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Abstract. We study an initial-boundary value problem (IBVP) for a coupling of the

Cahn-Hilliard equation with the 2D inviscid heat-conductive Boussinesq equations. For

large initial data with finite energy, we prove global existence and uniqueness of classical

solutions to the IBVP, together with some uniform-in-time and decay estimates of the

solution.

1. Introduction. One major challenge in mathematical fluid dynamics is the ques-

tions of global existence, uniqueness and large time asymptotic behavior of classical

solutions to the Cauchy problem or initial-boundary value problems for modeling equa-

tions. Not only are the questions physically important, they are also mathematically

challenging. Positive answers to these questions will undoubtedly benefit both mathe-

maticians and engineers. In the real world, flows often move in bounded domains with

constraints from boundaries, where initial-boundary value problems (IBVP) appear. So-

lutions to initial-boundary value problems usually exhibit different behaviors and much

richer phenomena compared with the Cauchy problem.

In this paper, we consider the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φt + U · ∇φ = Δμ,

μ = −αΔφ+ F ′(φ),

Ut + U · ∇U +∇P = μ∇φ+ θe2,

θt + U · ∇θ = κΔθ,

∇ · U = 0,

(1.1)

which is obtained by coupling the famous Cahn-Hilliard equation:

φt = Δ
(
− αΔφ+ F ′(φ)

)
, (1.2)
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332 KUN ZHAO

with the 2D inviscid heat-conductive Boussinesq equations:⎧⎪⎨⎪⎩
Ut + U · ∇U +∇P = θe2,

θt + U · ∇θ = κΔθ,

∇ · U = 0,

(1.3)

through convection and order parameters. System (1.1) describes the motion of an incom-

pressible inviscid two-phase flow subject to convective heat transfer under the influence

of gravitational force. Here, φ is the order parameter and μ is a chemical potential de-

rived from a coarse-grained study of the free energy of the fluid (cf. [16]), U = (u, v), P

and θ denote the velocity, pressure and temperature respectively; the constants α > 0

and κ > 0 model diffusion and heat conduction respectively, and e2 = (0, 1)T.

Our work in the current paper is motivated, first, by [6], in which the coupling of the

Cahn-Hilliard equation with the Navier-Stokes equations was considered:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φt + U · ∇φ = Δμ,

μ = −αΔφ+ F ′(φ),

Ut + U · ∇U +∇P = νΔU + μ∇φ,

∇ · U = 0,

(1.4)

which describes the motion of an incompressible two-phase flow under shear through

order parameter formulation. In [6], the author considered (1.4) in a channel Ω =

(−L,L)d−1× (−1, 1), where d = 2 or 3, and proved global (local resp.) well-posedness of

strong solutions to the IBVP in R
2 (R3 resp.). The boundary conditions considered in

[6] are as follows:⎧⎪⎨⎪⎩
∇φ · n = ∇μ · n = 0 on {z = ±1},
U = Ūe1 on {z = 1} and U = −Ūe1 on {z = −1},
φ and U are 2L-periodic (L-periodic in R

2) in the variables x and y (x in R
2),

where n is the unit outward normal to ∂Ω, Ū > 0 is a constant and e1 is the first

unit vector. In addition to the global existence results, the asymptotic behavior of weak

solutions to the IBVP was also investigated in the paper. However, we note that the

global existence results obtained in [6] ceased at the level of strong solutions, and the

smoothness of the solution was not discussed there. We refer the readers to [7, 8] and the

references therein for more discussions in this direction. For more studies on two-phase

flow, we refer the readers to [3, 4, 10, 13, 14, 15, 17, 28, 29, 31] and the references therein.

The second motivation of our work in this paper comes from the studies of the well-

known 2D Boussinesq system:⎧⎪⎨⎪⎩
Ut + U · ∇U +∇P = νΔU + θe2,

θt + U · ∇θ = κΔθ,

∇ · U = 0,

(1.5)

which is closely related to the studies of 3D incompressible flows (cf. [27, 30]) and has

been well studied in the literature. The readers are referred to [9, 11, 12, 18, 19] and the

references therein for the Cauchy problem, and to [22, 26, 32] and the references therein
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for initial-boundary value problems, where global existence and large time behavior of

solutions to 2D Boussinesq equations with full or partial viscosity terms are investigated.

Especially, in [32], the author considered the initial-boundary value problem for 2D

inviscid heat-conductive Boussinesq equations:⎧⎪⎨⎪⎩
(1.3);

(U, θ)(x, 0) = (U0, θ0)(x),

U · n|∂Ω = 0, θ|∂Ω = θ̄,

(1.6)

where Ω ⊂ R
2 is a bounded domain with smooth boundary and θ̄ is a constant, and

proved that, for given large initial data with finite energy satisfying certain compatibility

conditions, there exists a unique global in time classical solution to (1.6). Moreover, it is

shown that the temperature θ converges to θ̄ exponentially fast as time goes to infinity

and the velocity U and the vorticity ω = vx−uy are uniformly bounded in time in certain

topologies.

In this paper, following [6] and [32], we consider the coupled system (1.1) in a bounded

domain in R
2. The system is supplemented by the following initial and boundary condi-

tions: {
(φ, μ, U, θ)(x, 0) = (φ0, μ0, U0, θ0)(x),

∇φ · n|∂Ω = 0, ∇μ · n|∂Ω = 0, U · n|∂Ω = 0, θ|∂Ω = θ̄,
(1.7)

where Ω ⊂ R
2 is a bounded domain with smooth boundary ∂Ω, n is the unit outward

normal to ∂Ω and θ̄ is a constant.

We remark here that one of the major challenges in dealing with the global regularity

of (1.3) is the loss of viscosity in the velocity equation which leads to the fact that the

regularity of U can be built up only after the H3 estimate of θ is established according

to the classical results on 2D incompressible nonhomogeneous Euler equations (cf. [20,

23]). Due to the coupling of the velocity equation with the temperature equation by

nonlinear convection and gravitational force, the H3 estimate of θ is a substantial barrier

to overcome. Taking this consideration into (1.1) we see that the complexity of the

analysis of (1.1) will significantly increase due to the further coupling of the Cahn-

Hilliard equation. On the other hand, we note that, for (1.1), another challenge brought

by the loss of viscosity is the treatment of the regularity of the order parameter φ, which

greatly enriches the analysis of (1.1) compared with (1.4). To the best of the author’s

knowledge, the initial-boundary value problem (1.1), (1.7) has not been studied in the

literature.1 In the current paper, we generalize the studies of [6] and [32] to the case

of two-phase flow without shear but subject to convective heat transfer and under the

influence of gravitational force. We prove global existence and uniqueness of classical

solutions to the initial-boundary value problem (1.1), (1.7) for large initial data with

finite energy.

Throughout this paper, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norm of the usual

Lebesgue measurable function spaces Lp (1 ≤ p < ∞), L∞ and the usual Sobolev space

1The global existence and uniqueness of classical solutions to an IBVP for the coupling of (1.2) with

(1.5) with ν > 0 and κ = 0 were established recently in [33].
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W s,p respectively. For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖ and ‖ · ‖W s,2 by ‖ · ‖Hs

respectively. The function spaces under consideration are

C([0, T ];Hr(Ω)) and L2([0, T ];Hs(Ω)),

equipped with norms

sup
0≤t≤T

‖Ψ(·, t)‖Hr and
( ∫ T

0

‖Ψ(·, τ )‖2Hsdτ
)1/2

,

where r, s are positive integers. Throughout this paper, unless specified otherwise, C will

denote a generic constant which is independent of the unknown functions φ, μ, U, θ, but

may depend on α, κ,Ω, initial data and the time T . The value of C may vary line by

line according to the context.

For global existence of classical solutions to (1.1), (1.7), we require the following

compatibility conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇ · U0 = 0, μ0 = −αΔφ0 + F ′(φ0), x ∈ Ω,

∇φ0 · n|∂Ω = 0, ∇μ0 · n|∂Ω = 0, U0 · n|∂Ω = 0, θ0|∂Ω = θ̄,

∇(U0 · ∇φ0 −Δμ0) · n|∂Ω = 0,

(U0 · ∇θ0 − κΔθ0)|∂Ω = 0.

(1.8)

The following theorem is the main result of this paper.

Theorem 1.1. Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Suppose that

F (·) satisfies the following conditions:

(H1) F (·) is of C6 class and F (·) ≥ 0.

(H2) There exist constants F1, F2 > 0 such that |F (n)(φ)| ≤ F1|φ|p−n + F2,

n = 1, ..., 6, ∀ 6 ≤ p < ∞ and φ ∈ R.

(H3) There exists a constant F3 ≥ 0 such that F ′′ ≥ −F3.

If φ0(x) ∈ H5(Ω), μ0(x) ∈ H3(Ω) and (θ0(x), U0(x)) ∈ H3(Ω) satisfy the compatibil-

ity conditions (1.8), then there exists a unique solution (φ, μ, θ, U) to (1.1), (1.7) glob-

ally in time such that φ ∈ C([0, T ];H5(Ω)) ∩ L2([0, T ];H7(Ω)), μ ∈ C([0, T ];H3(Ω)) ∩
L2([0, T ];H5(Ω)), U ∈ C([0, T ];H3(Ω)) and θ ∈ C([0, T ];H3(Ω)) ∩ L2([0, T ];H4(Ω)) for

any 0 < T < ∞. Moreover, there exist constants γ0 > 0 and η0(p) ≥ 0 which are

independent of t such that for any t ≥ 0 and p ∈ [2,∞], it follows that

‖U(·, t)‖2 + ‖φ(·, t)‖2H1 + ‖F (φ(·, t))‖L1 +

∫ t

0

‖∇μ(·, τ )‖2dτ ≤ γ0,

‖(θ − θ̄)(·, t)‖Lp ≤ ‖θ0 − θ̄‖Lp exp{−η0(p)t},

where the constant η0(p) > 0 for p ∈ [2,∞) and η0(p) = 0 for p = ∞.

Remark 1.1. The assumptions (H1)-(H3) in Theorem 1.1 are similar to those in [6]

and are satisfied for a number of important applications such as F (x) = (1 − x2)2; see

[6] and the references therein. It should be pointed out that, in the results obtained in

Theorem 1.1, no smallness restriction is put upon the initial data. The results suggest
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that, without viscous dissipation, heat conduction and diffusion of the order parameter

are still strong enough to prevent the development of a singularity in the system.

The proof of Theorem 1.1 begins with the global existence of weak solutions to (1.1),

(1.7). This part can be proved by standard arguments, for example, the combination

of the Galerkin approximation and the method of energy estimate (cf. [6]). In order

to simplify the presentation, we shall not go through the details of the construction of

the approximate solutions. Instead, we will focus on establishing the a priori estimates

of the solution, which is essential for the global existence of classical solutions, in the

major part of the paper. The energy estimate is somewhat delicate mainly due to the

coupling between the Cahn-Hilliard equation and the Boussinesq equations by nonlinear

convection, order parameter, gravitational force and boundary effects. Great efforts

have been made to simplify the proof. There are intensive applications of Sobolev and

Ladyzhenskaya type inequalities in the proof. The results on elliptic equations, see

Lemma 2.2, are important in our energy framework. Roughly speaking, because of the

lack of the spatial derivatives of the solution at the boundary, our energy framework

proceeds as follows: We first apply the standard energy estimate on the solution and

the temporal derivatives of the solution. We then apply the classical results on elliptic

equations to obtain the spatial derivatives. Such a process will be repeated up to third

order, and then the carefully coupled estimates will be composed into a desired estimate

leading to global regularities of φ, μ and θ. After the H3 estimate of the nonhomogeneous

term on the right-hand side of the velocity equation is established, classical results on 2D

incompressible nonhomogeneous Euler equations by Kato [20], see Lemma 2.4, will be

implemented to build up the H3 regularity of U . The uniform estimates of the solution

stated in Theorem 1.1 are obtained by careful exploration of the structure of the system

and delicate applications of the Cauchy-Schwarz inequality. The uniqueness is proved in

a straightforward way by using the regularity of the solution.

The rest of this paper is organized as follows. In Section 2, we give some basic facts

that will be used in this paper. Then we prove Theorem 1.1 and give some concluding

remarks in Section 3.

2. Preliminaries. In this section, we shall collect several facts which will be used

in the proof of Theorem 1.1. First, for the convenience of the readers, we recall some

inequalities of Sobolev and Ladyzhenskaya type (cf. [1, 21]).

Lemma 2.1. Let Ω ⊂ R
2 be any bounded domain with smooth boundary ∂Ω. Then

(i) ‖f‖L∞ ≤ C‖f‖H2 ;

(ii) ‖f‖L∞ ≤ C‖f‖W 1,p , ∀ p > 2;

(iii) ‖f‖Lp ≤ C‖f‖H1 , ∀ 1 ≤ p < ∞;

(iv) ‖f‖2L4 ≤ C
(
‖f‖‖∇f‖+ ‖f‖2

)
, ∀ f ∈ H1(Ω);

(v) ‖f‖2L8 ≤ C
(
‖f‖‖∇f‖L4 + ‖f‖2

)
, ∀ f ∈ H1(Ω),

for some constants C = C(p,Ω).

Next, we recall some classical results on elliptic equations (cf. [2, 24, 25]).
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Lemma 2.2. Let Ω ⊂ R
2 be any bounded domain with smooth boundary ∂Ω. Consider

the Dirichlet problem: {
κΔΘ = f in Ω,

Θ = 0 on ∂Ω.

If f ∈ Wm,p, then Θ ∈ Wm+2,p and there exists a constant C = C(p, κ,m,Ω) such that

‖Θ‖Wm+2,p ≤ C‖f‖Wm,p

for any p ∈ (1,∞) and the integer m ≥ −1.

Concerning the estimate of vector-valued functions, we have (see [5])

Lemma 2.3. Let Ω ⊂ R
2 be any bounded domain with smooth boundary ∂Ω, and let

F ∈ W s,p(Ω) be a vector-valued function satisfying F · n|∂Ω = 0, where n is the unit

outward normal to ∂Ω. Then there exists a constant C = C(s, p,Ω) such that

‖F‖W s,p ≤ C(‖∇× F‖W s−1,p + ‖∇ · F‖W s−1,p + ‖F‖Lp)

for any s ≥ 1 and p ∈ (1,∞).

Now, we recall a general result for the 2D incompressible nonhomogeneous Euler

equations on bounded domains with slip boundary condition (cf. [20, 23]).

Lemma 2.4. Let Ω ⊂ R
2 be any bounded domain with smooth boundary ∂Ω. Consider

the initial-boundary value problem:⎧⎪⎨⎪⎩
Ut + U · ∇U +∇P = G,

∇ · U = 0,

U(x, 0) = U0(x), U · n|∂Ω = 0,

where n is the unit outward normal to ∂Ω. Let U0(x) ∈ H3(Ω), ∇·U0 = 0, U0 ·n|∂Ω = 0.

For any fixed T > 0, if G ∈ C([0, T ];H3(Ω)), then U ∈ C([0, T ];H3(Ω)).

The next lemma will be used in the estimate of φ (cf. [6]).

Lemma 2.5. Let Ω ⊂ R
2 be any bounded domain with smooth boundary ∂Ω. Then, for

any function Hs(Ω) � f : Ω → R satisfying ∇f · n|∂Ω = 0, it follows that

‖f − f̄‖2Hs ≤ C‖Δf‖2Hs−2 ,

where f̄ = 1
|Ω|

∫
Ω
fdx, C = C(s,Ω) and the integer s ≥ 2.

The global existence of weak solutions can be proved by using similar arguments in

[6] and [32]. Otherwise, see the energy estimates given in the next section.

Lemma 2.6. Under the assumptions of Theorem 1.1, there exists a global weak solution

(φ, μ, U, θ) to (1.1), (1.7) in the sense of distribution.
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3. Global regularity. In this section, we shall establish the regularity and unique-

ness of the solution obtained in Lemma 2.6 under the assumptions of Theorem 1.1. The

following theorem gives the key estimates.

Theorem 3.1. Under the assumptions of Theorem 1.1, the solution obtained in Lemma

2.6 satisfies the following estimates:

‖φ‖2C([0,T ];H5(Ω)) + ‖φ‖2L2([0,T ];H7(Ω)) + ‖μ‖2C([0,T ];H3(Ω)) + ‖μ‖2L2([0,T ];H5(Ω)) ≤ C,

‖θ‖C([0,T ];H3(Ω)) + ‖θ‖L2([0,T ];H4(Ω)) + ‖U‖C([0,T ];H3(Ω)) ≤ C,

for any 0 < T < ∞. Moreover, there exist constants γ0 > 0 and η0(p) ≥ 0 which are

independent of t such that for any t ≥ 0 and p ∈ [2,∞], it follows that

‖U(·, t)‖2 + ‖φ(·, t)‖2H1 + ‖F (φ(·, t))‖L1 +

∫ t

0

‖∇μ(·, τ )‖2dτ ≤ γ0,

‖(θ − θ̄)(·, t)‖Lp ≤ ‖θ0 − θ̄‖Lp exp{−η0(p)t},

where the constant η0(p) > 0 for p ∈ [2,∞) and η0(p) = 0 for p = ∞.

Due to the loss of viscosity and the appearance of nonhomogeneous terms in the

velocity equation, our strategy for proving Theorem 3.1 is to first establish the full

regularities of the nonhomogeneous terms using lower-order estimates of U . Then, by

applying Lemma 2.4, we can build up the desired regularity of U . As indicated in the

introduction, because of the lack of information of spatial derivatives of the solution on

the boundary of the domain, our energy framework shall proceed towards lower-order

spatial derivatives and temporal derivatives of the solution. Then by applying Lemma

2.2 we can obtain the estimates of higher-order spatial derivatives of the solution. The

proof is based on several steps of careful energy estimates which are stated as a sequence

of lemmas.

First, we observe that, due to the boundary conditions, upon integrating the first

equation in (1.1) over Ω× [0, t], it follows that∫
Ω

φ(x, t)dx =

∫
Ω

φ0(x)dx ≡ |Ω|φ̄, ∀ t ≥ 0.

Letting Φ = φ − φ̄, Θ = θ − θ̄ and plugging Φ and Θ into the original system (1.1) we

have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Φt + U · ∇Φ = Δμ,

μ = −αΔΦ+ F ′(φ),

Ut + U · ∇U +∇P̃ = μ∇Φ+Θe2,

Θt + U · ∇Θ = κΔΘ,

∇ · U = 0,

(3.1)

where P̃ = P − θ̄y, and the initial and boundary conditions turn out to be{
(Φ, μ, U,Θ)(x, 0) = (Φ0, μ0, U0,Θ0)(x) ≡ (φ0 − φ̄, μ0, U0, θ0 − θ̄)(x),

∇Φ · n|∂Ω = 0, ∇μ · n|∂Ω = 0, U · n|∂Ω = 0, Θ|∂Ω = 0.
(3.2)
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In the rest of the paper, we shall work on the reformulated problem (3.1)–(3.2). Since φ̄

and θ̄ are constants, it suffices to prove the estimates stated in Theorem 3.1 for Φ and

Θ.

3.1. Uniform estimates of (Θ, U,Φ, μ). We first prove the L2 version of the decay

estimate of Θ together with some uniform estimate of the first-order derivative of Θ. The

result has been proved in [32]. However, for the sake of completeness and convenience of

the readers, we still present the proof in the current paper. More importantly, we shall

need some energy inequalities from the proof for later use.

Lemma 3.1. Under the assumptions of Theorem 1.1, there exists a constant β0 indepen-

dent of t such that for any t ≥ 0, it follows that

‖Θ(·, t)‖2 ≤ ‖Θ0‖2e−2β0t and

∫ t

0

‖∇Θ(·, τ )‖2eβ0τdτ ≤ 1

κ
‖Θ0‖2. (3.3)

Proof. Taking the L2 inner product of (3.1)4 with Θ we have

1

2

d

dt
‖Θ‖2 + κ‖∇Θ‖2 = 0. (3.4)

Since Θ|∂Ω = 0, Poincaré’s inequality implies that

d

dt
‖Θ‖2 + 2κ

c0
‖Θ‖2 ≤ 0, (3.5)

for some constant c0 depending only on Ω. (3.5) yields immediately that

‖Θ(·, t)‖2 ≤ ‖Θ0‖2e−2β0t, (3.6)

where β0 = κ/c0. This proves the first part of (3.3).

Next, we multiply (3.4) by eβ0t to get

d

dt

(
eβ0t‖Θ‖2

)
+ 2κeβ0t‖∇Θ‖2 = β0e

β0t‖Θ‖2.

Then (3.6) implies that

d

dt

(
eβ0t‖Θ‖2

)
+ 2κeβ0t‖∇Θ‖2 ≤ β0e

−β0t‖Θ0‖2.

For any t > 0, upon integrating in time we obtain

eβ0t‖Θ(·, t)‖2 − ‖Θ0‖2 + 2κ

∫ t

0

eβ0τ‖∇Θ(·, τ )‖2dτ ≤
(
1− e−β0t

)
‖Θ0‖2,

which implies the second part of (3.3) immediately. This completes the proof. �
Next, with the help of the above lemma, we prove the uniform estimates of U,Φ and

μ stated in Theorem 3.1.

Lemma 3.2. Under the assumptions of Theorem 1.1, there exists a constant γ1 indepen-

dent of t such that for any t ≥ 0, it follows that

‖U(·, t)‖2 + ‖Φ(·, t)‖2H1 + ‖F (φ(·, t))‖L1 +

∫ t

0

‖∇μ(·, τ )‖2dτ ≤ γ1. (3.7)
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Proof. Taking the L2 inner product of (3.1)3 with U we have

1

2

d

dt
‖U‖2 =

∫
Ω

μ(∇Φ · U)dx+

∫
Ω

Θe2 · Udx. (3.8)

Taking the L2 inner product of (3.1)1 with μ we have

d

dt

(
α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx

)
+ ‖∇μ‖2 = −

∫
Ω

μ(∇Φ · U)dx. (3.9)

Adding (3.8) and (3.9) we get

d

dt

(
1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx

)
+ ‖∇μ‖2 =

∫
Ω

Θe2 · Udx. (3.10)

Applying the Cauchy-Schwarz inequality to the right-hand side (RHS) of (3.10) we obtain

d

dt

(
1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx

)
+ ‖∇μ‖2 ≤ e−β0t‖U‖2 + eβ0t‖Θ‖2,

which implies, by (3.6), that

d

dt

(
1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx

)
+ ‖∇μ‖2 ≤ e−β0t‖U‖2 + e−β0t‖Θ0‖2. (3.11)

By dropping ‖∇μ‖2 from the left-hand side (LHS) of (3.11) we get

d

dt

(
1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx

)
≤ e−β0t‖U‖2 + e−β0t‖Θ0‖2.

Since F ≥ 0, we have

d

dt

(
E(t)

)
≤ 2e−β0tE(t) + e−β0t‖Θ0‖2,

where

E(t) ≡ 1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx.

Gronwall’s inequality then gives

E(t) ≤ e2/β0

(
E(0) +

1

β0

(
1− e−β0t

)
‖Θ0‖2

)
,

which implies that

1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx ≤ e2/β0

(
E(0) +

1

β0
‖Θ0‖2

)
, ∀ t ≥ 0. (3.12)

Plugging (3.12) into (3.11) we have

d

dt

(
E(t)

)
+ ‖∇μ‖2 ≤ e−β0t

(
e2/β0

(
E(0) +

1

β0
‖Θ0‖2

)
+ ‖Θ0‖2

)
.

Upon integrating the above inequality in time we obtain

E(t) +

∫ t

0

‖∇μ(·, τ )‖2dτ ≤ 1

β0

(
e2/β0

(
E(0) +

1

β0
‖Θ0‖2

)
+ ‖Θ0‖2

)
+ E(0) ≡ α0.

By definition we have

1

2
‖U‖2 + α

2
‖∇Φ‖2 +

∫
Ω

F (φ)dx+

∫ t

0

‖∇μ(·, τ )‖2dτ ≤ α0. (3.13)
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Since φ̄ is the average of φ over Ω, applying Poincaré’s inequality we have

‖Φ‖2 = ‖φ− φ̄‖2 ≤ c0‖∇Φ‖2,

which, together with (3.13), proves (3.7). This completes the proof. �
3.2. H2 estimate of μ, H4 estimate of Φ and H1 estimate of U . We now proceed

towards higher-order estimates of the solution. Fix any 0 < T < ∞. In the rest of this

section, the time is restricted to be within the interval [0, T ] until specified otherwise.

The constants appearing in the energy estimates may depend on T in general, but are

finite for any 0 ≤ T < ∞. First, with the help of Lemma 3.2, we prove the H3 estimate

of Φ.

Lemma 3.3. Under the assumptions of Theorem 1.1, it follows that∫ T

0

‖Φ(·, t)‖2H3dt ≤ C. (3.14)

Proof. Taking the L2 inner product of (3.1)1 with Φ, after integrating by parts we

have

1

2

d

dt
‖Φ‖2 =

∫
Ω

ΦΔμx = −
∫
Ω

∇μ · ∇Φdx = −α‖ΔΦ‖2 −
∫
Ω

F ′′(φ)|∇Φ|2dx,

which gives

d

dt
‖Φ‖2 + 2α‖ΔΦ‖2 ≤ 2F3‖∇Φ‖2, (3.15)

where we have used the condition (H3). Integrating (3.15) over time and using (3.7) we

have

‖Φ(·, t)‖2 + 2α

∫ t

0

‖ΔΦ‖2dτ ≤ 2tF3γ1 + ‖Φ0‖2 ≤ 2TF3γ1 + ‖Φ0‖2, ∀ t ∈ [0, T ],

which implies that

sup
t∈[0,T ]

‖Φ(·, t)‖2 + 2α

∫ T

0

‖ΔΦ‖2dt ≤ 2TF3γ0 + ‖Φ0‖2.

By Lemma 2.5 we then have

sup
t∈[0,T ]

‖Φ(·, t)‖2 +
∫ T

0

‖Φ‖2H2dt ≤ C. (3.16)

To estimate ‖Φ‖2H3 , by Lemma 2.5, (H2), Lemma 2.1 and (3.7) we have

‖Φ‖2H3 ≤ C‖ΔΦ‖2H1

≤ C
(
‖ΔΦ‖2 + ‖∇μ‖2 + ‖F ′′(φ)∇Φ‖2

)
≤ C

(
‖ΔΦ‖2 + ‖∇μ‖2 + ‖φ‖2(p−2)

L4(p−2)‖∇Φ‖2L4 + ‖∇Φ‖2
)

≤ C
(
‖ΔΦ‖2 + ‖∇μ‖2 + (‖Φ‖2(p−2)

H1 + ‖φ̄‖2(p−2)
H1 )‖∇Φ‖2H1 + ‖∇Φ‖2

)
≤ C

(
‖Φ‖2H2 + ‖∇μ‖2

)
.

(3.17)
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From (3.7) and (3.16) we see that the RHS of (3.17) is integrable in time over [0, T ],

which yields ∫ T

0

‖Φ(·, t)‖2H3dt ≤ C.

This completes the proof. �
Second, we improve the regularity of U .

Lemma 3.4. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖U(·, t)‖2H1 ≤ C. (3.18)

Proof. By virtue of the boundary condition, the incompressibility condition and

Lemma 2.3 with s = 1, p = 2 we have

‖U‖2H1 ≤ C
(
‖ω‖2 + ‖U‖2

)
,

where ω = vx − uy is the 2D vorticity. In view of Lemma 3.2, we see that it suffices to

estimate ‖ω‖2 in order to show (3.18). For this purpose, taking the curl of the velocity

equation we get

ωt + U · ∇ω = μxΦy − μyΦx +Θx. (3.19)

Taking the L2 inner product of (3.19) with ω and applying Hölder’s inequality we have

1

2

d

dt
‖ω‖2 ≤

(
‖μxΦy − μyΦx‖+ ‖Θx‖

)
‖ω‖,

which implies that
d

dt
‖ω‖ ≤ 2‖∇μ‖‖∇Φ‖L∞ + ‖∇Θ‖.

Upon integrating in time using Hölder’s inequality and Lemma 2.1 (i) we have

sup
t∈[0,T ]

‖ω(·, t)‖ ≤
∫ T

0

(
2‖∇μ‖‖∇Φ‖L∞ + ‖∇Θ‖

)
dt+ ‖ω0‖

≤ C
(∫ T

0

‖∇μ‖2dt
) 1

2
(∫ T

0

‖Φ‖2H3dt
) 1

2

+
(∫ T

0

eβ0t/2‖∇Θ‖2dt
) 1

2
(∫ T

0

e−β0t/2dt
) 1

2

+ ‖ω0‖.

(3.20)

From Lemma 3.2 and Lemma 3.3 we see that the first term on the RHS of (3.20) is

bounded, and the second term is also bounded according to Lemma 3.1. Therefore, we

have supt∈[0,T ] ‖ω(·, t)‖2 ≤ C. This completes the proof. �
As indicated in the introduction, due to the lack of information of spatial derivatives

of the solution on the boundary of the domain, we need to estimate temporal derivatives

of the solution in order to improve spatial regularity. The next lemma gives the first

estimate of the temporal derivative of the solution.

Lemma 3.5. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖Φ(·, t)‖2H2 +

∫ T

0

‖Φt‖2dt ≤ C. (3.21)
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Proof. Taking the L2 inner product of (3.1)1 with Φt we have

‖Φt‖2 +
∫
Ω

Φt(U · ∇Φ)dx =

∫
Ω

ΦtΔμdx. (3.22)

Using the boundary condition we calculate the RHS of (3.22) as follows:∫
Ω

ΦtΔμdx =

∫
Ω

μΔΦtdx

= − d

dt

(
α

2
‖ΔΦ‖2

)
+

∫
Ω

F ′(φ)ΔΦtdx

= − d

dt

(
α

2
‖ΔΦ‖2 + 1

2

∫
Ω

F ′′(φ)|∇Φ|2dx
)
+

1

2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx.
(3.23)

Plugging (3.23) into (3.22) we get

d

dt

(
α

2
‖ΔΦ‖2 + 1

2

∫
Ω

F ′′(φ)|∇Φ|2dx
)
+ ‖Φt‖2

=
1

2

∫
Ω

F ′′′(φ)Φt|∇Φ|2dx−
∫
Ω

Φt(U · ∇Φ)dx.

(3.24)

Using the Cauchy-Schwarz inequality, (H2) and Lemma 3.2 we estimate the first term

on the RHS of (3.24) as follows:∣∣∣∣12
∫
Ω

F ′′′(φ)Φt|∇Φ|2dx
∣∣∣∣ ≤ 1

4
‖Φt‖2 +

1

4

∫
Ω

|F ′′′(φ)|2|∇Φ|4dx

≤ 1

4
‖Φt‖2 + C

∫
Ω

(
|φ|2(p−3) + 1

)
|∇Φ|4dx

≤ 1

4
‖Φt‖2 + C‖φ‖2(p−3)

L4(p−3)‖∇Φ‖4L8 + C‖∇Φ‖4L4

≤ 1

4
‖Φt‖2 + C‖φ‖2(p−3)

H1 ‖∇Φ‖4L8 + C‖∇Φ‖4L4

≤ 1

4
‖Φt‖2 + C

(
‖∇Φ‖4L8 + ‖∇Φ‖4L4

)
.

(3.25)

Lemma 2.1 (iii)–(v) and Lemma 3.2 then give

‖∇Φ‖4L4 + ‖∇Φ‖4L8 ≤ C
(
‖∇Φ‖2‖∇2Φ‖2 + ‖∇Φ‖4 + ‖∇Φ‖2‖∇2Φ‖2L4 + ‖∇Φ‖4

)
≤ C‖∇Φ‖2

(
‖∇2Φ‖2 + ‖∇Φ‖2 + ‖∇2Φ‖2H1

)
≤ C‖Φ‖2H3 .

So we update (3.25) as∣∣∣∣12
∫
Ω

F ′′′(φ)Φt|∇Φ|2dx
∣∣∣∣ ≤ 1

4
‖Φt‖2 + C‖Φ‖2H3 . (3.26)
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The second term on the RHS of (3.24) is estimated as∣∣∣∣− ∫
Ω

Φt(U · ∇Φ)dx

∣∣∣∣ ≤ 1

4
‖Φt‖2 + ‖U · ∇Φ‖2

≤ 1

4
‖Φt‖2 + ‖U‖2L4‖∇Φ‖2L4

≤ 1

4
‖Φt‖2 + C‖U‖2H1‖∇Φ‖2H1

≤ 1

4
‖Φt‖2 + C‖Φ‖2H2 ,

(3.27)

where we used Lemma 3.4 for ‖U‖2H1 . Plugging (3.26) and (3.27) into (3.24) we have

d

dt

(
α

2
‖ΔΦ‖2 + 1

2

∫
Ω

F ′′(φ)|∇Φ|2dx
)
+

1

2
‖Φt‖2 ≤ C‖Φ‖2H3 . (3.28)

Integrating (3.28) over time and using Lemma 3.3 we find

sup
t∈[0,T ]

(
α‖ΔΦ‖2 +

∫
Ω

F ′′(φ)|∇Φ|2dx
)
+

∫ T

0

‖Φt‖2dt ≤ C,

which implies, by (H3), that

sup
t∈[0,T ]

α‖ΔΦ‖2 +
∫ T

0

‖Φt‖2dt ≤ C + F3 sup
t∈[0,T ]

‖∇Φ‖2 ≤ C,

where we used (3.7). We complete the proof by applying Lemma 2.5 to the above

estimate. �
As by-products of previous lemmas, we have

Lemma 3.6. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖μ(·, t)‖2 +
∫ T

0

(
‖μ(·, t)‖2H2 + ‖Φ(·, t)‖2H4

)
dt ≤ C. (3.29)

Proof. First, we note, by (3.21) and Lemma 2.1 (i), that it follows that

sup
t∈[0,T ]

‖Φ‖L∞ ≤ C,

which implies, according to (H2), that

sup
t∈[0,T ]

‖F (p−n)(φ)‖L∞ ≤ F1C(p, n)
(
‖Φ‖(p−n)

L∞ + ‖φ̄‖(p−n)
L∞

)
+F2 ≤ C, n = 1, ..., 6. (3.30)

From (3.1)2, (3.21) and (3.30) we then have

sup
t∈[0,T ]

‖μ(·, t)‖2 ≤ C sup
t∈[0,T ]

(
‖ΔΦ‖2 + ‖F ′(φ)‖2

)
≤ C sup

t∈[0,T ]

(
‖ΔΦ‖2 + ‖F ′(φ)‖2L∞ |Ω|

)
≤ C.

(3.31)

Second, since ∇μ · n|∂Ω = 0, we get from Lemma 2.3 that

‖∇μ‖2H1 ≤ C
(
‖Δμ‖2 + ‖∇μ‖2

)
.
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By (3.1)1 and Lemmas 3.4–3.5 we have

‖Δμ‖2 ≤ C
(
‖Φt‖2 + ‖U · ∇Φ‖2

)
≤ C

(
‖Φt‖2 + ‖U‖2H1‖∇Φ‖2H1

)
≤ C

(
‖Φt‖2 + 1

)
,

which implies that

‖∇μ‖2H1 ≤ C
(
‖Φt‖2 + 1 + ‖∇μ‖2

)
. (3.32)

From (3.7) and (3.21) we know that the RHS of (3.32) is integrable in time over [0, T ].

We then have ∫ T

0

‖∇μ‖2H1dt ≤ C,

which, together with (3.31), implies that∫ T

0

‖μ‖2H2dt ≤ C. (3.33)

For the H4 estimate of Φ, we have, by Lemma 2.5:

‖Φ‖2H4 ≤ C‖ΔΦ‖2H2 ≤ C
(
‖μ‖2H2 + ‖F ′(φ)‖2H2

)
. (3.34)

By (H2), (3.30) and (3.21) we have

‖F ′(φ)‖2H2 ≤ C
(
‖F ′(φ)‖2L∞ |Ω|+‖F ′′(φ)‖2L∞

(
‖∇Φ‖2+‖∇2Φ‖2

)
+‖F ′′′(φ)‖2L∞‖∇Φ‖4L4

)
≤ C

(
1 + ‖Φ‖2H2 + ‖Φ‖4H2

)
≤ C,

which, together with (3.33)–(3.34), implies that∫ T

0

‖Φ‖2H4dt ≤ C.

This completes the proof. �
3.3. H2 estimates of Θ and W 1,p estimate of U . Due to nonlinear convection, in order

to gain more regularities on Φ, we shall need the estimates of ‖U‖C([0,T ];W 1,p(Ω)) (2 <

p < ∞) and ‖Ut‖L2([0,T ];L2(Ω)). Due to the structure of the vorticity equation (3.19) and

the Sobolev embedding H2 ↪→ W 1,p for 2 < p < ∞, we need to estimate ‖Θ‖H2 first.

The desired estimate is given in the next lemma.

Lemma 3.7. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖Θ(·, t)‖2H1 +

∫ T

0

‖Θ(·, t)‖2H2dt ≤ C. (3.35)

Proof. Taking the L2 inner product of (3.1)4 with Θt we find

κ

2

d

dt
‖∇Θ‖2 + ‖Θt‖2 = −

∫
Ω

(U · ∇Θ)Θtdx. (3.36)

We estimate the RHS of (3.36) as follows: First, using the Cauchy-Schwarz inequality,

we get ∣∣∣∣− ∫
Ω

(U · ∇Θ)Θtdx

∣∣∣∣ ≤ ‖U · ∇Θ‖2 + 1

4
‖Θt‖2.
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Using Lemma 2.1 and (3.18) we have

‖U · ∇Θ‖2 ≤ ‖U‖2L4‖∇Θ‖2L4

≤ C‖U‖2H1‖∇Θ‖2L4

≤ C‖∇Θ‖2L4 .

So we update (3.36) as

κ

2

d

dt
‖∇Θ‖2 + 3

4
‖Θt‖2 ≤ C‖∇Θ‖2L4 , (3.37)

where we used the overline to specify the constant in order to avoid confusion. For the

RHS of (3.37), applying Lemma 2.1 (iv) to ∇Θ we get

C‖∇Θ‖2L4 ≤ C
(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
≤ C(δ)‖∇Θ‖2 + δ‖D2Θ‖2,

(3.38)

where δ is a number to be determined. Since Θ|∂Ω = 0, using (3.1)4 and Lemma 2.2 with

m = 0 and p = 2 we have

‖Θ‖2H2 ≤ C
(
‖Θt‖2 + ‖U · ∇Θ‖2

)
. (3.39)

For the second term on the RHS of (3.39), we use (3.38) to get

‖U · ∇Θ‖2 ≤ c‖U‖2H1‖∇Θ‖2L4 ≤ C
(
‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
.

Then, using the Cauchy-Schwarz inequality, we update (3.39) as

‖Θ‖2H2 ≤ C
(
‖Θt‖2 + ‖∇Θ‖‖D2Θ‖+ ‖∇Θ‖2

)
≤ C

(
‖Θt‖2 + ‖∇Θ‖2

)
+

1

2
‖Θ‖2H2 ,

which implies that

‖Θ‖2H2 ≤ Ĉ
(
‖Θt‖2 + ‖∇Θ‖2

)
. (3.40)

By choosing δ = 1/(4Ĉ) in (3.38), and coupling the result with (3.40) we have

C‖∇Θ‖2L4 ≤ C‖∇Θ‖2 + 1

4
‖Θt‖2. (3.41)

Combining (3.37) with (3.41) we get

κ

2

d

dt
‖∇Θ‖2 + 1

2
‖Θt‖2 ≤ C‖∇Θ‖2. (3.42)

Upon integrating (3.42) in time and using Lemma 3.1 we have

sup
t∈[0,T ]

‖∇Θ(·, t)‖2 +
∫ T

0

‖Θt‖2dt ≤ C.

Since Θ|∂Ω = 0, Poincaré’s inequality gives

sup
t∈[0,T ]

‖Θ(·, t)‖2H1 +

∫ T

0

‖Θt‖2dt ≤ C, (3.43)

which, together with (3.40), implies (3.35). This completes the proof. �
Using Lemma 3.7 we now establish the estimates of ‖U‖C([0,T ];W 1,p(Ω)) (2 < p < ∞)

and ‖Ut‖L2([0,T ];L2(Ω)).
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Lemma 3.8. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖U(·, t)‖2W 1,p ≤ C(p), ∀ 2 < p < ∞, and

∫ T

0

‖Ut(·, t)‖2dt ≤ C. (3.44)

Proof. By virtue of Lemma 2.3 and Lemma 3.4, it suffices to estimate ‖ω‖2Lp in order

to obtain ‖U‖2W 1,p . For this purpose, for any 2 < p < ∞, taking the L2 inner product of

the vorticity equation (3.19) with |ω|p−2ω we have

1

p

d

dt
‖ω‖pLp ≤ (2‖∇μ‖L2p‖∇Φ‖L2p + ‖∇Θ‖Lp)‖ω‖p−1

Lp ,

which, together with Lemma 2.1 (iii), gives

d

dt
‖ω‖Lp ≤ 2‖∇μ‖L2p‖∇Φ‖L2p + ‖∇Θ‖Lp

≤ C(p)(‖∇μ‖H1‖Φ‖H2 + ‖Θ‖H2).
(3.45)

Upon integrating (3.45) in time and using Hölder’s inequality we have

‖ω‖Lp ≤ C(p)

[( ∫ T

0

‖∇μ‖2H1d
) 1

2
(∫ T

0

‖Φ‖2H2d
) 1

2

+ T
1
2

(∫ T

0

‖Θ‖2H2dt
) 1

2

]
+ ‖ω0‖Lp .

From (3.29) and (3.39) we see that the temporal integrals on the RHS of the above

estimate are bounded. Then we have

sup
t∈[0,T ]

‖ω(·, t)‖Lp ≤ C(p), ∀ 2 < p < ∞,

which gives
sup

t∈[0,T ]

‖U(·, t)‖W 1,p ≤ C(p), ∀ 2 < p < ∞. (3.46)

By (3.46) with p = 3 and Lemma 2.1 (iii) we then have

‖U‖L∞ ≤ C‖U‖W 1,3 ≤ C. (3.47)

To estimate ‖Ut‖2, taking the L2 inner product of (3.1)3 with Ut we have

‖Ut‖2 ≤ ‖U · ∇U‖2 + ‖μ∇Φ‖2 + ‖Θ‖2

≤ ‖U‖2L∞‖∇U‖2 + ‖μ‖2H1‖Φ‖2H2 + ‖Θ0‖2

≤ C(‖μ‖2 + ‖∇μ‖2 + 1)

≤ C(‖∇μ‖2 + 1),

(3.48)

where we have used Lemma 3.1 for ‖Θ‖2, (3.46) for ‖∇U‖2, (3.47) for ‖U‖2L∞ , Lemma

3.5 for ‖Φ‖2H2 and Lemma 3.6 for ‖μ‖2. Therefore, the lemma follows from (3.48) and

Lemma 3.2. This completes the proof. �
3.4. H3 estimates of μ and H5 estimate of Φ. The next lemma serves as one of the

building blocks for building up the full regularity of U . Indeed, the lemma gives the H3

estimate of μ∇φ.

Lemma 3.9. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

(
‖μ(·, t)‖2H3 + ‖Φ(·, t)‖2H5

)
≤ C. (3.49)
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Proof. The lemma is proved by estimating temporal derivatives of the solution. Taking

the L2 inner product of (3.1)1 with μt we have

1

2

d

dt
‖∇μ‖2 + α‖∇Φt‖2 = −

∫
Ω

[
F ′′(φ)Φ2

t + μt(U · ∇Φ)
]
dx. (3.50)

Using (3.30), (3.47) and (3.21) we estimate the RHS of (3.50) as follows:∣∣∣∣ ∫
Ω

[
F ′′(φ)Φ2

t + μt(U · ∇Φ)
]
dx

∣∣∣∣
≤ ‖F ′′(φ)‖L∞‖Φt‖2 + C‖U · ∇Φ‖2 + 1

8α
‖μt‖2

≤ C‖Φt‖2 + C‖U‖2L∞‖∇Φ‖2 + 1

4α

(
α2‖ΔΦt‖2 + ‖F ′′(φ)‖2L∞‖Φt‖2

)
≤ C‖Φt‖2 + C +

α

4
‖ΔΦt‖2.

(3.51)

So we update (3.50) as

1

2

d

dt
‖∇μ‖2 + α‖∇Φt‖2 ≤ C‖Φt‖2 + C +

α

4
‖ΔΦt‖2. (3.52)

Next, we differentiate (3.1)1 with respect to t to get

Φtt + Ut · ∇Φ+ U · ∇Φt = Δμt. (3.53)

Taking the L2 inner product of (3.53) with Φt, in a similar fashion, we have

1

2

d

dt
‖Φt‖2 + α‖ΔΦt‖2 =

∫
Ω

F ′(φ)tΔΦtdx−
∫
Ω

Φt(Ut · ∇Φ)dx

=

∫
Ω

F ′′(φ)ΦtΔΦtdx+

∫
Ω

Φ(Ut · ∇Φt)dx

≤ α

4
‖ΔΦt‖2 +

1

α
‖F ′′(φ)‖2L∞‖Φt‖2 +

1

2α
‖Φ‖2L∞‖Ut‖2 +

α

2
‖∇Φt‖2

≤ α

4
‖ΔΦt‖2 + C‖Φt‖2 + C‖Φ‖2H2(‖∇μ‖2 + 1) +

α

2
‖∇Φt‖2

≤ α

4
‖ΔΦt‖2 + C‖Φt‖2 + C

(
‖∇μ‖2 + 1

)
+

α

2
‖∇Φt‖2,

(3.54)

where we have used (3.48). Combining (3.52) and (3.54) we get

d

dt

(
‖∇μ‖2 + ‖Φt‖2

)
+ α

(
‖∇Φt‖2 + ‖ΔΦt‖2

)
≤ C

(
‖Φt‖2 + ‖∇μ‖2 + 1

)
. (3.55)

Since the RHS of (3.55) is integrable in time according to Lemma 3.2 and Lemma 3.6,

upon integrating (3.55) in time we have

sup
t∈[0,T ]

(
‖∇μ(·, t)‖2 + ‖Φt(·, t)‖2

)
+

∫ T

0

(
‖∇Φt(·, τ )‖2 + ‖ΔΦt(·, τ )‖2

)
dt ≤ C,

which, together with Lemma 2.5, implies that

sup
t∈[0,T ]

(
‖∇μ(·, t)‖2 + ‖Φt(·, t)‖2

)
+

∫ T

0

‖Φt(·, τ )‖2H2dt ≤ C. (3.56)
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From (3.31)–(3.32), (3.34) and (3.56) we then see that

sup
t∈[0,T ]

(
‖μ(·, t)‖2H2 + ‖Φ(·, t)‖2H4

)
≤ C. (3.57)

Now, taking the L2 inner product of (3.53) with μt we have

α

2

d

dt
‖∇Φt‖2 + ‖∇μt‖2 = −

∫
Ω

(Ut · ∇Φ+ U · ∇Φt)μtdx−
∫
Ω

F ′′(φ)ΦtΦttdx

=

∫
Ω

(UtΦ+ UΦt) · ∇μtdx−
∫
Ω

F ′′(φ)ΦtΦttdx.

(3.58)

For the last term on the RHS of (3.58), we have

−
∫
Ω

F ′′(φ)ΦtΦttdx = −1

2

d

dt

∫
Ω

F ′′(φ)Φ2
tdx+

1

2

∫
Ω

F ′′′(φ)Φ3
tdx. (3.59)

So we update (3.58) as

d

dt

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
tdx

)
+ 2‖∇μt‖2

= 2

∫
Ω

(UtΦ+ UΦt) · ∇μtdx+

∫
Ω

F ′′′(φ)Φ3
tdx.

(3.60)

We estimate the summand on the RHS of (3.60) as follows: For the first term, we have∣∣∣∣2 ∫
Ω

(UtΦ+ UΦt) · ∇μtdx

∣∣∣∣
≤ ‖∇μt‖2 + 2

(
‖Ut‖2‖Φ‖2L∞ + ‖U‖2L∞‖Φt‖2

)
≤ ‖∇μt‖2 + C

(
‖Ut‖2 + 1

)
.

(3.61)

For the term involving Φ3
t , we have∣∣∣∣ ∫

Ω

F ′′′(φ)Φ3
tdx

∣∣∣∣ ≤ ‖F ′′′(φ)‖∞‖Φt‖3L3 ≤ C‖Φt‖2L∞‖Φt‖L1 ≤ C‖Φt‖2H2‖Φt‖

≤ C‖ΔΦt‖2.
(3.62)

Combining (3.60)–(3.62) we have

d

dt

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
tdx

)
+ ‖∇μt‖2 ≤ C

(
‖ΔΦt‖2 + ‖Ut‖2 + 1

)
. (3.63)

By virtue of Lemma 3.8 and (3.56) we know that the RHS of (3.63) is integrable in time.

Therefore, we have

sup
t∈[0,T ]

(
α‖∇Φt‖2 +

∫
Ω

F ′′(φ)Φ2
tdx

)
+

∫ T

0

‖∇μt‖2dt ≤ C, (3.64)

which, together with (3.56) and (H3), implies that

sup
t∈[0,T ]

α‖∇Φt(·, t)‖2 +
∫ T

0

‖∇μt‖2dt ≤ C + F3 sup
t∈[0,T ]

‖Φt‖2 ≤ C.

By Poincaré’s inequality we then have

sup
t∈[0,T ]

‖Φt‖2H1 +

∫ T

0

‖∇μt‖2dt ≤ C. (3.65)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



GLOBAL REGULARITY FOR CAHN-HILLIARD-BOUSSINESQ SYSTEM 349

Now we derive some consequences of (3.65). First, by Lemma 2.3 and Sobolev em-

bedding we have

sup
t∈[0,T ]

‖μ(·, t)‖H3 ≤ C sup
t∈[0,T ]

(
‖μ‖+ ‖Δμ‖H1 + ‖∇μ‖

)
≤ C sup

t∈[0,T ]

(
‖μ‖H1 + ‖Φt‖H1 + ‖U · ∇Φ‖H1

)
≤ C sup

t∈[0,T ]

(
‖μ‖H1 + ‖Φt‖H1 + ‖U‖H1

(
‖∇Φ‖L∞ + ‖∇2Φ‖L∞

))
≤ C sup

t∈[0,T ]

(
‖μ‖H1 + ‖Φt‖H1 + ‖U‖H1‖Φ‖H4

)
.

Using (3.18) for ‖U‖H1 , (3.57) for ‖μ‖H1 and ‖Φ‖H4 , and (3.65) for ‖Φt‖H1 we then

have
sup

t∈[0,T ]

‖μ(·, t)‖H3 ≤ C. (3.66)

Second, by Lemma 2.5 we have

sup
t∈[0,T ]

‖Φ(·, t)‖H5 ≤ C sup
t∈[0,T ]

‖ΔΦ‖H3

≤ C sup
t∈[0,T ]

(
‖μ‖H3 + ‖F ′(φ)‖H3

)
.

(3.67)

By direct calculation and (3.30) we have

‖F ′(φ)‖H3 ≤ C
(
1 + ‖∇Φ‖H2 + ‖∇Φ‖2L4 + ‖∇Φ‖3L6 + ‖∇Φ‖L4‖∇2Φ‖L4

)
≤ C

(
1 + ‖∇Φ‖H2 + ‖∇Φ‖2H1 + ‖∇Φ‖3H1 + ‖∇Φ‖H1‖∇2Φ‖H1

)
,

which, together with (3.57), implies that

sup
t∈[0,T ]

‖F ′(φ)(·, t)‖H3 ≤ C. (3.68)

Therefore, combining (3.66)–(3.68) we have

sup
t∈[0,T ]

‖Φ(·, t)‖H5 ≤ C, (3.69)

which completes the proof. �
3.5. H3 estimates of (Θ, U). In this subsection, we shall establish the full regularity

of the nonhomogeneous terms on the RHS of the velocity equation in order to prove the

regularity of U stated in Theorem 3.1. First, with the help of Lemma 3.9 we have

Lemma 3.10. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖μ∇Φ(·, t)‖2H3 ≤ C. (3.70)

Proof. By direct calculation and Sobolev embedding we have

‖μ∇Φ‖2H3 ≤ C
(
‖μ‖2L∞‖Φ‖2H4 + ‖μ‖2W 1,4‖Φ‖2W 3,4 + ‖μ‖2H2‖Φ‖2C2 + ‖μ‖2H3‖Φ‖2C1

)
≤ C

(
‖μ‖2H2‖Φ‖2H4 + ‖μ‖2H3‖Φ‖2H3

)
,

which, together with (3.49), implies (3.70). This completes the proof. �
Next, we turn to the H3 estimate of Θ which together with Lemma 3.10 will yield the

desired regularity of U .
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Lemma 3.11. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖Θ(·, t)‖2H3 ≤ C. (3.71)

Proof. First, we observe that, by (3.48) and Lemma 3.9, it follows that

sup
t∈[0,T ]

‖Ut(·, t)‖2 ≤ C. (3.72)

Second, by taking the temporal derivative of (3.1)4 we get

Θtt + Ut · ∇Θ+ U · ∇Θt = κΔΘt. (3.73)

Taking the L2 inner product of (3.73) with Θt and using (3.72) we have

1

2

d

dt
‖Θt‖2 + κ‖∇Θt‖2 =

∫
Ω

Θ(Ut · ∇Θt)dx

≤ κ

2
‖∇Θt‖2 +

1

2κ
‖Ut‖2‖Θ‖2L∞

≤ κ

2
‖∇Θt‖2 + C‖Θ‖2H2 ,

(3.74)

which gives
d

dt
‖Θt‖2 + κ‖∇Θt‖2 ≤ C‖Θ‖2H2 . (3.75)

Integrating (3.75) in time over [0, T ] and using Lemma 3.7 we have

sup
t∈[0,T ]

‖Θt‖2 +
∫ T

0

‖∇Θt‖2dt ≤ C,

which, together with (3.40) and (3.43), implies that

sup
t∈[0,T ]

‖Θ‖2H2 +

∫ T

0

‖Θt‖2H1dt ≤ C. (3.76)

By virtue of Lemma 2.2 with m = 1, p = 2 and (3.76) we have

‖Θ‖2H3 ≤ C
(
‖Θt‖2H1 + ‖U · ∇Θ‖2H1

)
≤ C

(
‖Θt‖2H1 + ‖∇U‖2L4‖∇Θ‖2L4 + ‖U‖2L∞‖Θ‖2H2

)
≤ C

(
‖Θt‖2H1 + ‖∇U‖2L4‖∇Θ‖2H1 + ‖U‖2L∞‖Θ‖2H2

)
≤ C

(
‖Θt‖2H1 + 1

)
,

(3.77)

where we used (3.44) and (3.47). Therefore, (3.76)–(3.77) yield

sup
t∈[0,T ]

‖Θ(·, t)‖2H2 +

∫ T

0

‖Θ(·, t)‖2H3dt ≤ C. (3.78)

We continue to find higher-order estimates for Θt in order to improve spatial regularity.

To this end, we take the L2 inner product of (3.73) with Θtt to get

κ

2

d

dt
‖∇Θt‖2 + ‖Θtt‖2 = −

∫
Ω

(Ut · ∇Θ)Θttdx−
∫
Ω

(U · ∇Θt)Θttdx. (3.79)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



GLOBAL REGULARITY FOR CAHN-HILLIARD-BOUSSINESQ SYSTEM 351

By (3.47) and (3.72) we have∣∣∣∣− ∫
Ω

(Ut · ∇Θ)Θttdx−
∫
Ω

(U · ∇Θt)Θttdx

∣∣∣∣
≤ 1

4
‖Θtt‖2 + ‖Ut‖2‖∇Θ‖2L∞ +

1

4
‖Θtt‖2 + ‖U‖2L∞‖∇Θt‖2

≤ 1

2
‖Θtt‖2 + C‖Θ‖2H3 + C‖∇Θt‖2,

which, together with (3.79), yields

κ
d

dt
‖∇Θt‖2 + ‖Θtt‖2 ≤ C

(
‖Θ‖2H3 + ‖∇Θt‖2

)
.

Upon integrating in time and using (3.76), (3.78) and Poincaré’s inequality we have

sup
t∈[0,T ]

‖Θt(·, t)‖2H1 +

∫ T

0

‖Θtt(·, t)‖2dt ≤ C, (3.80)

which, together with (3.77), implies that

sup
t∈[0,T ]

‖Θ(·, t)‖2H3 ≤ C. (3.81)

This completes the proof. �
Lemmas 3.10–3.11 give the desired estimates of the nonhomogeneous terms on the

RHS of the velocity equation. Let the function G = μ∇Φ+Θe2 in Lemma 2.4. Then it

is obvious that G ∈ C([0, T ];H3(Ω)). So Lemma 2.4 implies

Lemma 3.12. Under the assumptions of Theorem 1.1, it follows that

sup
t∈[0,T ]

‖U(·, t)‖2H3 ≤ C. (3.82)

3.6. Final estimates of the solution. It is clear that, in order to complete the regularity

of the solution stated in Theorem 3.1, it remains to show the estimates of ‖Θ‖2H4 , ‖μ‖2H5

and ‖Φ‖2H7 . These will be done in a quite straightforward way with the help of previously

established estimates.

First, since Θ|∂Ω = 0, by Lemma 2.2, Lemma 3.11 and Lemma 3.12 we have

∫ T

0

‖Θ‖2H4dt ≤ C

∫ T

0

(
‖Θt‖2H2 + ‖U · ∇Θ‖2H2

)
dt

≤ C

∫ T

0

(
‖Θt‖2H2 + ‖U‖2H3‖Θ‖2H3

)
dt

≤ C

∫ T

0

(
‖Θt‖2H2 + 1

)
dt.

(3.83)
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To deal with ‖Θt‖2H2 , we treat (3.73) as an equation for Θt. Since Θt|∂Ω = 0, by Lemma

2.2 we have∫ T

0

‖Θt‖2H2dt ≤ C

∫ T

0

(
‖Θtt‖2 + ‖Ut · ∇Θ‖2 + ‖U · ∇Θt‖2

)
dt

≤ C

∫ T

0

(
‖Θtt‖2 + ‖Ut‖2‖∇Θ‖2L∞ + ‖U‖2L∞‖∇Θt‖2

)
dt

≤ C

∫ T

0

(
‖Θtt‖2 + ‖Ut‖2‖∇Θ‖2H2 + ‖U‖2H2‖∇Θt‖2

)
dt.

Applying (3.72) for ‖Ut‖2, (3.81) for ‖∇Θ‖2H2 , (3.82) for ‖U‖2H2 , and (3.80) for ‖∇Θt‖2
and ‖Θtt‖2 we then have ∫ T

0

‖Θt‖2H2dt ≤ C,

which, together with (3.83), implies that∫ T

0

‖Θ‖2H4dt ≤ C. (3.84)

Second, by Lemma 2.3, Lemma 2.5 and (3.49), we have

‖μ‖2H5 ≤ C(‖Δμ‖2H3 + ‖μ‖2H1)

≤ C(‖Φt‖2H3 + ‖U · ∇Φ‖2H3 + 1)

≤ C(‖ΔΦt‖2H1 + ‖U · ∇Φ‖2H3 + 1).

(3.85)

For the first term on the RHS of (3.85), by (3.1)2 we have

‖ΔΦt‖2H1 ≤ C
(
‖ΔΦt‖2 + ‖∇μt‖2 + ‖∇(F ′(φ)t)‖2

)
. (3.86)

Using (3.30), Sobolev embedding and (3.49) we have

‖∇F ′(φ)t‖2 ≤ ‖F ′′′(φ)‖2L∞‖∇Φ‖2L∞‖Φt‖2 + ‖F ′′(φ)‖2L∞‖∇Φt‖2

≤ C‖∇Φ‖2H2‖Φt‖2 + C‖∇Φt‖2

≤ C‖Φt‖2H1 .

(3.87)

So we update (3.86) as

‖ΔΦt‖2H1 ≤ C
(
‖ΔΦt‖2 + ‖∇μt‖2 + ‖Φt‖2H1

)
,

which, together with (3.56) and (3.65), implies that∫ T

0

‖ΔΦt‖2H1dt ≤ C. (3.88)

For the second term on the RHS of (3.85), using Lemma 2.1, Lemma 3.9 and Lemma

3.12 we have

‖U · ∇Φ‖2H3 ≤ C‖U‖2H3‖Φ‖2H4 ≤ C,

which, together with (3.85) and (3.88), implies that∫ T

0

‖μ(·, t)‖2H5dt ≤ C. (3.89)
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Third, concerning the estimate of ‖Φ‖2L2([0,T ];H7(Ω)), we have, by Lemma 2.5:

‖Φ‖2H7 ≤ C‖ΔΦ‖2H5

≤ C(‖μ‖2H5 + ‖F ′(φ)‖2H5).
(3.90)

From (3.89) we see that it suffices to estimate the second term on the RHS of (3.90).

Under the condition (H2), by direct calculation we have

‖F ′(φ)‖2H5 ≤ C(‖Φ‖2H5 + 1),

where the constant C > 0 depends on ‖φ‖C([0,T ];C2(Ω̄)) and F1, F2 in (H2). Since φ ∈
C([0, T ];H5(Ω)) ∩ C([0, T ];C3(Ω)), we have

‖F ′(φ)‖2H5 ≤ C,

which, together with (3.90) and (3.89), implies that∫ T

0

‖Φ(·, t)‖2H7dt ≤ C. (3.91)

Collecting (3.84), (3.89) and (3.91) we have

Lemma 3.13. Under the assumptions of Theorem 1.1, it follows that∫ T

0

(
‖Θ(·, t)‖2H4 + ‖μ(·, t)‖2H5 + ‖Φ(·, t)‖2H7

)
dt ≤ C.

3.7. Exponential decay of ‖Θ‖Lp . In this last section, we show the exponential decay

of the Lp norm of Θ in order to complete the proof of Theorem 3.1.

Lemma 3.14. Under the assumptions of Theorem 1.1, for any p ∈ [2,∞], there exists a

constant η0(p) ≥ 0 which is independent of t such that for any t ≥ 0, it follows that

‖Θ(·, t)‖Lp ≤ ‖Θ0‖Lp exp{−η0(p)t},

where the constant η0(p) > 0 for p ∈ [2,∞) and η0(p) = 0 for p = ∞.

Proof. Since the L2 version of the lemma has been proved in Lemma 3.1, we shall

work on the case of p ∈ (2,∞]. First, for any p ∈ (2,∞), taking the L2 inner product of

(3.1)4 with |Θ|p−2Θ we have

1

p

d

dt

(∫
Ω

|Θ|pdx
)
+ (p− 1)κ

∫
Ω

|Θ|p−2|∇Θ|2dx = 0,

which gives
d

dt

(∫
Ω

|Θ|pdx
)
+ p(p− 1)κ

∫
Ω

|Θ|p−2|∇Θ|2dx = 0. (3.92)

Since Θ|∂Ω = 0, so does g ≡ |Θ|p/2. Applying Poincaré’s inequality to g we have∫
Ω

|Θ|pdx =

∫
Ω

g2dx ≤ c0

∫
Ω

|∇g|2dx = c0
p2

4

∫
Ω

|Θ|p−2|∇Θ|2dx,

which yields
4p(p− 1)κ

c0p2

∫
Ω

|Θ|pdx ≤ p(p− 1)κ

∫
Ω

|Θ|p−2|∇Θ|2dx. (3.93)
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Plugging (3.93) into (3.92) we have

d

dt

(∫
Ω

|Θ|pdx
)
+

4(p− 1)κ

c0p

∫
Ω

|Θ|pdx ≤ 0,

which yields immediately that

‖Θ(·, t)‖pLp ≤ ‖Θ0‖pLp exp

{
− 4(p− 1)κ

c0p
t

}
.

It follows that

‖Θ(·, t)‖Lp ≤ ‖Θ0‖Lp exp

{
− 4(p− 1)κ

c0p2
t

}
, ∀ p ∈ (2,∞).

We complete the proof by letting p → ∞. �
3.8. Uniqueness. Lemmas 3.2, 3.9 and 3.11–3.14 conclude the regularity and uniform

estimates of the solution stated in Theorem 3.1. Therefore, it remains to show the

uniqueness of the solution in order to prove Theorem 1.1. We observe that, due to Theo-

rem 3.1 and Sobolev embedding, it follows that φ ∈ C([0, T ];C3(Ω))∩L2([0, T ];C5(Ω)),

μ ∈ C([0, T ];C1(Ω))∩L2([0, T ];C3(Ω)), U ∈ C([0, T ];C1(Ω)) and θ ∈ C([0, T ];C1(Ω))∩
L2([0, T ];C2(Ω)) for any 0 < T < ∞. Therefore, by these estimates, the uniqueness of

the solution follows from the standard L2 energy estimate. Indeed, by assuming that one

has two solutions (φ1, μ1, θ1, U1, P1) and (φ2, μ2, θ2, U2, P2), it is straightforward to show

that

d

dt

(
‖φ1 − φ2‖2 + ‖θ1 − θ2‖2 + ‖U1 − U2‖2

)
≤ C

(
‖φ1 − φ2‖2 + ‖θ1 − θ2‖2 + ‖U1 − U2‖2

)
, ∀ t ∈ [0, T ],

which implies immediately the uniqueness of the solution. We omit the details here.

Theorem 3.2. Under the assumptions of Theorem 1.1, the solution to (1.1), (1.7) is

unique.

Theorem 3.1 and Theorem 3.2 conclude our main result, Theorem 1.1. We finish this

section with the following remarks.

Remark 3.1. It is interesting and important to understand the large time asymptotic

behavior of the solution to (1.1), (1.7). We note that, using similar arguments in [6],

one can show that φ converges exponentially fast to φ̄ as time goes to infinity, provided

that the initial perturbations are sufficiently small. The idea is to first assume F ′′(·) ≥ 0

on a small neighborhood Iφ̄ = [φ̄ − δ, φ̄ + δ] and then solve a modified problem with F

replaced by an auxiliary function Fφ̄ whose second-order derivative is nonnegative on R

and coincides with F ′′(·) on Iφ̄. Then, under the smallness assumption on the initial

perturbations, it can be shown that the solution to the modified problem is indeed the

solution to the original problem and converges exponentially to the constant state as time

goes to infinity. The key estimate is (3.15) in this paper. However, the technique does not

work without the smallness assumption because in this case the solution to the modified

problem does not coincide with the solution to the original problem. We leave the

investigation on the asymptotic behavior of the solution with large initial perturbations

for the future.
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Remark 3.2. We observe that, using the arguments in this paper one can show that

the results obtained in Theorem 1.1 still hold if either the Dirichlet boundary condition

for θ is replaced by the Neumann boundary condition ∇θ · n|∂Ω = 0, or the Neumann

boundary conditions for φ and μ are replaced by the Dirichlet boundary conditions

φ|∂Ω = φ̃ and μ|∂Ω = μ̃, where φ̃ and μ̃ are constants and satisfy μ̃ = F ′(φ̃). In the

former case, θ will converge to θ̃ = 1
|Ω|

∫
Ω
θ0(x)dx in the L2 norm.

Remark 3.3. The results obtained in Theorem 1.1 can also be generalized to the case

of parameter-dependent diffusion coefficients. In other words, one can replace Δμ by

∇ · (β(φ)∇μ) and κΔθ by ∇ · (κ(φ)∇θ) respectively. In this case, the modeling equa-

tions describe more realistic phenomena comparing with (1.1). By imposing appropriate

conditions on β(φ) and κ(φ) one can study global existence and uniqueness of classical

solutions to the more complicated system. The proofs are in the spirit of this paper. We

omit the details here.
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