least three points in com-
mon as determined by ICP. In each instance, we run
ICP five times and take the best alignment thus gen-
erated (each instance of ICP runs for ten iterations).
The model of correspondence used is point-point.

11.1. 3D Models

We first ran the three algorithms on the view pairs ob-
tained from the three 3D models. In Figure 1 we show
the output registrations obtained by MBR. For these
examples, the other two schemes produced similar reg-
istrations, although with higher error. In Table 2, we
compare the performance of the three schemes on the
models, in terms of both the number of iterations
till convergence, and the final error. What is strik-
ing about the numbers is that although in the end
the other approaches mostly (except for DRILL) yield
comparable error, their iteration counts are orders of
magnitude higher than that of our scheme. This is a
clear demonstration of locally quadratic convergence
properties of our scheme.

Factors that influence iteration counts Since our
method converges significantly faster than the other
algorithms, we attempted to investigate other factors
that might improve their performance. Some of the
parameters that influence iteration counts are the den-
sity of the correspondence graph i.e how many view
pairs are provided, and the strength of match for each
pair (average number of points in each view pair).

In all cases, the behaviour of our method was un-
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Model Number of vertices Number Total size Number of
of scans of all scans view pairs generated

DRILL 1961 20 23298 77

DRAGON 100250 20 1142487 98

BUDDHA 32328 50 252580 526

Table 1: Statistics for the 3D models

(a) Drill (b) Dragon (c) Buddha

Figure 1: Registrations produced by MBR

MBR MAT QUAT
Iter. Error Iter. Error Iter. Error

Drill 2 3.5e-7 47 3.5e-7 48 7e-7

Dragon 4 5e-3 200 1e-2 1000 1e-2

Buddha 2 e-3 200 2e-3 718 3e-3

Table 2: Performance of the three methods

affected. However, we noticed a fairly weak correla-
tion between the density of the correspondence graph
and the number of iterations needed; as the graph
got denser, implying a more constrained system, the
number of iterations needed to converge reduced. For
example, on the drill, the iterations for MAT and
QUAT went from 200 (for a sparse graph) to 47 (for
a dense graph).

11.2. Range Scan Data

Having evaluated the performance of our scheme in
relation to prior art in a controlled setting where
ground truth (exact correspondences) are known, we
now present the results of running the schemes on

range scan data. We focus on the model of David,
specifically the views corresponding to the head and
bust region. After implementing the view generation
procedure described earlier, we obtain a 10-scan in-
stance for the bust and a 38-scan instance for the head.
We also use a 21-scan instance that has bad starting
alignment.

Figure 2 presents the registrations obtained by
MBR, MAT, and QUAT. In all cases, the registra-
tion produced by our algorithm is quite plausible. The
other methods do not fare so well; a typical problem
is that the two halves of David’s face do not register
properly, creating the false effect of two heads. Ta-
ble 3 summarizes the performance: we do not report
errors since they are dependent on the initial corre-
spondences and are typically quite high.
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(a) The head of David (detailed: 38 scans)

(b) The head and bust of David (10 scans)

(c) Head and bust: Bad initial alignment (21 scans)

Figure 2: Registrations produced by MBR, MAT, and QUAT (from left to right) on different instances of the
David model.
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