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Global Regularity of the Solutions
to the Capillarity Problem (*).

CLAUS GERHARDT (**)

0. - Introduction.

Let S~ be a bounded domain of n&#x3E;2, with smooth boundary aS2,
and let A be the minimal surface operator

Then, a (regular) solution of the capillarity problem can be looked at as a
solution U E of the following equation

in

subject to the boundary conditions

on

where H and fl are given functions, and y = (yl, ... , yn) is the exterior

normal vector to 8Q.

Recently, SPRUCK [12] and URAL’CEVA [15] solved this question partially:
In the case n = 2 Spruck could show the existence of a solution C 
provided that aS2 is of class 04, fJ belongs to such that 0  8  1

and and provided that H has the form H(x, t) = x ~ t, 
Spruck’s methods are completely two-dimensional.

(*) During the preparation of this article the author was at the Université
de Paris VI as fellow of the Deutsche Forschungsgemeinschaft.

(**) Mathematisches Institut, der Universitat Heidelberg.
Pervenuto alla Redazione il 30 Novembre 1974 e in forma defini tiva il 18 Luglio

1975.

(1) Here and in the following we sum over repeated indices from 1 to n.
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A different approach has been made by Ural’ceva which will be valid
for arbitrary dimension. She proved the existence of a solution u E 
under the assumptions

where H satisfies

and where S~ is supposed to be convex and fl is constant.

The last assumptions are rather restrictive, and it is the aim of this paper to
exclude these restrictions by a suitable modification of Ural’ceva’s proof.

In the second part of this article we shall apply this result to the capil-
larity problem with constant volume-which is an obstacle problem-and
we shall show that this problem has a for any p &#x3E; n.

Since the paper of Ural’ceva is written in Russian we shall repeat many
proofs of that paper almost literally for the convenience of the reader.

1. - A priori estimates for 

In this section we shall assume that is a solution to the dif-

ferential equation (0.2), (0.3). Furthermore, let us suppose that 8Q is of
class C2, and that the functions

and

satisfy the conditions

and

Then, the following theorem is valid.

THEOREM 1.1. Under the assumptions stated above the modulus of the

gradient of u can be estimated by a constant depending on Jul,,, IH(x, u(x)) I..,
u(x)) 1.0, n, a, and on the Lipschitz constant of fl.
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PROOF. First of all, let us extend fl and y into the whole domain D
such that fl belonging to still satisfies (1.3), and such that the vector
field y is uniformly Lipschitz continuous in S~ and absolutely bounded by 1.
These extensions are possible in view of the smoothness of aS2.

Then, following Ural’ceva’s ideas, we are going to prove that the function

is uniformly bounded in S~ by some constant which only depends on the
quantities we have just mentioned in Theorem 1.1. Precisely, we shall show
that v is bounded locally near aS2. The global estimate then follows from
well-known interior gradient bounds.

In order to prove the main result we need some lemmata which will

be derived in the following.
We denote by 8 the graph of u

and by ~ _ (~1, ..., ~~+~) the usual differential operators on 8, i.e. for

we have

where v = (v1, ..., is the exterior normal vector to 8

Then the following Sobolev Imbedding Lemma is valid:

LEMMA 1.1. For any function g E the inequality

holds, where Jen is the n-dimensional Hausdorff measure, and where the con-
stant depends on n and IH(x, u(x)) In.

PROOF OF LEMMA 1.1. This Sobolev inequality for functions equal to
zero on all of aS2 was established in [9] for solutions of (0.2). Here, we shall
not assume that g is equal to zero on 8Q.
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Denote by d, d(x) = dist (x, 8Q), the distance function to aD, and let

for kEN.

Let be given. Then

has boundary values equal to zero, so that in view of the result in [9] in-

equality (1.8) is valid for gk .
If k goes to infinity the integrals

tend to the respective integrals with gk replaced by g, while

is estimated by

The last integral converges to

(cf. [5; Appendix III]), hence the result.
Next we need to technical lemmata. Let us denote by aii

then we have

LEMMA 1.2. On the boundary of S~ we have the following estimate

where the constant C2 depends on 2S~ and the Lipschitz constant of fl.
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PROOF OF LEMMA 1.2. Let zo be an arbitrary boundary point and let us
introduce new coordinates y = y(x) which are related to x by an orthogonal
transformation such that the yn-agis is directed along the exterior normal
vector at zo : Assume, furthermore, that in a neighbourhood of zo the sur-
face 8Q is specified by

If we now differentiate the equation (0.3) with respect to the operator

then we obtain at x,

Moreover, since we deduce

Thus, we have in view of (0.3)

and hence the relation (1.19) is also true for s = n.

On the other hand, combining (1.19) and

we derive that the left side of (1.16) is bounded at zo by

by which the assertion is proved.

LEMMA 1.3. In the whole domain Q the following pointwise estimate is valid

where the constant depends on IDyln, and on a.

11 - Annali della Scuola Norm. Sup. di Pisa
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PROOF OF LEMMA 1.3. During the proof we have to work in the (n + 1) -
dimensional Euclidean space rather than in the n-dimensional one; there-

fore we regard a function g = ..., xn) as being defined in via the

mapping x -* (x, 0). Let us introduce the notation 0 for the Euclidean

norm in Rn+l

We shall consider the Hessian matrix of ø, evaluated at

qo = (- Du(xo), 1) where Xo is an arbitrary but fixed point in Q. Let

..., zn+1 be the eigenvectors of that matrix and ..., be the cor-

responding eigenvalues. Evidently, is itself an eigenvector, which is
just the exterior normal vector of the surface 8 at the point (xo, u(xo)) .

Assume, that the eigenvectors are numbered in such a way that

Zn+l = qollqol. Then, we have 0. Furthermore, the eigenvectors z; ,

i  n + 1, are orthogonal to Zn+’, and we easily derive

Finally, if we denote by cos(zi, xk) the scalar product of the corresponding
vectors, where the indices run from 1 to it + 1, then we obtain

To estimate

at xo, y let us observe that we may sum from 1 to n + 1 in this expression
since u does not depend on xn+1. lBforeover, as 11. is the trace of a product
of matrices it is invariant under orthogonal transformations of the co-

ordinate system. Thus, we derive,

having in mind that Ân+l == 0.
From (1.28) we conclude in view of (1.26)

where
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On the other hand, we have

where now we also sum over the repeated indices i, j, and k from 1 to n + 1.
Furthermore, I to estimate for ~~-)-1 we observe that for

any Cl-function g which does not depend on there holds

and

hence

Finally, y if differentiate v with respect to zs for s -=1= n + 1 we obtain

where the at’s satisfy

and-in view of (1.27)-

Taking the estimate
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with some suitable constant c4 into account, we thus deduce from (1.33)
and (1.36)

Combining the relations (1.34), (1.35), and (1.38) we then conclude

Hence, there exists a constant e3 depending on a, ID(,8y)I, and known
quantities such that in view of (1.29)

from which the assertion (1.24) immediately follows.
As we are treating the case of a non-convex domain and a variables we

need the following estimate

LEMMA 1.4. For any positive E we have the estimate

where the constant depends on and IH(x, 

PROOF OF LEMMA 1.4. Let

for i =1, ..., n, we have

Thus, we deduce the identity
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Inserting _ ~ ~ yi in this equality and summing over i from 1 to n yields

hence the result.

Up to now we have only proved auxiliary propositions which we shall
need for estimating certain expressions that will appear in the following
calculations. As we mentioned at the beginning we are going to show that v,
or better,

is uniformly bounded in S~. To accomplish this, let us look at the integral
identity

If we choose 99 = 0  (Q) and where

h is large, then we obtain in view of (0.2) and (1.22)

Moreover, observing that

we deduce from (1.47) in view of the Lemmata 1.2 and 1.3, and in view of
the assumption (1.3)

where C6 is a suitable constant and q any positive Cl-function.

We shall use this relation with 27 = h, 0}, where h is a

large positive number and ~, 0~ly a smooth function. Introducing
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the notations

Thus, taking the relations

and

into account, we derive

Moreover, from the Lemmata 1.1 and 1.4, and from (1.53) we conclude

Thus, using the Holder inequality
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and choosing supp ~ small enough we deduce

from which we derive by a well-known argument

Hence, we conclude

Now, the boundedness of W. ~2 follows immediately provided that

is bounded, where B(ho) = {x E Q: v(x) &#x3E; ho) and ho is sufficiently large (cf.
[3 ; p. 195]).

As a first step we prove

LEMMA 1.5. Suppose that the assumptions of Theorem 1.1 are satisfied.
Then we have

PROOF OF LEMMA 1.5. We insert in the inequal-
ity (1.49) and conclude with the help of the relations (1.51)-(1.54)

Thus it remains to prove that f v dx or equivalently fW dx is bounded.
sa n

To accomplish this, we consider the identity
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Choosing q = u the result follows from the inequality

(cf. [6; Lemma 1]).
After having established the estimate (1.63) we use the relation (1.65)

once more, this time with q = 0) and we obtain in view of
the preceding inequality

Hence, we deduce

where we used the inequality

To complete the proof of the boundedness of the integral (1.62) we ob-
serve that

for some suitable constant a.

Thus, we have proved that, given a suitable boundary neighbourhood U,
is bounded in U. Together with well-known interior gradient estimates

(cf. [1, 8, 13]) this completes the proof of Theorem 1.1.

2. - Existence of a solution u.

In view of the a priori estimates which we have just established the
existence of a solution will be proved by a continuity method.

THEOREM 2.1. Suppose that the boundary of S~ is of class C2°~’, and that H
and fl are their arguments. Furthermore, that H
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satisfies

Then the boundary value problem (0.2), (0.3) has a unique solution u E C2~"(S~),
where the exponent a, 0  a C 1, is determined by the above quantities.

PROOF. Let z be a real number with 0,1’,1, and consider the boundary
value problems

Let T be the set

T is obviously not empty for uo = 0 belongs to it, and we shall show that
it is both open and closed.

In view of the assumption (2.1) we obtain an a priori bound of 
for any 7: E T independent of i (cf. [2]). Furthermore, let us remark

that any solution uZ E C2(Q) is of class C2~°‘(SZ) with some fixed a, 0  ex  1,
such that the norm of uz in C2,,(D) is bounded independently of 7:.

To prove this, we first deduce from Theorem 1.1 that IDuylD is uniformly
bounded

Then, we choose a smooth vector field di such that adilapi is uniformly
elliptic, and such that

From [7; Chapter 10, Theorem 2.2] we conclude that the problem

has a solution E C‘~°‘(,S2) for any 7:. Moreover in view of (2.5) and (2.6)
we derive
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Hence, we obtain from the uniqueness of the solution

Thus, we can finally conclude that is uniformly bounded

where the constant is determined by known quantities.
From the estimate (2.11) it follows immediately that T is closed.
On the other hand, let To E T. Then, we consider the boundary value

problems (2.7.-r), (2.8. i) as before. Since IDuTI.a depends continuously on Ty
it turns out that

But this yields ict = u-r for those i’s. Thus, the proof of Theorem 2.1 is

completed.
For our considerations in the next section it will be necessary to bound

the norm of u in the function space H2~~(S~), p &#x3E; n, by a constant which
only depends on luln, p, n, the 02-norm of aS2, and on the

LI-norm of H(x, u(x)).

THEOREM 2.2. Under the assumptions of Theorem 2.1 the norm o f u in
H2~~(S~), n  p is bounded by a constant being only determined by the
quantities mentioned above.

PROOF. Since in the interior this result follows from the well-known

Calderon-Zygmund-Inequalities, we have only to prove it near the boundary.
Let r be a part of the boundary and suppose that an open subset Q*

of Sz adjacent to T is transformed into some open subset G of the half-space
via a C2-diffeomorphism y = y(x) such that 

y,n = 0}.
In G the equation assumes the form

and the boundary condition (0.3) is transformed into
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We are going to prove that the norm of fi(y) = in H2,V(G) can

be estimated by the quantities mentioned in the theorem, where we assume
that u - and hence i1- is of class C2.

It will be sufficient to bound the LV-norm of where k ranges
from 1 to n and r from 1 to n - 1. The estimate for then follows

from the equation.
We already know from the results of [7; p. 468] that the norm of i1 in

H 2,2 (G) n with some suitable a can be estimated appropriately.
Let ~ and 77 be arbitrary functions in CI(O) vanishing on aG - 

Then we obtain from (2.13) and (2.14)

Inserting r~ = Dv ~, in this identity and integrating by parts yields

Thus, we deduce

where we have set

and where q is the conjugate exponent to p, and ~ is any function belonging
to vanishing on aG - y(F). The constant H3 depends on the quan-
tities mentioned in the theorem.

is arbitrary, which vanishes on

aG - y(F). Then the inequality (2.17) is satisfied so that we obtain

with some constant K4 depending on K, and on IbkllG8
Thus, we finally deduce
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Since the bilinear form

is coercive and non-degenerate, and since the coefficients bkl are continuous
we conclude from [10; Theorem 5.2] that belongs to and

that its norm can be estimated by a constant depending on the ellip-
ticity constant of the bkl7s, and on the modulus of continuity of the coefficients.

3. - The capillarity problem with constant volume.

In a former paper [4] we considered the variational problem

We could prove that this problem has a solution r1 Leo (Q), and u
also minimizes the functional

in the convex set where A is a suitable Lagrange multi-

plier. We had only to assume

and

and

Here, we shall give sufficient conditions which imply that the variational
problem (3.1) has a (unique) solution for any finite p. It will

be important to remark that .H need not be strictly monotone in t. However,
we deduce from [4] that in the following we may consider the variational
problem
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where H is supposed to satisfy the inequality (2.1). Moreover, we shall
obviously assume that the conditions of Theorem 1.1 are fulfilled, and that
belongs to H 2,, (Q). But we still have to impose a further conditions on y
which ensures, that a solution U C of (3.5) satisfies the boundary
condition (0.3) which is absolutely necessary in order to obtain a priori
estimates for the gradient. Therefore, we suppose that the relation

is valid on aS2.

Then, we have the following result

THEOREM 3.1. Under the above assumptions the variational problem (3.5)
has a f or any finite p, which is uniquely determined in
that function class.

PROOF. Let 8 be the maximal monotone graph

and let 6e be a sequence of smooth monotone grphs tending to 6 in such a
way that

Furthermore, let It be a positive constant such that

Then, we consider the approximating boundary value problems

We shall show that the a priori estimates of Section 1 are still valid in
this case, where the estimate depends on and on known

quantities.

1) The Lemmata 1.1-1.5 are still valid, but the constants might depend
on it.
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2) The only difficulty arises in the estimate (1.49). But, since we apply
this estimate with ~==~’max{~~2013~0}y we deduce that for the

critical term

in (1.47) is positive and can therefore be neglected, where ho depends on
and a.

Hence, we obtain

where the constant is independent of E, provided that is uniformly
bounded. But this follows from the strict monotonicity of H.

Thus, we deduce from Theorem 2.3 that for any uniformly
bounded, where we may assume without loss of generality that H, and
satisfy the further smoothness conditions of Theorem 2.2.

To complete the proof of Theorem 2.1, we shall show that the relation

is valid in Q.

But this estimate is an immediate consequence of the assumptions (3.6),
(3.8), and (3.9). Indeed, set 1pe = 1p - ê and 17 = 0). Then, we
deduce from

Hence, we obtain q m 0 in view of the strict monotonicity of H.
In the limit case a subsequence of the ue’s converges uniformly to some

function U satisfying
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ana

But this is an equivalent formulation of the variational problem (3.5), if

we restrict the variations to the convex set r1 ~v ~ ~~, as one easily
checks.

After having finished the present article the author became acquainted
with a paper of Simon and Spruck [11] who proved similar results.
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