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Abstract. It remains unknown whether or not smooth solutions of the 3D incompressible MHD equations can develop
finite-time singularities. One major difficulty is due to the fact that the dissipation given by the Laplacian operator is insuf-
ficient to control the nonlinearity and for this reason the 3D MHD equations are sometimes regarded as “supercritical”.
This paper presents a global regularity result for the generalized MHD equations with a class of hyperdissipation. This
result is inspired by a recent work of Terence Tao on a generalized Navier–Stokes equations (T. Tao, Global regularity for
a logarithmically supercritical hyperdissipative Navier–Stokes equations, arXiv: 0906.3070v3 [math.AP] 20 June 2009), but
the result for the MHD equations is not completely parallel to that for the Navier–Stokes equations. Besov space techniques
are employed to establish the result for the MHD equations.
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1. Introduction

This work aims at the global regularity problem concerning the generalized incompressible magneto-
hydrodynamic (GMHD) equations of the form{

∂tu + u · ∇u + L2
1 u = −∇p + b · ∇b, x ∈ Rd, t > 0,

∂tb + u · ∇b + L2
2 b = b · ∇u, x ∈ Rd, t > 0,

(1.1)

where L1 and L2 are multiplier operators with symbols given by m1 and m2, namely

L̂1u(ξ) = m1(ξ) û(ξ), L̂2 b(ξ) = m2(ξ) b̂(ξ).

When

L2
1 u = −Δu, L2

2 b = −Δb,

(1.1) becomes the standard incompressible MHD equations. The 3D MHD equations govern the dynamics
of the velocity field u and the magnetic field b in electrically conducting fluids such as plasmas [2,16].
The fundamental issue of whether or not any classical solution of the 3D MHD equations can develop
finite time singularities has attracted a lot of attention and important progress has been made (see e.g.,
[3,4,8–11,13–15,17,20–23,25]).

However, a complete solution of the global regularity issue for the 3D MHD equations appears to
be beyond the reach of current techniques. One major difficulty is that the dissipation is insufficient
to control the nonlinearity when applying the standard techniques to establish global a priori bounds.
The d-D MHD equations for d ≥ 3 may be regarded as supercritical in the sense that we need much
“stronger” dissipation than the Laplacian −Δ. In fact, if

L2
1 u = (−Δ)γ1u and L2

2 b = (−Δ)γ2b, γ1 ≥ 1
2

+
d

4
, γ2 ≥ 1

2
+

d

4
, (1.2)
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then (1.1) has a global smooth solution for any sufficiently smooth initial data [22]. This paper improves
the global regularity result of [22] by reducing the dissipation in (1.2) by a logarithmic factor. More
precisely, we have the following theorem.

Theorem 1.1. Consider the initial-value problem (IVP) of (1.1) with the initial data

u(x, 0) = u0(x) and b(x, 0) = b0(x). (1.3)

Assume (u0, b0) ∈ Hs(Rd) with s > 1 + d
2 . Assume the symbols m1 and m2 satisfy

m1(ξ) ≥ |ξ|α
g1(ξ)

and m2(ξ) ≥ |ξ|β
g2(ξ)

, (1.4)

where α and β satisfy

α ≥ 1
2

+
d

4
, β > 0, α + β ≥ 1 +

d

2
(1.5)

and g1 ≥ 1 and g2 ≥ 1 are radially symmetric, nondecreasing and satisfy
∞∫
1

ds

s (g2
1(s) + g2

2(s))2
= +∞. (1.6)

Then the IVP for the GMHD equations (1.1) and (1.3) has a unique global classical solution (u, b).

This study on the GMHD equations is partially motivated by a recent work of Tao [18], who estab-
lished the global regularity of a generalized Navier–Stokes equations, namely (1.1) with b ≡ 0. But the
result presented here for the GMHD equations is not completely parallel to that for the generalized
Navier–Stokes equations. In fact, the condition that β ≥ 1

2 + d
4 is not required and (1.5) implies that it

suffices to assume β > 0 when α is sufficiently large.
Theorem 1.1 is proven by Besov space techniques. Identifying Hs with the Besov space Bs

2,2, the norm
‖(u, b)‖Hs can be estimated more dedicatedly than Sobolev type inequalities. We divide the rest of this
paper into two major parts. Section 2 presents the proof of Theorem 1.1. The proof relies on an inequality
for commutators. The appendix provides definitions, properties and some useful facts of Besov spaces.

2. Proof of Theorem 1.1

This section proves Theorem 1.1. For notational convenience, we will write Lp for Lp(Rd). To prove this
theorem, we need a bound for a special type of commutators.

Lemma 2.1. For any j ≥ −1, p ∈ [1,∞],

‖[Δj , f · ∇]g‖Lp ≤ C ‖∇f‖Lq ‖∇g‖Lr ‖xΦj‖Lσ (2.1)

≤ C 2j(−1+d(1− 1
σ )) ‖∇f‖Lq ‖∇g‖Lr ‖xΦ0‖Lσ , (2.2)

where [Δj , f · ∇]g denotes Δj(f · ∇g) − f · ∇Δj g, Φj’s are defined as in (A.1) and q, r and σ satisfy

q, r, σ ∈ [1,∞], 1 +
1
p

=
1
q

+
1
r

+
1
σ

,
1
r

+
1
σ

+
1
d

> 1.

In particular,
(1) for any p ∈ [1,∞],

‖[Δj , f · ∇]g‖Lp ≤ C 2−j ‖∇f‖L∞ ‖∇g‖Lp ‖xΦ0‖L1 , (2.3)

(2) for any p ∈ [1,∞], r′ ≤ p and 1
r + 1

r′ = 1,

‖[Δj , f · ∇]g‖Lp ≤ C 2j(−1+ d
r ) ‖∇f‖Lp‖∇g‖Lr ‖xΦ0‖Lr′ . (2.4)

Remark. The special case in (2.4) has previously been obtained by Hmidi et al. [12].
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Proof of Lemma 2.1. According to the definition of Δj in (A.4),

[Δj , f · ∇]g = Δj(f · ∇g) − f · ∇Δjg

=
∫

Φj(x − y)(f(y) − f(x)) · ∇g(y) dy. (2.5)

The special case in (2.3) can be established rather easily. In fact, by Young’s inequality for convolution,

‖[Δj , f · ∇]g‖Lp ≤ ‖∇f‖L∞

∥∥∥∥
∫

|x − y|Φj(x − y) |∇g(y)| dy

∥∥∥∥
Lp

≤ ‖∇f‖L∞ ‖∇g‖Lr ‖xΦj(x)‖Lσ

where 1 + 1/p = 1/r + 1/σ. For more general cases, we insert the identity

f(y) − f(x) =

1∫
0

(y − x) · ∇f(x + θ(y − x)) dθ

in (2.5) and apply Hölder’s inequality to find

|[Δj , f · ∇]g| ≤ ‖∇g‖Lr

1∫
0

[∫
[|y − x|Φj(y − x)]r

′ |∇f(x + θ(y − x))|r′
dy

] 1
r′

dθ

where 1
r + 1

r′ = 1 and r′ ≤ p. Taking the Lp-norm, we have

‖[Δj , f · ∇]g‖Lp

≤ ‖∇g‖Lr

1∫
0

∥∥∥∥∥
[∫

[|y − x|Φj(y − x)]r
′ |∇f(x + θ(y − x))|r′

dy

] 1
r′
∥∥∥∥∥

Lp

dθ

= ‖∇g‖Lr

1∫
0

∥∥∥∥
∫

[|y − x|Φj(y − x)]r
′ |∇f(x + θ(y − x))|r′

dy

∥∥∥∥
1/r′

Lp/r′
dθ. (2.6)

Making the substitution z = −θ(y − x) and then applying Young’s inequality for convolution, we obtain

1∫
0

∥∥∥∥
∫

[|y − x|Φj(y − x)]r
′ |∇f(x + θ(y − x))|r′

dy

∥∥∥∥
1/r′

Lp/r′
dθ

=

1∫
0

∥∥∥∥
∫ ∣∣∣z

θ
Φj

(z

θ

)∣∣∣r
′

|∇f(x − z)|r′ dz

θd

∥∥∥∥
1/r′

Lp/r′
dθ

=

1∫
0

∥∥∥∥
∣∣∣z
θ
Φj

(z

θ

)∣∣∣r
′∥∥∥∥

1/r′

Lσ/r′
‖|∇f |r′‖1/r′

Lq/r′ θ−d/r′
dθ

= ‖|∇f |r′‖1/r′

Lq/r′

1∫
0

[∫ ∣∣∣z
θ
Φj

(z

θ

)∣∣∣σ dz

]1/σ

θ−d/r′
dθ

= ‖∇f‖Lq

1∫
0

‖xΦj(x)‖Lσ θd/σ−d/r′
dθ

≤ C ‖∇f‖Lq ‖xΦj(x)‖Lσ , (2.7)
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where

1 +
d

σ
− d

r′ > 0, 1 +
r′

p
=

r′

σ
+

r′

q
or

1
r

+
1
σ

+
1
d

> 1, 1 +
1
p

=
1
q

+
1
r

+
1
σ

.

Inserting (2.7) in (2.6) yields

‖[Δj , f · ∇]g‖Lp ≤ ‖∇g‖Lr ‖∇f‖Lq‖xΦj‖Lσ ,

which is (2.1). To show (2.2), it suffices to notice (A.1), namely

Φj(x) = 2jdΦ0(2jx).

(2.4) follows by letting p = q in (2.2). This completes the proof of Lemma 2.1. �

Proof of Theorem 1.1. If (u, b) solves (1.1), then clearly

‖u(t)‖2
2 + ‖b(t)‖2

2 + 2ν

t∫
0

‖L1u‖2
2 dτ + 2η

t∫
0

‖L2b‖2
2 dτ = ‖u0‖2

2 + ‖b0‖2
2, t > 0.

For notational convenience, we write

A1(t) ≡ ‖L1u(t)‖2
2 and A2(t) ≡ ‖L2b(t)‖2

2.

Identifying L2 as B0
2,2, we have

A1 =
∑

j

‖ΔjL1u‖2
2 and A2 =

∑
j

‖ΔjL2b‖2
2.

where the summations are over j ≥ −1.
The rest of the proof is devoted to bound ‖(u, b)‖Hs . Here Hs is identified with the Besov space Bs

2,2.
Let j ≥ −1 be an integer. Applying Δj to (1.1), we have

∂tΔju + νL1Δju = −PΔj(u · ∇u) + PΔj(b · ∇b), (2.8)

where P = I − ∇Δ−1∇· is the projection operator onto divergence free vector fields. Similarly, applying
Δj to the second equation in (1.1) yields

∂tΔjb + +ηL2Δjb = −Δj(u · ∇b) + Δj(b · ∇u). (2.9)

Dotting (2.8) and (2.9) by 2Δju and 2Δjb, respectively, and integrating with respect to x, we obtain

d

dt
‖Δju‖2

L2 + 2ν‖L1Δju‖2
L2 = −2

∫
Δju · Δj(u · ∇u) dx + 2

∫
Δju · Δj(b · ∇b) dx,

d

dt
‖Δjb‖2

L2 + 2η‖L2Δjb‖2
L2 = −2

∫
Δjb · Δj(u · ∇b) dx + 2

∫
Δjb · Δj(b · ∇u) dx.

Multiplying each of these equations by 22sj and summing over all j ≥ −1, we get

d

dt

(‖u‖2
Hs + ‖b‖2

Hs

)
+ 2ν

∑
j

22sj‖L1Δju‖2
L2 + 2η

∑
j

22sj‖L2Δjb‖2
L2 (2.10)

= I1 + I2 + I3 + I4, (2.11)
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where

I1 = −2
∑

j

22sj

∫
Δju · Δj(u · ∇u) dx, (2.12)

I2 = 2
∑

j

22sj

∫
Δju · Δj(b · ∇b) dx, (2.13)

I3 = −2
∑

j

22sj

∫
Δjb · Δj(u · ∇b) dx, (2.14)

I4 = 2
∑

j

22sj

∫
Δjb · Δj(b · ∇u) dx. (2.15)

Since the estimates of these four terms are similar, we only provide the details for I3. Employing Bony’s
notion of paraproducts, we can write

Δj(u · ∇b) =
∑

|j−k|≤3

Δj(Sk−1u · ∇Δkb) +
∑

|j−k|≤3

Δj(Δku · ∇Sk−1b)

+
∑

k≥j−1

Δj(Δku · ∇Δ̃kb). (2.16)

where Δ̃kb = (Δk−1 + Δk + Δk+1)b. The first term in (2.16) can be further written as
∑

|j−k|≤3

Δj(Sk−1u · ∇Δkb) =
∑

|j−k|≤3

[Δj , Sk−1u · ∇]Δkb

+
∑

|j−k|≤3

(Sk−1u − Sju) · ∇ΔjΔkb + Sju · ∇Δjb, (2.17)

where we have used the fact that
∑

|j−k|≤3 ΔjΔkb = Δjb. After inserting (2.17) in (2.16) and (2.16) in
(2.14), we can split I3 into five terms,

I31 = −2
∑

j

22sj

∫
Δjb ·

∑
|j−k|≤3

[Δj , Sk−1u · ∇]Δkb dx,

I32 = −2
∑

j

22sj

∫
Δjb ·

∑
|j−k|≤3

(Sk−1u − Sju) · ∇ΔjΔkb dx,

I33 = −2
∑

j

22sj

∫
Δjb · Sju · ∇Δjb dx,

I34 = −2
∑

j

22sj

∫
Δjb ·

∑
|j−k|≤3

Δj(Δku · ∇Sk−1b) dx,

I35 = −2
∑

j

22sj

∫
Δjb ·

∑
k≥j−1

Δj(Δku · ∇Δ̃kb) dx.

By the divergence-free condition ∇ · u = 0, we have

I33 = 0.

To estimate I31, we first apply Hölder’s inequality and then Lemma 2.1 to find that

|I31| ≤ C
∑

j

22sj‖Δjb‖2

∑
|j−k|≤3

‖∇Sk−1u‖L∞ ‖∇Δkb‖L2 2−j‖xΦ0‖L1
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Since the summation is over k satisfying |j−k| ≤ 3, we can replace the summation by a constant multiple
of the term with k = j. Applying Bernstein’s inequality to ‖∇Δkb‖L2 yields

|I31| ≤ C
∑

j

22sj‖Δjb‖2
2 ‖∇Sj−1u‖L∞

≤ C
∑

j

22sj‖Δjb‖2
2

∑
m≤j−2

‖∇Δmu‖L∞

≤ C
∑

j

22sj‖Δjb‖2
2

∑
m≤j−2

2m(1+ d
2 )‖Δmu‖L2

= C
∑

j

2sj 2βj

g2(2j)
‖Δjb‖L2

× g2(2j) 2sj‖Δjb‖L22−βj
∑

m≤j−2

2m(1+ d
2 )‖Δmu‖L2 .

By the Cauchy–Schwartz inequality,

|I31| ≤ η

4

∑
j

22sj 22βj

g2
2(2j)

‖Δjb‖2
L2

+ C(η)
∑

j

g2
2(2j) 22sj‖Δjb‖2

L22−2βj

⎡
⎣ ∑

m≤j−2

2m(1+ d
2 )‖Δmu‖L2

⎤
⎦

2

≤ η

4

∑
j

22sj ‖L2Δjb‖2
L2

+ C(η)
∑

j

g2
2(2j) 22sj‖Δjb‖2

L22−2βj

⎡
⎣ ∑

m≤j−2

2m(1+ d
2 )‖Δmu‖L2

⎤
⎦

2

=
η

4

∑
j

22sj ‖L2Δjb‖2
L2 + C(η) (I311 + I312), (2.18)

where

I311 =
∑
j≤N

g2
2(2j) 22sj‖Δjb‖2

L22−2βj

⎡
⎣ ∑

m≤j−2

2m(1+ d
2 )‖Δmu‖L2

⎤
⎦

2

,

I312 =
∑
j>N

g2
2(2j) 22sj‖Δjb‖2

L22−2βj

⎡
⎣ ∑

m≤j−2

2m(1+ d
2 )‖Δmu‖L2

⎤
⎦

2

for an integer N to be determined later. They can be bounded as follows.

I311 =
∑
j≤N

g2
2(2j) 22sj‖Δjb‖2

L2

⎡
⎣ ∑

m≤j−2

2β(m−j) 2αm‖Δmu‖L2

⎤
⎦

2

.

≤
∑
j≤N

g2
2(2j) 22sj‖Δjb‖2

L2 sup
m≤j−2

22αm‖Δmu‖2
L2 C0

where C0 denotes the constant

C0 =

⎡
⎣ ∑

m≤j−2

2β(m−j)

⎤
⎦

2

.
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Therefore,

I311 ≤ C0 g2
1(2N ) g2

2(2N ) sup
j≤N

22αj

g2
1(2j)

‖Δju‖2
L2

∑
j≤N

22sj‖Δjb‖2
L2

≤ C0 g2
1(2N ) g2

2(2N ) sup
j≤N

‖L1Δju‖2
L2

∑
j≤N

22sj‖Δjb‖2
L2

= C0 g2
1(2N ) g2

2(2N ) sup
j≤N

‖L1Δju‖2
L2‖b‖2

Hs .

We now estimate I312. Let 0 < δ < β and write I312 as

I312 =
∑
j>N

g2
2(2j) 2−2j(β−δ) 22sj‖Δjb‖2

L2

⎡
⎣ ∑

m≤j−2

2(m−j)δ2m(1+ d
2 −δ)‖Δmu‖L2

⎤
⎦

2

.

According to (1.6), g2 grows logarithmically and we have, for j ≥ N (provided that N is sufficiently
large),

g2
2(2j) 2−2j(β−δ) ≤ g2

2(2N ) 2−2N(β−δ).

Therefore

I312 ≤ C g2
2(2N ) 2−2N(β−δ)

∑
j>N

22sj‖Δjb‖2
L2

∑
m

22m(1+ d
2 −δ)‖Δmu‖2

L2

≤ C g2
2(2N ) 2−2N(β−δ) ‖b‖2

Hs ‖u‖2
Hs .

Inserting the estimates for I311 and I312 in (2.18), we find that

|I31| ≤ η

4

∑
j

22sj ‖L2Δjb‖2
L2 + C g2

1(2N ) g2
2(2N ) sup

j≤N
‖L1Δju‖2

L2‖b‖2
Hs

+C g2
2(2N ) 2−2N(β−δ) ‖b‖2

Hs ‖u‖2
Hs .

The estimate for I32 is actually easier than I31. Since the summation for k is just over |k − j| ≤ 3,
the summation over k can be replaced by a multiple of its typical term with k = j. By Hölder’s and
Bernstein’s inequalities that

|I32| ≤ C
∑

j

22sj‖Δjb‖L2 ‖Δju‖2 ‖∇Δjb‖L∞

≤ C
∑

j

22sj 2(1+ d
2 )j ‖Δjb‖2

L2 ‖Δju‖2.

As in the estimate of I31, we have

|I32| ≤ η

4

∑
j

22sj ‖L2Δjb‖2
L2 + C(η) (I321 + I322)

where I321 and I322 are given by

I321 =
∑
j≤N

g2
2(2j) 22sj‖Δjb‖2

L222αj‖Δju‖2
2,

I322 =
∑
j>N

g2
2(2j) 22sj‖Δjb‖2

L222αj‖Δju‖2
2.

As in the estimate for I311, we have

I321 ≤ C g2
1(2N ) g2

2(2N ) sup
j≤N

‖L1Δju‖2
L2‖b‖2

Hs
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or

I321 ≤ C g4
2(2N ) sup

j≤N
‖L2Δjb‖2

L2‖u‖2
Hs .

The estimate for I322 is also similar to that for I312.

I322 ≤
∑
j>N

g2
2(2j) 2−j(2s−1− d

2 ) 22sj‖Δjb‖2
L2 22sj‖Δju‖2

L2

≤ g2
2(2N ) 2−N(2s−1− d

2 ) ‖b‖2
Hs ‖u‖2

Hs .

Therefore,

|I32| ≤ η

4

∑
j

22sj ‖L2Δjb‖2
L2 + C g4

2(2N ) sup
j≤N

‖L2Δjb‖2
L2‖u‖2

Hs

+C g2
2(2N ) 2−N(2s−1− d

2 ) ‖b‖2
Hs ‖u‖2

Hs .

The estimates for I34 and I35 are very similar and we omit the details. To bound the parallel terms
I1, I2 and I4, we can decompose and estimate them like what we did to I3. The only difference is that
the term I23 decomposed from I2 and I43 from I4 are no longer zero by themselves, but I23 + I43 is zero.
The rest of the terms in I1, I2 and I4 can be similarly bounded as the corresponding terms in I3. Now,
we write

Es(t) = ‖u(t)‖2
Hs + ‖b(t)‖2

Hs

and set 2N = Es(t). Collecting all the estimates, we find that
d

dt
Es(t) + ν

∑
j

22sj‖L1Δju‖2
2 + η

∑
j

22sj‖L2Δjb‖2
2

≤ C (g2
1(Es) + g2

2(Es))2 Es (A1(t) + A2(t)).

The conclusion of Theorem 1.1 then follows from (1.6) and a simple ODE argument. �

Acknowledgment. This work was partially supported by the NSF grant DMS 0907913 and by a foundation
at Oklahoma State University.

Appendix

This appendix provides the definitions of Besov spaces and related facts. Part of the materials presented
here can be found in [1,6,19]. We denote by S(Rd) the usual Schwarz class and S ′(Rd) the space of
tempered distributions. Let f̂ denote the Fourier transform of f , defined by the formula

f̂(ξ) =
∫
Rd

e−ix·ξ f(x) dx.

The fractional Laplacian (−Δ)α with α ∈ R is defined through the Fourier transform

(−Δ̂)αf = |ξ|2α f̂(ξ).

For notational convenience, we sometimes write Λ for (−Δ)
1
2 . We define S0 to be the following subspace

of S,

S0 =

⎧⎨
⎩φ ∈ S,

∫
Rd

φ(x)xγdx = 0, |γ| = 0, 1, 2, . . .

⎫⎬
⎭ .

Its dual S ′
0 is given by

S ′
0 = S ′/S⊥

0 = S ′/P,
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where P is the space of polynomials. In other words, two distributions in S ′ are identified as the same in
S ′

0 if their difference is a polynomial.
For j ∈ Z, we define

Aj = {ξ ∈ Rd : 2j−1 < |ξ| < 2j+1}.

Then there exists a sequence {Φj} ∈ S(Rd) such that

supp Φ̂j ⊂ Aj , Φ̂j(ξ) = Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx). (A.1)

and
∞∑

k=−∞
Φ̂k(ξ) =

{
1 if ξ ∈ Rd \ {0},
0 if ξ = 0.

As a consequence, for any f ∈ S ′
0,

∞∑
k=−∞

Φk ∗ f = f. (A.2)

To define the homogeneous Besov space, we set

Δjf = Φj ∗ f, j = 0,±1,±2, . . . . (A.3)

Definition A.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space B̊s
p,q is defined by

B̊s
p,q =

{
f ∈ S ′

0 : ‖f‖B̊s
p,q

< ∞
}

,

where

‖f‖B̊s
p,q

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝∑

j

(
2js‖Δjf‖Lp

)q
⎞
⎠

1/q

for q < ∞,

sup
j

2js ‖Δjf‖Lp for q = ∞.

To define the inhomogeneous Besov space, we let Ψ ∈ C∞
0 (Rd) be even and satisfy

Ψ̂(ξ) = 1 −
∞∑

k=0

Φ̂k(ξ).

It is clear that for any f ∈ S ′,

Ψ ∗ f +
∞∑

k=0

Φk ∗ f = f.

We further set

Δjf =

⎧⎨
⎩

0, if j ≤ −2,
Ψ ∗ f, if j = −1,
Φj ∗ f, if j = 0, 1, 2, . . .

(A.4)

Definition A.2. For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Besov space Bs
p,q is defined by

Bs
p,q =

{
f ∈ S ′ : ‖f‖Bs

p,q
< ∞

}
,

where

‖f ||Bs
p,q

≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ ∞∑

j=−1

(
2js ‖Δjf‖Lp

)q
⎞
⎠

1/q

, if q < ∞,

sup
−1≤j<∞

2js ‖Δjf‖Lp , if q = ∞.

(A.5)
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We caution that Δj with j ≤ −1 associated with the homogeneous Besov space B̊s
p,q are defined

differently from those associated with the inhomogeneous Besov space Bs
p,q. Therefore, it will be under-

stood that Δj with j ≤ −1 in the context of the homogeneous Besov space are given by (A.3) and by
(A.4) in the context of the inhomogeneous Besov space. For Δj defined by either (A.3) or (A.4) and
Sj ≡∑k<j Δk,

ΔjΔk = 0 if |j − k| ≥ 2 and Δj(Sk−1f Δkf) = 0 if|j − k| ≥ 4.

The Besov spaces and the standard Sobolev spaces defined by

W̊ s,p = Λ−sLp and W s,p = (1 − Δ)−s/2Lp

obey the simple facts stated in the following lemma (see [1]).

Lemma A.3. Assume that s ∈ R and p, q ∈ [1,∞].

(1) If s > 0, then Bs
p,q ⊂ B̊s

p,q.
(2) If s1 ≤ s2, then Bs2

p,q ⊂ Bs1
p,q. This inclusion relation is false for the homogeneous Besov spaces.

(3) If 1 ≤ q1 ≤ q2 ≤ ∞, then B̊s
p,q1

⊂ B̊s
p,q2

and Bs
p,q1

⊂ Bs
p,q2

.
(4) If 1 ≤ p1 ≤ p2 ≤ ∞ and s1 = s2 + d( 1

p1
− 1

p2
), then B̊s1

p1,q(R
d) ⊂ B̊s2

p2,q(R
d).

(5) If 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1, q2 ≤ ∞, and s1 > s2 + d( 1
p1

− 1
p2

), then Bs1
p1,q1

(Rd) ⊂ Bs2
p2,q2

(Rd).
(6) If 1 < p < ∞, then

Bs
p,min(p,2) ⊂ W s,p ⊂ Bs

p,max(p,2), B̊s
p,min(p,2) ⊂ W̊ s,p ⊂ B̊s

p,max(p,2).

We will need a Bernstein type inequality for fractional derivatives.

Proposition A.4. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

(1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ| ≤ K2j},

for some integer j and a constant K > 0, then

‖(−Δ)αf‖Lq(Rd) ≤ C1 22αj+jd( 1
p − 1

q )‖f‖Lp(Rd).

(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12j ≤ |ξ| ≤ K22j} (A.6)

for some integer j and constants 0 < K1 ≤ K2, then

C1 22αj‖f‖Lq(Rd) ≤ ‖(−Δ)αf‖Lq(Rd) ≤ C2 22αj+jd( 1
p − 1

q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α, p and q only.

The following proposition provides a lower bound for an integral originated from the dissipative term
in the process of Lp estimates (see [7,24]).

Proposition A.5. Assume either α ≥ 0 and p = 2 or 0 ≤ α ≤ 1 and 2 < p < ∞. Let j be an integer and
f ∈ S ′. Then ∫

Rd

|Δjf |p−2Δjf Λ2αΔjf dx ≥ C 22αj‖Δjf‖p
Lp

for some constant C depending on d, α and p.
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