
INFORMATION AND COMPUTATION 18, 205-245 (1988)

Global Renaming Operators in Concrete

Process Algebra *

J. C. M. BAETEN

Programming Research Group, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

AND

J. A. BERGSTRA

Programming Research Group, University of Amsterdam,

P.O. Box 41882, 100908 Amsterdam, The Netherlands;

Department of Philosophy, State University of Utrecht,

Heidelberglaan 2. 3584 CS Utrecht, The Netherlands.

Renaming operators are introduced in concrete process algebra (concrete means
that abstraction and silent moves are not considered). Examples of renaming
operators are given: encapsulation, pre-abstraction, and localization. We show that
renamings enhance the defining power of concrete process algebra by using the
example of a queue. We give a definition of the trace set of a process, see when
equality of trace sets implies equality of processes, and use trace sets to define the
restriction of a process. Finally, we describe processes with actions that have a side
effect on a state space and show how to use this for a translation of computer
programs into process algebra. CJ 1988 Academic Press, Inc.

INTRODUCTION

Concrete process algebra is that part of process algebra that does not
involve r-steps which are the result of abstraction. We introduce concrete
process algebras as an extension of ACP, the algebra of communicating
processes (see Bergstra and Klop, 1986). Concrete process algebra does not
consider silent moves or abstraction as is done in abstract process algebra
(see Bergstra and Klop, 1985). The main advantages of not considering
abstraction are that it leads to a clearer, and less problematic theory, with
an easy to understand axiomatization. Contrary to the case with abstrac-
tion, concrete process algebra is amenable to a term rewriting analysis and
can be studied using initial algebra semantics. Also, concrete process

* Partial support received from the European Communities under ESPRIT Project 432, An
Integrated Formal Approach to Industrial Software Development (Meteor).

205
0890-5401/88 $3.00

Copyright 0 1988 by Academic Press, Inc.
All ri8bts of reproduction in any lorm mcrved.

206 BAETEN AND BERGSTRA

algebra is the starting point for designing a programming language. It is
very useful for specification of processes or protocols, not so much for a
verification formalism. Another article about processes without abstraction,
and with essentially the same semantics, is de Bakker and Zucker (1982).

In concrete process algebra, we introduce renaming operators. In Sec-
tion 2, we define simple renaming operators, called relabelings in CCS (see
Milner, 1980), and give three examples of such operators, namely the
encapsulation operator (used to shield off a process, to prohibit com-
munications with the environment), the pre-abstraction operator (used to
obtain a small degree of abstraction within concrete process algebra), and
the localization operator (which allows us to “view” a process while it is
interacting with an environment, or, in other words, allows us to focus on
some actions and forget about others).

In Section 3, we look at the defining power of renamings. We give a
specification of a queue in concrete process algebra with renamings and
show that a queue cannot be defined in concrete process algebra without
renamings, thus showing that the defining power of concrete process
algebra is increased by adding renamings.

In Section 4, we define a renaming operator with a memory, namely the
restriction operator, that restricts a process to a set of possible execution
traces. Before we define the restriction operator, we first give a short
introduction to the theory of trace sets (for more information, see Rem
1983), in which we prove that two processes with identical trace sets, that
do not deadlock and are deterministic, must in fact be equal (also see
Engelfriet 1985). Then we define the restriction operator, and use it in com-
bination with the localization operator to show that in a context (or
environment) we can restrict a process to the set of “localized” traces. In
our view, this theorem constitutes an important interface between trace
theory and process algebra.

In Section 5, we introduce the state space of a process, and talk about
actions that have a side effect on the state. We implement this with a
generalized renaming operator, namely the state operator (for a different
approach, see the theory of nonuniform processes in de Bakker and
Zucker, 1982). We use the state operator to discuss processes having
shared variables, and to (mechanically) translate a given computer
program into process algebra. We see that this operator can be very useful
in the design of a programming language that is based on concrete process
algebra. We finish by giving a different specification of the queue.

This article is a revision of (Baeten and Bergstra, 1985). Since that report
appeared, the operators introduced there have been used in several other
papers, notably Vaandrager (1986) and Groenveld (1987), thereby
demonstrating their usefulness. We thank the referees for their valuable
comments and many suggestions for improvements.

GLOBALRENAMING OPERATORS 207

1. CONCRETE PROCESS ALGEBRA

In this section, we describe the axiomatic theory of concrete process
algebra. This theory extends the theory ACP (the algebra of com-
municating processes) as described in Bergstra and Klop (1986). In this
paper, we do not consider silent moves (or z-steps) or abstraction as is
done in ACP, (see Bergstra and Klop, 1985).

1.1. Atomic Actions. Concrete process algebra starts with a set of
atomic actions A. We will assume that A is finite, that A contains two
special elements 6 (for deadlock) and t (for hidden step), and that a com-
munication function y: A x A -+ A is given with the following properties:

1. y is commutative, Vu, b E A ~(a, 6) = y(b, a)

2. y is associative, Vu, b, CEA y(y(u, b), c) =~(a, y(b, c)).

3. 6 is a neutral element, Vu E A y(u, 6) = 6

4. t does not communicate, Vu E A y(a, t) = 6.

If a and b are two atomic actions, then y(u, b) is the result of the com-
munication between a and b, the result of executing a and b
simultaneously. The communication merge 1 will extend y to the set of all
processes. If y(u, 6) = 6, we say a and b do not communicate.

Next we define the signature C of concrete process algebra. We have
three sorts: A, the set of atomic actions was defined in 1.1; P is the set of
processes, the subject of investigation, and contains A, and finally d, the
set of subsets of A - {6}, is the set of alphabets. Functions

+, ., Il. IL, I, al/, =,, and constant 6 are discussed in Bergstra and Klop
(1986) (rc, is called(), there), and a and t are discussed in Baeten,
Bergstra and Klop (1987a).

1.2. Signature C. 1. Sorts.

A (see 1.1)

P (set of processes; A c P)

d (&=Pow(A- (6))).

2. Functions.

+:PxP+P (alternative composition or sum)

.:PxP+P (sequential composition or product)

)I: Px P+ P (parallel composition or merge)

[I:PxP+P (left-merge)

208 BAETEN AND BERGSTRA

j:PxP-rP (communication merge)

a,94 (encapsulation; H s A - (t })

lI,:P+P (projection; n > 0)

a:P+d (alphabet function).

3. Constants.

dEA (deadlock)

tEA (hidden step).

1.3. Equations. Concrete process algebra deals with statements of the
form

P’4

called equations; here p, q are process expressions, possibly containing
variables.

We use letters a, b, c, ..1 for elements of A, letters x, y, z, . . . for arbitrary
processes (in some model of the theory), and we use capital letters
X, Y, Z, . . . for variables, ranging over P (often called formal variables, since
we will use them in specifications to define processes, not, like x, y, z, in
quantified statements about processes).

4x1

is an equation with variables among X, and

e(x)

is the same equation with processes x substituted for variables X. Often, we
want to focus on one of the variables, so writing

4x, -)

means that equation e holds for x and a fixed set of other processes.

1.4. Specifications. A (recursioe) specljkation E is a set of equations
{ej: ~EJ} (J is an index set), with ej of the form

x, = Sj(X),

sj is a term with variables from {X,: Jo J}, and J has a distinguished
element j, .

A set of processes x = {xi: i E J} (in a particular model) is a solution oec-

GLOBAL RENAMING OPERATORS 209

tor of E if E(x), i.e., substituting processes x for the variables of E gives
ej(x) for all Jo J. Process x is a solution of E, E(x, -), if there is a solution
vector of E with x in the &position. x is (recursively) definable (in a par-
ticular model) if there is a specification E such that E(y, -) o x = y. (For
these definitions, also see Baeten, Bergstra and Klop, 1987b.)

1.5. DEFINITION. The set of finite closed process expressions, FCPE, is
defined inductively:

1. A z FCPE;

2. XGFCPE and ~EA*uxEFCPE

3. x,y~FcPE*x+y~FcpE.

The set FCPE will allow us to use induction in proofs (when combined
with the limit rule) and recursion in definitions.

Next we define a notion of guardedness (taken from Baeten, Bergstra
and Klop 1987b). Specifications must be guarded in order to prove that
they have unique solutions (see 1.11).

1.6. DEFINITION. Let s be an open term, possibly containing variables.
An occurrence of a variable X in s is guarded ifs has a subterm of the form
aM, with a E A and this occurrence of X is in M; otherwise, the occurrence
is unguarded.

Let E = {e,: j E J} be a specification. Define Xi --+’ Xj o X, occurs
unguarded in si (the right-hand side of e,), and E is guarded o --+’ is well
founded (i.e., there is no infinite sequence Xi, -+” X, +“...).

1.7. AXIOMS. The axioms for concrete process algebra are presented in
Table I. We use the following abbreviations: ACP = Al-7 + Cl-3 +
CMl-9 + D14; P = PR1-4; AB = ABl-6; CPA = ACP + PR + AB + AIP,
and CPA, = CPA + C4, so in Table I we have CPA, + RDP + HNF.

1.8. Comments. For a discussion of axioms ACP, see Bergstra and
Klop (1986 or 1984). Axiom C4 says that the communication merge 1
extends the communication function y given in 1.1. We often have an extra
restriction on the communication function, namely the handshaking axiom

(HA), that says that all communications are binary:

xlyl z=6.

Axioms PR14 define the projection operator z,, for nE N, n >O. Their
intuitive meaning is that II, “cuts off” a process at depth n, n,(x) stops
after executing n steps. Axioms ABl-6 define the alphabet of a process, and
were introduced and discussed in Baeten, Bergstra and Klop (1987a). Note

210 BAETEN AND BERGSTRA

TABLE I

Concrete Process Algebra

x+y=y+x
x+(y+z)=(x+y)+z
x+x=x
(x+y)z=xz+yz
(XY)Z = x(y--)
x+6=x
6X=6

AI

A2

A3

A4

A5

A6

Al

alb=bla Cl

(alb)lc=al(blc) c2

6la=6 c3

.ylly=x [y+y ilx+.u I)

a Lx=ax

(ax) li Y=a(xl/ Y)

(x+y) iiz=x Lz+y [z

(ax)Ib=(alb)x

al(bx)=(alb)x

(ax) I (by) = (a I bit-x II Y)

(x+y)lz=xI=+yIz

xl(y+z)=xly+xlz

d,(a)=a if a$H

d,(a)=6 ifaEH

J”(X + Y) = a,(x) + a”(Y)

d&Y) = a,(x) .d,(Y)

CM1

CM2

CM3

CM4

CM5

CM6

CM7

CM8

CM9

Dl

D2

D3

D4

c4

n,(a) = a

n,(ax) =a

n,+ 1(0x) = Q%(x)

n,(x + Y) = n,(x) + n*(y)

PRI

PR2

PR3

PR4

a(d)=0
a(a)= {u} if a#6

a(6x) = 0

a(m) = {u} u a(x) if a # 6

a@ + v) = 4x1 u a(y)

a(x)= 6 a(n,(x))
n=,

E guarded

3x E(x, -)

ABl

AB2

AB3

AB4

ABS

AB6

RDP

vn %(X1 = n.(Y)
x=y

AIP

x = 1 a, x, + 1 b,
rcn ,<m

HNF

that it is not necessary to use the extra sort d, for instead of saying that
the alphabet is a set of atomic actions, it works equally well to say that the
alphabet is a sum of atomic actions. If we take the latter option, we
preserve the algebraic framework more strictly.

The recursive definition principle (RDP) states that every guarded
specification has a solution, and the approximation induction principle
(AIP) states that two processes are equal if all their projections are equal.
For RDP and AIP, see Baeten, Bergstra, and Klop (1987b). Finally, the
principle of head normal forms (HNF) is formulated in Baeten and van

GLOBAL RENAMING OPERATORS 211

Glabbeek (1987). It says that every process has a head normal form, i.e.,
can be written as a sum of finitely many alternatives, each of which starts
with an atomic action. The second sum is needed, in case some of these
alternatives consist of just an atomic action.

1.9. THEOREM. For every closed term t there is a term SE FCPE such
that CPA, + t = s. (This is the so-called elimination theorem,)

Proof: See Bergstra and Klop (1984).

1.10. DEFINITION. The recursive speczjkation principle (RSP) is

E(x, -1 E(Y, -1

E r:y (RSP).

Note that the solution vector in E(x, -) may be specified completely
different than the solution vector in E(y, -) (see 1.18).

1.11, LEMMA. HNF implies that for every x and n, z,(x) is equal to a

term in FCPE.

Proof: By induction on n. Write x = Ciin ai. xi + c,,,,, bj, for certain
n, m, ai, xi, bj. For n = 1, we see immediately that rc,(~)=C~<~ ai+
cjCmbj. For n>l, we write 71,(~)=C~<~a~.7c,~,(x~)+C~<~bj, and use
the induction hypothesis for the xi,

1.12. LEMMA. RSP holds in concrete process algebra.

Proof: See Baeten, Bergstra and Klop (1987a).

Since some observations made in this proof will be used more often, we
will state these here. Let E = (ei: jc J> be a guarded recursive specification.
Now the condition of guardedness ensures that we can write each equation
in the form Xj=Citnai.si+C- ,tm bj, for certain expressions si. Thus, the
head normal form of each variable in a guarded recursive specification is
completely determined by the specification and does not depend on the
chosen solution (vector). Using 1.11, we see that we can calculate the finite
projections of each variable as a term in FCPE. Now, if x and y are two
solutions of a guarded recursive specification E, we find X,(X) = n,(y) for
alln>l,sox=ybyAIP.

1.13. DEFINITION. The limit rule (LR) is

212 BAETEN AND BERGSTRA

In words, if an equation holds for all finite processes (more precisely, for all
elements of FCPE), then it holds for all processes. The limit rule allows us
to prove identities by induction, since FCPE is defined recursively.

1.14. LEMMA. LR holds in concrete process algebra.

Proof. Suppose that s(x) = t(x) is an equation in which a variable x
occurs, and we know that it holds, when we substitute a term in FCPE for
X. We have to prove that S(X) = t(x) holds. By AIP, it is enough to prove
rrJs(x)) = rc,(t(x)), for each n > 1. Fix n > 1. For terms in FCPE, we can
prove by structural induction that X,(X 0 y) = n,(n,(x) 0 n,(y)) for
q =+;, I/, II, 1 and n,(a,(x)) = rc,(8,(n,(x)). For general processes, we
can prove these equations by use of HNF. It follows that in the equation
n,(s(x))=n,(t(x)), we can replace each occurrence of x by n,(x), by 1.11
equal to a term in FCPE. By assumption, the equation holds for this term.
It is easy to finish the proof.

1.15. EXAMPLES. 1. In the previous theorem, the use of the principle of
head normal forms is essential. For, if we consider the initial algebra of the
theory with atomic actions {a, b}, but restrict the signature to {a} (so that
the element b cannot be described by a closed term), then AIP does hold,
but HNF and LR do not. HNF does not hold, since the element b does not
have a head normal form, and LR does not hold, since the equation
n](x) + a= a holds for all closed terms (since they must consist of a-steps
or be equal to 6) but not for the element b.

2. Even when we replace the principle HNF by the weaker
assumption, that every finite projection of every process is equal to a term
in FCPE (see 1.1 l), we cannot derive LR. For, consider the initial algebra
of the theory with infinitely many atomic actions (ai: iE N >, also contain-
ing one constant c that does not correspond to an element in the signature.
Then, we define J-C,(C) = a,, and further define projection in accordance
with the axioms. Then, the model does satisfy AIP (as it contains no
infinite elements) and the assumption, but not HNF (as c does not have a
head normal form) or LR (the equation ~~(rr~(x))=rr,(x) holds for all
closed terms, as projection is defined normally on the ai, but not for c). To
see that the model satisfies AIP, use the fact that each element has an
alphabet, containing only finitely many of the ai. Thus, the occurrence of a
c in a term can be detected in the sequence of its projections, as infinitely
many a, appear in that position.

3. We leave it as an open problem, to construct models of concrete
process algebra, that satisfy LR, but not AIP or HNF.

GLOBALRENAMINGOPERATORS 213

1.16. THEOREM. The identities in Table II are provable from the axioms

of concrete process algebra. Also the expansion theorem:

x,IIxzII . ..IIx.= 1 x;kx’+ C (xiIxj) kx’,‘ET
1 <i<n l.sr</Cn

(here xi= 11 I<kcn k+;xk and ~“‘=Il,~k~~,k~~.k~~Xk). . . .

Proof: Identities SCl-6 are proved in Bergstra and Klop (1984),
CA 1, 3, 5 in Baeten, Bergstra and Klop (1987a), and ET in Bergstra and
Tucker (1985), for all terms in FCPE. The general identities then follow by
applying the limit rule.

1.17. Initial Algebra. Suppose we have a guarded finite recursive
specification E = (e,: 1 <j< n}. By RDP + RSP, E has a unique solution
in concrete process algebra. Now if C is the signature of concrete process
algebra defined in 1.2, let .Z(x,, x,) denote the signature C with extra
constants x,, x, E P. Then, the initial algebra

A = T, Z (x1, x,J, CPA, + E(x,, x,)

will exist, because CPA, + E(x,, x,) is a positive conditional system. In
A, the principles AIP, LR, HNF (by 1.12) and RSP hold, but RDP does
not hold (not all guarded recursive specifications have solutions). (Of
course, we could add constants for more than one specification.)

1.18. EXAMPLES. 1. Suppose y(a, b)=6 for all a, bEA. Take a, bEA,
and consider the initial algebra A = T,(Z(x, y, z, w), CPA, + {x = (a + b)x,

y=ay,z=bz,w=yIIz}). In A we have w=yllz=y[Iz+z[ly+ylz=

TABLE II

Standard concurrency Conditional axioms

(x ILU) ilz=x L(YllZ) SC1 4x1 I (a(u) n H) = H

dH(X II Y) = d”(X II a,(Y))

(XIY) Ilz=.xI(.Y IL21 SC2

x I Y = Y I x SC3

xllY=Yllx SC4
a(x) n H= 0

a,(x) = x

CA1

CA3

xl(Ylz)=(xlY)lz SC5

xll(vllz)=(xllY)llz SC6
H=H,uH,

a,(x) = aH, a a,,(x)
CA5

214 BAETEN AND BERGSTRA

(~Y)llz+(~z)IIY+~Yl~z=~(Y/Iz)+~(zIIY)+(~I~)(YI/z) = (a+b)(yIIz)
+J=(a+b)w, so with RSPx=w. (Note that zlly=yllz sinceyIz=a.)

2. Suppose UEA, and consider the initial algebra A =
T,(Z(x, y), CPA, + {x = uy, y = ux}). Using RSP we obtain x = y.

The existence of inital algebras shows that concrete process algebra is
consistent. To show however, that there exists a model also satisfying RDP,
we need a result from Bergstra and Klop (1986).

1.19. THEOREM. G, the set of all finitely branching process graphs

modulo bisimulution, is a model of concrete process algebra, HNF and RDP.

1.20. THEOREM. G is the final model for concrete process algebra plus
HNF, in the sense that any other model that has the same equalities for

closed terms, must be a submodel of 63.

Proof: If B is any other model for concrete process algebra plus HNF,
and x is an element of IEB, construct a process graph for x as follows: write x
in head normal form Cicn ai .x, + c,,,,, b,. Then, the root of the process
graph for x has edges labeled ui to nodes pi, and edges labeled bj to an
endnode. At node pi we continue in the same way with the head normal
form of process -xi. By 1.11, the head normal forms determine the finite
projections, and the principle AIP says that a process is determined by its
finite projections. The proof is finished, if we remark that in G two graphs
are bisimilar, iff they are bisimilar to any finite depth.

1.21. COROLLARY. If A is an initial algebra of concrete process algebra
us defined in 1.17, then A is a subalgebra of 6.3.

2. RENAMINGS

In this section, we define global renaming operators in concrete process
algebra, and consider three examples of renaming operators, namely the
encapsulation operator aH, the pre-abstraction operator t, and the
localization operator 0;. The localization operator will again be used in
Section 4.

2.1. DEFINITION. If u E A, and HE A - {S}, then the renaming operator
uH will rename all elements of H into u. This renaming operator was
introduced in process algebra in Bergstra, Klop and Olderog, (1987). To be
more precise, we extend the signature with operators

u,:P+P (aEA, HEA- {a}),

GLOBAL RENAMING OPERATORS 215

and add axioms of Table III. We still have the existence of initial algebras
(as defined in 1.12) for this extended system.

2.2. EXAMPLE I: Encapsulation. The simplest example of a renaming
operator is, of course, the encapsulation operator 13~=6, (for
HE A - (6, t}). Its usefulness is demonstrated in every paper on the
algebra of communicating processes. Usually, we are dealing with the
merge of a number of processes, that can communicate, and we shield them
off from the outside by encapsulation; i.e., we set the communication
“halves” equal to 6. Thus, if x is the merge of a number of processes, set
H = {a E a(x): 3b E a(x), y(a, 6) # S}, and we consider a,(x). For example,
if ?(a, b)=c#6, and a#c, b#c, then 8,,,,(aIIb)=c.

2.3. EXAMPLE II: Pre-abstraction. We do not consider silent moves or
abstraction in concrete process algebra, but using a special constant t E A
we can capture part of abstraction by the renaming operator t, (for
ZcA- {S}), h’ h w ic we call the pre-abstraction operator. The pre-abstrac-
tion operator will identify all internal actions, will abstract from their iden-
tity, but no action can be removed altogether; for that purpose we need the
(full) abstraction operator 7,. (Note that when we use an encapsulation
operator aH, we always require t # H, so that d,(t) = t.)

In 2.4, we explain some notation for distributed systems, which we use in
2.5-2.7 to give an example of the use of t,.

2.4. Distributed Systems. Suppose we have a number of locations, and
a number of ports (or channels) linking them. We assume that at each
location a certain process is executed, and that these processes can com-
municate via the ports, thus obtaining a communication network. These
communications will consist of the transfer of a piece of data. So suppose
we have a finite set of data D (often, D = (0, 1 >), and we have com-
munication channels 1, 2, k. Then we have the following atomic actions:

ri(d) = read d along port i (d E D, 1~ i 6 k);

si(d) = send d along port i (d E D, 16 i 6 k);

ci(d) = communicate d along port i (d E D, 1~ i Q k),

TABLE III

u,,(b) = b

a,(b) = a

UH(X + Y) = UHb) + aif(Y)

ad-v) = U”(X) ‘U”(Y)

ifb$H

ifbeH

RN1

RN2

RN3

RN4

216 BAETEN AND BERGSTRA

and on these atomic actions, we define the communication function as

y(r,(d), si(d)) = y(si(d), ri(d)) = ci(d)(d~ D, 1 d id k)

y(a, b) = 6 in all other cases.

We call this restricted communication format read/send communication (or
read/write communication).

2.5. DEFINITION. We consider the communication network of Fig. 1 (so
we represent locations by circles, with the name of its process inside, and
ports by lines). The processes P, Q, B,, B, are given by the FCPE terms:

P= 1 r,(d). c rI(e) .sAd) .de)
dsD CED

Q = 1 r4(4. 1 rde) .skf(d, e))
dsD PED

(here f: D x D + D is some given function)

Bi= 1 ri+,(4~si+A4. 1 ri+I(e).si+2(e) (i= 1, 2).
dsD FED

Thus, P is a two-place buffer that works only once, B, and B, are one-
place buffers that work twice, and Q transforms incoming data usingf: Put
H= {ri(d), si(d): dE D, i= 2, 3, 4}, so lJH will encapsulate all internal
communications.

2.6. LEMMA. a,(PIl BI 11 &I/ Q) = x:dc D r,(d) C,?ED r,(e) cl(d) cd4

(the) c,(d) + cd4 c*(e)) cde) c+(e) sAf(d, e)).

Proof: Since we have binary communication, we can use the expansion
theorem proved in Section 1, so we start with an action from one of the
processes or a communication between two of them. Only the first step we
will write out in full.

FIGURE 1

GLOBAL RENAMING OPERATORS 217

+ C r2(4 PII
dsD

((s,(d) 1 rAe~~~~e))ll~~l/Q)
eGD

+ 1 r,(d) PII Bl II
dcD

((s,(d) c rde) de)) II Q)
CIED

= c r,(d). C rl(e) -dH(M4 de)) II 4 II 4 II Q)

= C rA4. C rl(e) -44

= 1 rl(4. 1 rl(e) .c2(4 .c3(4

4, (44 II (c df) s,(f)) II (~~(4 1 r,(g) d)) II 8)
/ED gED

= C r,(d) 1 rl(e) cd4 CA4 de)
dsD eED

. b de) II ((s,(d) c rAg) s&)) II Q) + cd4
E?eD

218 BAETEN AND BERGSTRA

+ cd4 de)

1))

= 1 r,(d) C rl(e) ~(4 cJd)(de) ~(4 + 44 de))
dED tZt?D

= dFD r,(d) eFD r,(e) CAdI c3(4(c2(e) cd4

+ 44 CAe)). c3(e) de) s5Uld, e)).

2.7. We can simplify the expression derived in 2.6 considerably, if we
use pre-abstraction. Put I= {c,(d): d E D, i = 2, 3,4}, the set of all internal
communications. then

f~ 0 a,(P II B, II 4 II Q,

=dFDrl(d) 1 r,(e).t.t(t.t+t.t).t.t.s,(f(d,e))
PED

= dFD r,(d) 1 r,(e). t6 .sMd e)).

FED

Thus, we only see the input and output actions, and we no longer see the
alternatives in the formula of 2.6.

2.8. EXAMPLE III: Localization. For sake of simplicity, we only define
this operator in the case of read/send communication as described in 2.4.
Let B c A - { 6 > be such that for each port i and each d E D at most one of
the atoms ri(d), si(d), ci(d) is in B. If B satisfies this requirement, then the
communication function y has an “inverse” on B 1 A; i.e., if ci(d) E B (A, then
exactly one of ri(d), si(d) is in B. Thus, we can call the original in B

Y-‘(ci(d)).

Now we can define the localization operator.

GLOBALRENAMINGOPERATORS 219

2.9. DEFINITION. Let B G A - (6, t} satisfy the requirement in 2.8. Let
BI A = {c,, c,}. We define the localization operator vi by

It is easy to see that vi has the properties:

1. vi(y(b,a))=b, ifbEB, aEA, y(b,a)#6

2. &(b)=b, if beB

3. z&(c)=t, ifcEA-(AIBuBu(6))

4. v;(8)=6

5. l&(x + y) = t&(x) + u;(y)

6. v~(xy)=v~(x)~u;(y).

Intuitively, we think of vi as the operator that ‘localizes’ a process to
actions from B, so that, in a context, typically a merge of communicating
processes, we can focus on some actions and (pre-) abstract from others.
We give an example of the use of localization in 2.10, 11 and will discuss
this example again in 5 4.

2.10. DEFINITION. We consider the communication network shown in
Fig. 2. Think of S as a sender, R as a receiver, and E as an environment. We
define S and R as the unique solutions in concrete process algebra of the
following two guarded recursive specifications:

S= c r,(d) s*(d) r,(ack) s,(ack)S

R = 1 r2(d) SJd) s,(ack)R.

Here we have a special element ack denoting acknowledgment (it is easiest
to take ack # D), so S sends a de D to R, receives an acknowledgment, and
then sends the next d; R receives the data and sends back an
acknowledgment.

S and R also communicate with the environment E; so E can send data

1
E

4

a

2

s R

3

FIGURE 2

220 BAETEN AND BERGSTRA

along 1, receive an acknowledgment along 1 or receive data along 4. Thus
we can put

E= 1 s,(d) + c r,(d)+r,(ack) E.
deD dsD

2.11. But, we have the feeling that E cannot do any of these things at
any time: first we must have a s,(d), then a r,Jd), and then a r,(ack), before
a next s,(d’) can follow. We can express this by using the localization
operator. We put H= {si(d), ri(d): dED, in { 1, 2, 3,4)}, and look at

so in the process cY~(EII S I(R) we focus on actions from E and we localize
to E. It is easily seen that a(E) = {s,(d), r,(d): dED} u {ri(ack)} and that
a(E) satisfies the requirement of 2.8. We see

= d;D s1(4 t . u:(E) (dd) .d,(Ell (r,(ack)s,(ack)W II Mack)R)))

= d;D s,(d) .f’r4(4. t .$,,(c,(ack) .dAEll SII NJ

= c s,(d).t .r4(d). t.r,(ack)~~~,,,~~,(ElISIlR),
dsD

so that the actions from E indeed occur in the right order.

3. DEFINING POWER OF RENAMINGS

3.1. Suppose we want to give a recursive specification of a queue Q
with input channel 1 and output channel 2, over a data set D with more

GLOBAL RENAMING OPERATORS 221

than one element (see Fig. 3). An infinite guarded specification can be given
by the equations

Q=Qc= 1 r,(d).Q,

Qa*d = G(d) . Q, + 1 ‘-l(e). !&a

CJED

(for any word 0 ED* and any dE D).

Now we look for a finite recursive specification of Q, in the context of
handshaking communication (i.e., a finite specification E which has a
solution x in some model iff the specification above has a solution x). We
may assume that r,(d) and sZ(d) are not the result of communications, for
we need the following interactions with the environment:

y(ri(d), si(d)) = ci(d) (i= 1, 2; dE D).

That is why we want to specify Q under the condition

a(Q) C-J ran(y) = 0 (since a(Q)= {r,(d), s,(d): deD}).

3.2. Next, we will prove two theorems:

THEOREM 1. We cannot define Q by a finite guarded recursive

specification in concrete process algebra without renaming under the con-
dition a(Q) n ran(y) = 0.

THEOREM 2. We can define Q by a finite guarded recursive specification

in concrete process algebra with renaming operators (as defined in Section 2)
under the condition a(Q) n ran(y) = 0.

We will prove Theorem 1 in 3.10. First we need a number of intermediate
results. We define the following axiom systems:

PA = Al-5 + Ml4 + PR14

(here Ml is axiom x 11 y = x [y + y Lx and M24 = CM2-4) and

PA, = PA + A6,7.

3.3. LEMMA. Q is not definable by a finite guarded recursive specljkation

in PA.

7-&-
FIGURE 3

222 BAETEN ANDBERGSTRA

Proof: See Bergstra and Tiuryn (1987).

3.4. DEFINITION. Let XE P. We say x does not deadlock (or 1 DL(x)) if
for each n 2 1, there is a term s E FCPE such that X,(X) = s and 6 does not
occur in 3.

3.5. LEMMA. Suppose process x is definable by a finite guarded

specification in PA, and x does not deadlock. Then x is definable by a finite
guarded specification in PA.

Proof: Let E = { ej: 1 < j Q n) be a guarded recursive specification in
PA, defining x (so x = s,(x, x2, x,) for some x2, x,). We define a
theory PA*, intermediate between PA and PA,. The set of PA*-terms is
defined inductively:

1. any a E A - {S } and any variable X is a PA*-term;

2. if s, r are PA*-terms, then so are s + r, s . r, s /I r, s kr, and s .6.

The axioms of PA* are

PA*=PA+{a& [Ix=ax6}.

Note that rewriting a PA*-term by use of a PA*-axiom will yield a PA*-
term. Note also that CPA kad Lx=ax6 (use induction on FCPE plus
limit rule). Now we can assume that all right-hand sides of the equations in
E are PA*-terms (if some are not, apply axioms A6 and A7, and if an
equation Xj = 6 appears, substitute 6 for occurrences of X, in right-hand
sides, and leave out equation X, = 6). Let E’ be the specification obtained
from E by leaving out all occurring 6 (i.e., we replace each (sub)term SS by

s).
Then E’ is a finite guarded specification in PA, and we claim that E’ also

defines x. To see that x is a solution of E’, let n > 1 be given. By 1.12, there
is an expansion ST of s, in which all xj are n times guarded, so that we can
reduce, in PA,, 7cJ.s~) to a term in FCPE. Likewise, for E’ there is an
expansion s’; of s;, so that x,(s’;) reduces in PA to a v; in FCPE. Now the
reduction from n,(sy) to VA in PA can be exactly transcribed to a reduction
from R,(s;) to a v, E FCPE in PA* (sometimes using the PA*-axiom
instead of CM2).

Since x is a solution of E we have n,(x) = v,. But u, is a PA*-term, and
so A6 and A7 cannot be applied to v,, so since x does not deadlock, 6 can-
not occur in v,. But that means that v, = I&, so rc,(s;) = v, = v; = n,(s’;),
and x is a solution of E’.

3.6. COROLLARY. Q is not definable by a finite guarded recursive
specfica tion in PA *.

GLOBALRENAMINGOPERATORS 223

Proof: That Q does not deadlock can be seen using the iniinitary
specification given in 3.1. Now use 3.3 and 3.5.

3.7. LEMMA. Let x be a solution of the guarded recursive specification E.
Then a,(x) is a solution of a,(E), where a,(E) is obtained from E by
replacing each right-hand side ti by a,(tj) (where H G A - {S }).

Proof. Use 1.12 and the observation

CPA + 7r, o a,tx) = aH o 7~,(~).

3.8. LEMMA. Suppose process x is definable by a finite guarded
specification in ACP, + PR and LX(X) n ran(y) = 0. Then x is definable by a
finite guarded specfication in PA6 (ACP, = ACP + C4).

Proof Let E be a finite guarded recursive specification in ACP, + PR
defining x. Put H = A 1 A = ran y - (6}, then by 3.7, a,(E) defines a,(x).
But d”(x)=x, by applying rule CA3 (see 1.11). But it is not hard to see
that applying aH to an open (ACP, + PR)-term amounts to leaving out
(i.e., set equal to 6) all communication (sub)terms of the form x 1 y and has
the same effect as having a trivial communication function y with
r(a, b) = 6 for all a, b E A. The theory ACP, + PR with trivial y is the same
as theory PA,.

3.9. COROLLARY. Q is not definable by a finite guarded recursive
specification in ACP, + PR, zf we require a(Q) n ran(y) = 0.

3.10. THEOREM. Q is not definable by a finite guarded recursive

specification in concrete process algebra, if we require LX(Q) n ran(y) = 0.

Proof: This immediately follows from 3.9, since any specification in
concrete process algebra uses the signature of ACP, + PR, so it is a
(ACP, + PR)-specification.

3.11. THEOREM. Q is definable by a finite guarded recursive specification

in concrete process algebra with renaming operators, such that

a(Q) n ran(y) = 0.

Proof: Let A contain atoms rl (d), sZ(d), l(d), and u(d), for each d E D,
and suppose

y(44 44) = 44 (de D)

are the only non-trivial communications.

Suppose D = (4, d,}, and define s2iu) = s2(d,)f,cd,,j ~S2(d2)iUcd2,1 0

224 BAETEN AND BERGSTRA

operators, and H = (l(d): ds D}. We claim we can define Q by

Q= c Wb,,u~ 0 W,,,,(Q) II s,(d) . Z)
dcD

Z= 1 l(d).Z.
dcD

To show this specification is correct, define R,, for a ED*, inductively:

&=Q (as given above)

R O*d= 32(u) 0 &&,~(R,) II sAd)Z).

First we need the following observation:

&=~2(u~ 0 h&,#CJ II Z).

We prove this by RSP, showing that both sides satisfy the same equations:
we have, on the one hand,

R, = c r,(d) .szjul 0 %IU~~,~R) II sz(W)

deD

= dFD r,(d) ’ Rd,

and

Ra*d= sz(u) o 4A~1s,lR) II+(W)

= S2{u) 4U~,,~(R,) IL +(d)Z) + ~2~,) ~,Md)Z lLZ&W

(since s2(d) does not communicate)

= SZ{u} “Mu,,,,

(eeD)

C r,(e) C~&bo) IIdWl

(by induction)

+ rc,,,(s2(f))CZ{,,,(R~,*~) II dd)Zl)

(if a = a’*f; if a = E, this term does not appear)

+ s,(d) -~2~u) +A~i,,iVL) IIZ)

= c r,(e) .~2~u)(aH(z~s*)(Rp’o) II +(W) + 8
CED

+d4~s,~u~ 4#,,,,R) II Z)

= ZD r,(e) . &o*d + dd) .~2~u) 4U,,,,(Ro) II Zh

GLOBAL RENAMING OPERATORS 225

On the other hand, we have

S2(“} “hf(~{s,}(RJ II a

= SZ(u) o 8H
(

d;D r,(d). C~(s2}(h(u} o W,s,,@) II S2(4Z)) II Zl

+ 64. C~{s,)(Re) II Zl
)

= dFD r,(d) ‘32(u) o &fV{s,)(Rd) II 3

and

SZ(u} o u4,2}ubd) II a

= S2(u} o M4,)(~2{u) 4(~(s,,W) II ~2(4Z)ll~)

= S2(u} 4
(

JD +9(~~s,~(Re*,~d) II Z)
)

+ ~Z(“) o ww)(~2{“) 4f(~{,,,W,) II Z) II .a)

Therefore, we have shown R,=sZiul ~I?,(~~,,~(R,)IIZ), and so the
equations for R, simplify to

R,= c r,(d) .R,
doD

Reed= 1 rl(e) . Reeaed + s,(d). R,.
CED

But that means that the R, satisfy the equations for Q, in 3.1, so by RSP
R, = QC; in particular, R, = QE, so the equations above indeed define the
queue Q. Finally, a(Q) n ran(y) = a is obvious.

226 BAETEN AND BERGSTRA

4. TRACES AND RESTRICTION

In this section, we define the trace set (set of execution paths) of a
process. It is well known that in concrete process algebra, two processes
with identical trace sets need not be equal (consider, e.g., processes a(b + c)
and ab + ac). We will define for a process, what it means that it does not
deadlock, and when it is deterministic, and then we show that if two
processes have the same trace set, do not deadlock, and are deterministic,
then they must be equal. Next, we define a restriction operator, that can
limit a process to a set of possible traces, and we give an example of the use
of this operator by again considering example 2.10 and 2.11.

4.1. Note. The principle we will use very often in this section is the
principle of head normal forms (HNF), in particular the following con-
sequence of HNF: each projection must be a finite term (1.11).

4.2. Deadlock Behaviour. We define a predicate DL in concrete process
algebra as follows: on FCPE, we define DL inductively by

1. DL(6)

2. DL(x) =- DL(ax + y) (UE A, x, ye FCPE); and in general, we
define

3. DL(x) o 3n DL(rc,,(.lz)).

4.3. LEMMA. The following hold:

1. 1 DL(a) ifaeA - (6},

2. 1 DL(x) =z- 1 DL(ax) (UEA - {6}),

3. -I DL(x) and 1 DL(y) j 1 DL(x + y).

Proof Easy.

4.4. THEOREM. Let UEA- {6}, HsA - (6) and x any process, then

DL(a,(x)) o DL(x).

Proof: * Suppose 1 DL(x). Take n > 1. Then 1 DL(rc,(x)). By
1.11, there must be an SE FCPE such that n,(x) = s. Then 1 DL(s),
and by applying 4.3, we find 1 DL(a,(s)). Then 1 DL(a,(n,(x))),
and since by limit rule we can easily show uHo z, = rc,,oaH, we have
1 DL(n,(a,(x))). Since n was chosen arbitrarily, we have -I DL(a,(x)).

-z= Just as simple.

4.5. Notes. 1. In 4.4, we can take a = t, so pre-abstraction is safe with
respect to deadlocks.

GLOBAL RENAMING OPERATORS 227

2. In 4.4, we cannot take a= 6, as the following counterexamples
show:

2.1. if a, bE A - (6) with afb, then

DL(aG + 6) but -I DL(a,,,(aG + 6));

2.2. if a~,4 - {6}, then 1 DL(a) but DL(J(,,(a)).

Thus, neither of the implications

Wxl =j Wa,(x))

DL(a,(x)) * DL(x)

holds, in general.

3. By 4.2.3., the predicate DL is semi-recursive. In general, DL will,
however, not be decidable.

4.6. Note. The following statements are easily proved:

1. DL(x (I y) * DL(x) v DL()I)

2. DL(x . y) = DL(x) v DL(y).
(The converse only holds for 1, if both x and y are finite, and the converse
holds for 2, if x is finite.)

We define determinism in 4.8. First we need another definition, which
appeared earlier in, e.g., Bergstra and Klop (1986).

4.7. DEFINITION. The set of subprocesses (or states) of x is the set of all
processes obtained by executing a number of steps from x. We have the
following inductive definition:

1. x E Sub(x)

2. uy + z E Sub(x) = y E Sub(x).

4.8. DEFINITIONS. Let x be any process:

1. x is root nondeterministic if there is an a E A - (6 > and processes
x1, x2, y such that x, #x, and

x=ux,+ux,+y.

2. x is nondeterministic if there is a y E Sub(x) which is root nondeter-
ministic.

3. DET(x) o x is not nondeterministic.

228 BAETENAND BERGSTRA

4.9. Notes. 1. Neither of the implications

DET(x) 3 DET(a,(x))

DET(a,(x)) =P DET(x)

holds in general (for aeA - (61, H&A- (6)), as the following coun-
terexamples show. If a, b E A - { 6 > with a # b, then

1.1. DET(aa + b6) but 1 DET(a&za + b6));

1.2. 1 DET(au + ub) but DET(ul,l(uu + ub)).

2. In case a = 6, the implication

DET(x) =G- DET(a,(x))

does hold, as is easily shown by induction, but the implication

DET(a,(x)) * DET(x)

does not, as the following counterexample shows.
If a E A - (6}, then

DET($,,(uu + us)) but 1 DET(uu + ~6).

4.10. It is easily seen that DET(x) and DET(y) is not a sufficient con-
dition to conclude to DET(xI) y) (take x= au, y=ub), so we need some
extra condition(s). When we deal with large systems, we do want to be able
to conclude the determinacy of the whole system from the determinacy of
the parts. The following proposition (whose proof we omit) lists sufficient
conditions for this.

PROPOSITION.

DET(x) DWY 1

a(x) n a(y) c H

(a(x) I a(y)) n (a(x) u a(y)) s H

DEVa,(x II Y)) ’

4.11. THEOREM. Let x be any process in concrete process algebra. Then

DET(x) o for all n > 1 DWT,(X)).

Proof: * Suppose n > 1 is such that 1 DET(n,(x)), so there is a
ye Sub(rr,(x)) and UE A - (6}, processes x,, x2, x3 with xi fx, and
y = ax, + ax, + x3. Using induction, it is not hard to show that for each

GLOBAL RENAMING OPERATORS 229

y E Sub(rc,(x)), there is a y’ E Sub(x) and an m <n such that n,(y’) = y. It
follows that y’ = ax; + ax; + xi, with n,- i(x;) = xi, rc,_ i(x;) = x2
(xi =x, and x;=x, if m = 1) and rr,(x;) =x3. Since xi #x2, a fortiori
xi # x;, whence 1 DET(x).

-= Suppose 1 DET(x), so there is a ye Sub(x) and a~,4 - {a},
andprocessesx,,x,,x,withy=ax,+ax,+x,andx,#x,.Sincex,#x,,
there must be an n z 1 with q,(xi) # 7rn(x2) (by AIP). Therefore we have
that n,, i(y) is root nondeterministic. Now if the top of y is “at depth m”

in x (y is reached after executing m steps from x), then

1 DET(G+,+ I(X)).

4.12. Note. By 4.11, the predicate DET is co-semi-recursive. In general,
DET will, however, not be decidable.

4.13. DEFINITION. Now, we will define the trace set of a process in con-
crete process algebra. A trace set is a set of words from A - (6). On FCPE,
we define tr inductively:

1. tr(a)= {E, a}, if aEA - {a},

2. tr(6) = {E},

3. tr(ax)= {E}U {a*a:a~tr(x)}, if UEA- {ii},

4. tr(x + y) = tr(x) u tr(y);

and we extend this definition to all processes by

5. tr(x) = U,“= i tr(x,(x)).

4.14. Definition 4.13.5 is correct, because trace sets are prefix closed, i.e.,
if ap is in some trace set (0, p E (A - {S})*, op is word g followed by word
p), then (T is too. We define the set of trace sets Y as the set of all prefix
closed subsets of (A - {6})*. Note that Y = {@} u ran(tr).

4.15. DEFINITIONS. On F-, we define three operations:

1. if ZEY, (iJ/aa)(Z)= {o:a*aEZ}, so (iY/aa):Y+T for a
UEA - (6).

2. If ZEF, first(Z) = {a: 30~ (A - {a))* a*oEZ}, so
first: 5 + &(= Pow(A - (6))).

3. If ZEY and UEA- {6}, a*Z= {E} u {a*o:a~Z), so

*: (A- {6})xc+F.

Note that a*@ = {E}.

4.16. LEMMA. For all ZEY- {@} Z= UaeaPfsj a*(iY/iJa)(Z).

230 BAETEN AND BERGSTRA

ProoJ: This follows easily from 4.15.

Next we see when equality of trace sets implies equality of processes. A
theorem similar to this one was proved by Engelfriet (1985), in the setting
of CCS, (Milner, 1980) or CSP (Brookes, Hoare, and Roscoe, 1984). Here,
in the setting of concrete process algebra, we need an extra condition,
because we have both successful and unsuccessful termination (the process
a vs the process ah).

4.17. THEOREM. Let x, y he any processes. rf DET(x) and DET(y) and
-IDL(x) and 1 DL(y) and tr(x) = tr(y), then x = y.

Proof: We prove this for x, y E FCPE. The general case then follows
from AIP. We use induction, but in a little different form as in the
definition of FCPE. We will prove the statement: Suppose DET(x) and
DET(y) and 1 DL(x) and 1 DL(y) and tr(x) = tr(y),

x= i a,x,+ f b, (ai, b,EA, n+m>O)
r=l ;= I

Y= i ckyk+ i 4 (ck, d,EA, r+s>O)
k=l /= I

and the theorem holds for all xi, y,. Then x = y. So suppose x and y are as
specified. By applying A6 and A7, we can assume ai, b,, ck, d,E A - (6). By
applying A3, we can assume all the bj are distinct, and all the d, are dis-
tinct. Since DET(x) and DET(y), we can assume all the ai are distinct, and
all the ck are distinct. Since 1 DL(x) and 1 DL(y), we can assume
that xi# 6 (if 1 < i< n) and y, #6 (if 1 <k d r). Using Definition 4.13,
we see that this implies that there is a 0 E tr(x,) and a CE tr(yk) with
a#~. Now {ai: < 1 <i<n} u {b,: 1 <j<m} =lirst(tr(x))=lirst(tr(y))=
{ck: 1 <k<r} u {d,: 1616s). If 1 <i<n, then there is a oEtr(xi) with
0 #E. Then a*a E tr(x), so a* [T E tr(y). It follows that there must be a k
(1 <k<r) with ai=c, and oEtr(yk). Thus {ai: 1 <ibn}= {ck: 1 <kdr}

and also {bj: 1 <j<m} = {d,: 1 <l<s}, whence cj!!r bj=CfE1 dl.
Therefore, we can write y = I:=, ai yi + c,“=, bj (maybe after a renumber-
ing of the y,).

Let 1 < i< n, then tr(x,) = (a/&r,)(tr(x)) = (iY/&z,)(tr(y)) = tr(y,) (since all
the ai are distinct). Since xie Sub(x), yie Sub(y), we have DET(xi) and
DET(y,) immediately from Definition 4.8; we have 1 DL(x,) and
1 DL(yi) from 4.2.2. Thus, applying the induction hypothesis, we have
xi = yi, and therefore x = y.

Now we define the restriction of a process to a trace set. If x is a process,
and Z a trace set, then V,(x) is the result of disallowing every step in x

GLOBAL RENAMING OPERATORS 231

that will result in a trace outside Z. V, is not strictly a renaming operator
(axiom RN4 will not be satisfied), so if we formally want to define the
restriction operator in concrete process algebra, we need to extend our
signature and set of axioms. We formulate this in 4.18.

4.18. DEFINITION. Extend signature z with operators

V,:P+P for each Z E Y

(Y, defined in 4.14, is an algebra with functions first, a/&, *, defined in
4.15) and extend CPA, + RDP with axioms

Vz(4 = aA -first(z~W

VAax) = a, -first(z) ~Vo,,,,(,,(4

vz(x+Y)=vz(x)+vz(Y).

4.19. LEMMA. Let x be a process and Z E F. Then:

1. tr(V,(x)) E Z

2. tr(x) c Z*V,(x) =x.

Prooj: Use induction on x.

4.20. DEFINITION. Let ZcA - (6). For a word cr in (A - (a})*, let
cl(b) be the word obtained from c by leaving out all elements from I. Then,
if x is a process, we define tr,(x), the set of I-abstracted traces of x, by

tr,(x) = {E,(O): 0~ tr(x)}.

Often, when we study a large system, it becomes very difficult to calculate
its external behaviour because of the great number of states of the system
(many times an infinite number). In such cases, the trace set of the system,
or the trace set of some components of the system, may be much easier to
calculate. The following theorem gives us a way to use such information to
simplify a component in the context of the system. This makes it possible
to reduce the number of states before the interaction of the components is
calculated. Since this theorem allows us to use trace information in a
process algebra verification, it constitutes, in our view, an important inter-
face between trace theory and process algebra. Indeed, this technique has
been used extensively in the papers Vaandrager (1986) and Groenveld
(1987).

4.21. THEOREM. Let p, q be two processes in concrete process algebra.

232 BAETEN AND BERGSTRA

Suppose u(p) satisfies 2.8, so that I&,, is defined. Then ZEJ

tr{t} 04(p) o~~(P II 4) implies aH(p II 4) = ~H(vz(~) II 4).

Proof Let p, q be given, and suppose

It suffices to prove the theorem for p, q E FCPE (by limit rule). We will use
simultaneous induction on p and q to prove the following live statements:

1. 8H(P II 4) = a”(v,(P) II 4).

2. 8”(P IL 4) = ~HmP) IL 4).

3. aH(q It PI = dff(q IL V,(P)).

4. ~H(PIq)=~H(vz(P)Iq).

5. a,(P) = a/fw,(P)).

If V,(p) = p, there is nothing to prove, so we can assume V,(p) # p.

Case 1. p=aEA. Since V,(p)#p, we must have a#& and V,(a)=6,
so a $ first(Z). If we would have a 4 H, then a E lirst(trt,) 0 utOi o a,(a)) E
first(tr{,) 0 via, 0 a,(a [q)) E tirst(trt,) OU\,~ 0 c?,(a 11 q)) c first(Z), which is a
contradiction. Therefore a E H. Now we use induction on q.

Case 1.1. q=bEA. Since u\~~ Oa,(aIb)=a, if alb#b and alb#H,
and that will give a contradiction as above, we must have a,(a 1 b) = 6. But
then a,(a II 6) = a,(s 1) b) and 2-5 follow.

Case 1.2. q=bx, beA. Again cY,(a I b) = 6, so a,(a II bx) =

a,(a) d,(bx) + a,(b) a,ta II x) + aH(a 16) ~&I = da,(bx) + d,(b) dH(d II x)
+ da,(x) (use induction for the middle term) = aH(d 11 bx). Statements 2-5
are easier.

Case 1.3. q = x + y. Then aH(a II (x + y)) = a,(a) aH(x + y) +

8,(x lla)+aH(y lLa)+~&Ix)+~&Iy) = ~~&+y)+a& lLS)+
a,(~ U_ 6) + a,(s I x) + a”(8 1 y) (induction on terms 2-5) = a,(s 11 (x + y),
and again, 2-5 are easier.

This finishes Case 1.

Case 2. p = ax, a E A. If a#tirst(Z), we conclude as in Case 1 that
cYH(p 11 q) = a,(8 11 q) = a,(V,(p) (1 q). Therefore, we can assume a E first(Z),
so a$ H.

Claim. (a/da)(Z) 3 tr(,) ~u&,~d,(xllq).

GLOBAL RENAMING OPERATORS 233

ProoJ Suppose (T E tr (,) 0 u& 0 a,(~ I(q). Then

a*~ E a* RI 0 u:(,) 0 &Ax II 4)

=tr(,)(a.o:(,,~a,(xIIq))

=tr(,l~u~~.~,vi~i(a.~,(xl19))

= tq&~ppUax IL 4)

Etrj,p:c,, ~~H(PIlq)~z,

so by definition (T E (a/L%)(Z).

Now we use induction on q.

Case 2.1. q=bEA. Then

a,(ax II b) = a,(a). 8,(x II b) + a,(b) a,(a) a,(x)

+ a,(~ I b) a,(x)

= d,(a) .dH(V wwz44 II 6) + a,(b) ada V,,,,,,,(x))

+ a,(~ I b) hAv,,,,,,,(xN

=d,((aV ca,a,,zW) II b) = a,(V,(ax) II b),

and 2-5 are easier.

Case 2.2. q - by, b E A. Then

adax II by) = a,(a) 8,(x II by) + d,(b) a,(ax II y) + a,(a 1 b) 8,(x II y)

= aH(a) GAV(d,,,,, (xl II by) + a,(b) d,(V,(ax) II Y)

+ a,(~ I b) a,(v tii,cla&) II Y) = a,(V,(ax) II by),

and 2-5 are easier.

Case 2.3. q- y+z. Then

d,(ax II (Y + z)) = a,(a) 8,(x II (y + z)) + a,(y u_ ax) + 8,(z [ax)

+ afftax I Y) + d,(ax I z)

= a,(a) MV(,,,,,,(X) II (Y + z)) + d”(Y IL V,(ax))

+ a/AZ ILVAax)) + a,P,(ax) I Y) + uv,(ag 12)

= ~,(V.Aax) II (Y + z)),

and 2-5 are easier.

This finishes case 2.

234 BAETEN AND BERGSTRA

Case 3. p = x + y.

~Etrf,l~ub(.y, oJ~((x+Y) [I~)~~~{,}~U~,.~,~JH(PII~)

~tr~r)ouicp, o dff(P II 4) c z.

If OEtri,lOu:CV, o dH(q L x), take a trace

with

If r = t*r’, for some r’, this t-step came from a b-step in q, i.e., q = bz + w
with t’ E tr 0 ui(,) 0 8H(xjl z). In the other case, if r E a*?, for some z’ and
a E R(X), we have q = az + M: with r’ E tr 0 u&, 0 a,(x II z).

In either case, we can conclude by using an induction argument that
T’ E tr 0 u&, o J,((x + y) 11 z), whence, in the first case

7= t*r’e t* trou&,oa,((x+ y)Jlz)

= tr(t . &, 0 Jd(x + y) II 2)

= tro u&) (b J,((x + Y) II z)

= tro u&, oJ,(bz IL (x + Y))

C tr 0 u:(,) oJ,(q IL P)

Etrov’ .(,)“b(Pll4)~

so ~=EI,~(~)Etr(,~~v~~,,~~H(PI14)EZ.
The other case is similar.
Lastly, if rr E tr(,) o u&) 0 3,(x\ q), then

fl+tpkr, ~~,((x+y)lq)~tr~,,~~:,,,~~,(pllq)~Z.

GLOBAL RENAMING OPERATORS 235

Thus tr (,) 0 u&,) od,(xIlq)cZ. Similarly tr~,)ovlxc,,oa,(yllq)cZ, and the
claim is proved.

Then we prove Case 3 by induction on q.

Case 3.1. q=aaA. Then

a,(@ + y) II a) =8,(x IL a) + a,(.~ IL a) + aH(a)(aH(x) + a,(y))

+aH(xIa)+aH(yla)

= ~,dVAx) IL a) + aH(Vz(y) IL a) + ~H(a)(aH(Vz(x))

+ ~H(VAY) + aHPAx) I a) + ~,(V.&) I a)

= ~A(VAx) +V,(Y)) II a) = WAX + Y) II a),

and 2-5 are easier.

Case 3.2. q E az, a E A. Then

aff((x + Y) II a4 = a& IL az) + aH(y IL az) + a,(a) .aH((x + Y) 11~)

+~&Iaz)+JH(yIaz)

=aAVAx) lLax)+~H(Vz(Y) IIaz)+a,(a)a,(V,(x+y)Ilz)

+ ~H(Vz(x) I az) + aH(Vz(y) I az) = ~,(VAx + Y) II az),

and 2-5 are easier.

Case 3.3. q = z + w. Then

a,((x + Y) II (2 + w)) = a& II (z + w)) + a&Y IL (z + w)) + aIf@ II (x + Y))

+ d”(W IL (x + Y)) + dffb I (z + WI) + aH(Yl (z + w))

= ~,(V,(x + Y) II (z + w)h

and 2-5 are easier.

This finishes the proof of the theorem.

4.22. EXAMPLE. We will illustrate the use of Theorem 4.21 by again
considering Example 2.10. Define F = C dsD s,(d) r4(d) r,(ack)F (meaning
that F is the unique solution of this guarded recursive specification), then
2.11 shows that in the context

236 BAETENAND BERGSTRA

F should do the same as E. We use 4.21 to prove this. Define the trace set
Z inductively by:

1. for all de D

E, s,(d), s,(d) r4(d), s,(d) rdd) r,(ack) E Z;

2. if oeZ, then s,(d)r,(d)r,(ack)*oeZ (for all dED).

CLAIM 1. Z=trj,l~u:(E)~aH(EIISIIR).

Proof: Using 2.11, we get

trio “U&I oa,(ElI S/I R)

~~~slld)rr,(d)tr,(ack)-u:,,,~BH(EIISllR) 
> 

= u (s,(d)* trf,i(t r,(d) t r,(ack) ~~&,,~a,(Ell S/I R)) 
dSD 

= dyD (s,(d)* (r4(4* (r,(ack)*tri,) o~&,~d~(Ell SII NJ)). 

It is not hard to finish the proof. 

Thus aH(EII SII R) = i?,(V,(E) I( S/I R), and so we are done if we prove 
V,(E) = F. 

CLAIM 2. V,(E) = F. 

Proof: Since Z = UdE D (s,(d)* (r4(d)* (r,(ack)* Z))), we have, for 
dED, 

a 
- Z = r,(d)* (r,(ack)* Z), - 
as,(d) 

and 

Then 

VAE)=V, (( c s,(d)+ 1 rdd)+r,(ack) E 
d.ZD JED >> 

= 1 VAs,(d)E) + c VAr4(4E) +VAr,(ack)E) 

dED dED 



GLOBALRENAMINGOPERATORS 231 

= c 64 - (sl(d):deD]h(4) V(,,,,,,d,,,(~) + 6 + f3 
dcD 

=d~DJlv)v u(d)* (rj(ack)* .Z,@) 

= <,sD ‘,(d d,4- {r4(d,+-4(d)) Vr,,ack)* ,cE) + 6 

= c s,(d) ‘-4(d) a~- (r,(ack,j(‘daCk)) V,(E) + 6 

dtD 

= dFD s,(d) rd4 r,(ack) VAJ% 

Thus V,(E) satisfies the defining specification of F, so by RSP, V,(E) = F. 

5. PROCESSES WITH SIDE EFFECT ON A STATE SPACE 

In this section, we introduce processes that can be in different states. In 
fact, we introduce an operator I, (the state operator) so that A.,(x) is 
process x in state s. Thus, executing process A,(x) means that we start the 
execution of process x in state s. We give some examples and show that we 
can use the state operator to translate computer programs (in some high 
level language) into the language of concrete process algebra. 

5.1. State Operator. We want to define the state operator I,, for s E S, 
the state space. The principal idea is that executing a step of a process will 
result in a certain effect on the state, so our main equation will look like 

l,(ax) = a’&(x), 

and here a’ is the action resulting from execution of a in state s, and s’ is 
the state resulting from execution of a in state s. In fact, when we talk 
about a state, what we have in mind is the state of a certain object. 
Therefore, we will have a set of names M, and we will also index the state 
operator with a name m E M, so A: symbolizes that the object named by m 
is in state s. 

The action and effect functions will also depend on m. Now we are ready 
to give the formal definition. The basic idea for this definition came from 
Bergstra, Klop and Tucker (1985), where asynchronous communication 
was described as a mechanism with effect on the state. 

5.2. DEFINITION. Let A4 and S be two given sets (with A4 linite), so that 
sets A, M, S are pairwise disjoint. Suppose two functions act, eff are given: 



238 BAETEN AND BERGSTRA 

act:AxMxS+A, 

eff: A x M x S -+ S. We will write a(m, s) for act(a, m, s) 
and s(m, a) for eff(a, m, s). 

We require 

6(m, s) = 6 s(m, 6) = s (formfzM,sES). 

Now we extend the signature of concrete process algebra with operators 

1.:: P-, P (for mEkf,sES), 

and extend the set of axioms by 

l;(a) = a(m, s) 11 

A,“(a-T) = ah s) A;,, .,(x1 12 

q!(x + y) = n;(x) + Ayyy) 13 

5.3. Note. The state operator is a generalization of the renaming 
operator defined in 2.1. For, if b E A and HG A - (6 f are given, define 
M= (m) and S= {s}, and 

a(m, s) = 
b if UEH 

a if a$H, 

then b, = 2; follows. 

5.4. DEFINITION. We define the alphabet of an object rneA4, a(m), as 
the set of all actions that can be changed, so a(m) = (u E A: there is s ES 
with a(m, s) #a}. 

5.5. Theorem. If there is no communication (i.e., y is trivial), and 
a(x) n a(m2) = a(y) n a(ml) = 121, then J$o 12(x 11 y) = n;‘(x) 1) l?(y). 

Proof. In fact, we do not need to assume that y is trivial but it is 
enough if the following statement is satisfied: 

a(x)Ia(y)=@and {a(m,,s):a~a(x),s~S}~{u(m2,.s):u~a(y),s~S}=@. 

The proof consists of a simultaneous induction on x and y to prove the 
statement above simultaneously with two similar statements, with a left- 
merge (resp. communication merge) instead of the merge operator. The 
proof follows the lines of the proof of 4.21 (only simpler), and is 
straightforward, which is why it is omitted here. 



GLOBAL RENAMINGOPERATORS 239 

5.6. Remark. In 5.5, we have the case where we can separate the 
“variables” m,, m2. If either a(x)na(m,) # 0 or a(y)na(m,) # 0, we 
have so-called shared variables, a situation that is also described in GPL 
(in the absence of communication), see Owicki and Gries (1976). 

5.7. EXAMPLE I. Suppose we have a serial switch as depicted in Fig. 4. 
(For the formulation of this example, we are grateful to Jos Vrancken.) 
The switches A and B are given by 

A=aA 

B=bB 

(action a is the action of flipping switch A, and action b is the action of 
flipping switch B). Define M= {m}, S = (0, 1 } x (0, 1 } (state (i, j) is the 
state when switch A is in position i and switch B in position j, with 
i, Jo (0, 1 }). Now we define functions act and ejj’j We do this by listing all 
the relevant instances of axiom 12. 

JTi.j>(ax) = 

i 

on(a). A’;, - i,j>tx) 
if i#j 

off(a) . Jr;, - r,j)tX) 
if i=j 

(on(a) means that the lamp is turned on by doing a, off(a) it is turned off 

by a), 

ilyi~j)(bx) = 
on(b) .n;li, i-j>(x) if i#j 

off(b). 2;1;, , -Jx) if i= j. 

We assume there is no communication, so y(a, 6) = 6. Now suppose we 
start in state (0, 1) (so the lamp is off), then we have process 

P = A;I,, 1 >(A II B). 

CLAIM. P= (on(a) + on(b))(off(a) + off(b))P. 

Proof: We use RSP to show 

“&>(A II B) = J:,,,,(A II B) 

FIGURE 4 



240 BAETENAND BERGSTRA 

and 

~~O,O>(~ II B) = q,,, >(A II w 
Then 

= qo,, ,((a + b)(A II B)) 
= 0W .1;1*., >(A II B) + on(b) -~;b,o@ II 4 

= (on(a) + on(b)) ~~o,o,(A II B) 

= (on(a) + on(b))(off(a) ~:,,,,(A II B) 

+ off(b) q$,l>(A II B)) 

= (on@) + on(b))(off(a) + off(b)) d’;o.,j(A II W 

= (on(a) + on(b))(off(a) + off(b)) P. 

5.8. EXAMPLE II. Random walk. Suppose we have given squares as in 
Fig. 5, and processes A and B each occupying one square. Then both start 
a random walk, so 

A=(I,+r,)A+h, 

B=(/,+r,)B+h, 

(possible actions are left, right, and halt). We implement this using the 
following state operator. Take M= {m} ( we will omit this m in the sequel) 
and S= (0, 1,2,3,4) x (0, 1, 2, 3,4). We list the relevant instances of 
axiom 12: 

A<i.j)UAX) = 

6 if i=O orj=i- 1 

l,j ’ A<i- 1. j>tx) otherwise, 

if i=4 orj=i+ 1 

<I+ *.j>tx) otherwise, 

A<t,j>(hAx) = hA(i) . A<i.j>(X) (A halts at i); 

FIGURE 5 



GLOBALRENAMINGOPERATORS 241 

and we have similar equations for B: 

A<i,j>(lBx)= f 

i 

if j=O or i=j- 1 

B’ 
3 
*<,.,- ,>(x) otherwise; 

if j=4 or i=j+ 1 

otherwise; 

A<i.j>(hBx) = hB(j) . A<i. j>Cx). 

Then the situation pictured in Fig. 5 is described by 

~<o,,,(A II W 

Using abstract process algebra, we can establish the following claim. 

CLAIM. Process 1,,,,(A Ij B) terminates, and will do so in a state (i, j) 
with i < j. To be more precise, if we define Z= {I,, rA, I,, rB}, then 

~I~A<o,,>(AIIB)=~ (i hA(i). i h,(j)+ i h,(j)-‘f’h,(i)). 
i=O J=i+ 1 j=l i=o 

The main tool used in proving this is Koomen’s fair abstraction rule 
(KFAR, see Baeten, Bergstra and Klop, 1987b). We will not give the proof 
here, since it is outside the scope of this paper. 

5.9. The following two statements list conditions which enable us to 
interchange two state operators, or a state operator and an encapsulation 
operator. We omit the proofs. 

1. If HA or(m) = /zr and if a$ H implies a(m, s) $ H (for all SE S), 
then JT 0 a,(x) = ~3~ 0 n;(x). 

2. If a(x)na(m,)na(m,)= 0 and if a~a(x)na(m,) implies 
a(ml, s) $ a(mJ (for all s E S) and a E a(x) n a(m2) implies a(m,, s) $ a(m,) 
(for all s E S), then A;’ o L:(x) = 2~ o J;l(x), 

5.10. DEFINITION. In order to be able to give the following examples, 
we need to extend the notion of a state operator a little. What we need is 
that executing a step in a process can result in several possible actions, i.e., 
a(m, s) c A, not a(m, s) E A. Thus act: A x M x S + Pow(A). The state 
following will depend on the alternative chosen, so eff: A x A x M x S + S, 
where s(m, a, b) will matter only when bE a(m, s). We still have 
6(m, s) = (6) and s(m, S,6) = s, and then we can define the extended state 
operator A; by 



242 BAETENANDBERGSTRA 

AtTax) = 1 b .K&?,u.&) L2 
bco(m.s) 

47x + Y) = 47x) + A,“(Y) L3 

Note that if each a(m, s) is a singleton, we get back the (simple) state 
operator defined in 5.2. 

5.11. EXAMPLE III. We will describe a small part of a CSP language 
(see Hoare 1978). We have finite sets C (channels), X (variables), and D 
(data). We have atomic actions c? x(for c E C, x E X; receive) and c! d (send 
d). The only non-trivial communications are c?dl c! d = c# d (d is com- 
municated along channel c). 

We implement this as follows: Take M = X, S= D, then we define act 

and effso that 

A;;(c! x.Z)=c! d-A;;(Z) (for any process Z, and x E X, d E D, c E C) 

A;(c? x .Z) = C c? e. A:(Z) (anyZ,xEX,dED,cEC); 
PED 

thus, in environment Ai, variable x has value d). 

5.12. EXAMPLE IV. We can mechanically translate any computer 
program into process algebra. We illustrate this by means of the following 
example, a simple program to double a given number. Suppose we work on 
data structure Z, = (0, 1, . . . . n - 1 } with functions s (successor modulo n) 
and p (predecessor modulo n), and constant 0. We have program P: 

read(x) 

y:=o 

while x # 0 do y := ss(y); x := p(x) 

write(y). 

We translate this into process algebra as: All simple statements will become 
atomic actions, and program constructs become process algebra constructs; 
for instance, a while- loop will become a recursive specification. Thus 

P = read(x). (y := 0). Z . write(y), 

z=(X#O).(y:=ss(y))~(x:=p(x))-Z+(x=0). 



GLOBALRENAMINGOPERATORS 243 

Now we describe the state operator: 

and for any d E H,, and any process q: 

~3read(x)s) = 1 r(e) 44) 
ecz. 

A;((y:=o)q)=(y:=o).Ayo(q) 

A;(write(y)q) = w(d). As(q) 

n;(X#O.q)=6 

4x(x := MY)h) = (Y := W)) 4(,(,,,(q) 

n;;ttx := P(X)b3) = (x := p(x)) +&,(q) 

A;((x=O)q)=6 if d#O 

The functions act and eff are trivial in all other cases. In order to see what 
happens, we will use pre-abstraction as defined in 2.3. Take 

CLAIM. t,o~i;onX(P)=C,,=,r(e) t2+3eiv(2e(mod n)). (Note. If the 
program contains statements of the form x := y, we have to use an 
operator A $;e’>’ instead of A;o/i;.) We will sketch the proof of the claim 
by taking n = 2, so Z, = { 0, 1 }. Then 

= t,oA;(read(x) . Ag((y :=0) Z write(y)) 

= t,(r(O) . A;((y := 0). Ag(Z write(y))) 

+r(l).A;((y:=O).fl$(Zwrite(y)))) 

= r(0) t. t,(s + (x = 0). A; 0 Ag(write(y))) 

+r(l)t.t,((x#0)./1~~/I~((~:=ss(y).(x:=p(x)).Z.write(y))) 

=r(O)-t.t.w(O)+r(l).t.t.t,((y:=ss(y)) 

.(x :=p(x))A;;oAg(Z.write(y))) 

= r(0) ttw(0) + r( 1) ttttt,(b + (x = 0) A; 0 Ag(write(y))) 

= r(0) ttw(0) + r( 1) tttttw(0). 



244 BAETEN ANDBERGSTRA 

5.13. EXAMPLE V. Consider again the queue defined in 3.1. Looked at 
in a certain way, all it does is actions read and write, so we might want to 

say 

queue = read” I( write’“, 

where for an atom a, the process a@ is defined by the recursive specification 
X= aX. We can realise this view in the following way: take M= { ( 1, 2) } 
(we have input channel 1 and output channel 2) and S= D* (if we want 
the state space to be finite, we need to limit the capacity of the queue). 
Now we define act and eff: 

A,<‘x2>(read.q)= c r,(d).A6<!j2)(q) 
dell 

A (1%2>(write . q) = 6 

A,&>(write. q) =3,(d). A,<1*2>(q). 

CLAIM. Q = A,<1,2)(readw I( writem). 

Proof: We define, for o ED* 

R, = A:L-2>(readW 11 write”). 

Then: 

1. R, = ,4,<‘-*)(read(read” 11 write”) + write(read” 11 writea)) 

=c dsD rI(d).Aj’,2) (read” II write”) + 6 = EdeD r,(d) R,. 

2. Rmed= A:!$)(read(read” II write”) + write(read” 11 writew)) 

=Ceeo rl(e) . ,4$i’.>,(read” II writew) + s2(d) A:‘**)(readO II writew) 

=LeD r,(e) Ro8d8e + s,(d) 4,. 

Therefore, the R, satisfy the equations for the Qp in 3.1, so by RSP 

R, = Qr 

RECEIVED May 1986; ACCEPTED December 14, 1987 

REFERENCES 

BAETEN, J. C. M., AND BERGSTRA, J. A. (1985), “Global Renaming Operators in Concrete 
Process Algebra,” Report CS-R8521, Centre for Mathematics and Computer Science, 
Amsterdam. 

BAETEN, J. C. M., BERGSTRA, J. A., AND KLQP, J. W. (1987a). Conditional axioms and a//I 
calculus in process algebra, in “Proceedings, IFIP Cord. on Formal Description of 
Programming Concepts-HI Ebberup, 1986,” (M. Wirsing, Ed.), pp. 53-75, North-Holland. 
Amsterdam. 



GLOBAL RENAMING OPERATORS 245 

BAETEN, J. C. M., BERGSTRA, J. A., AND KLOP, J. W. (1987b), On the consistency of 
Koomen’s fair abstraction rule, Theoret. Comput. Sci. 51 (l/2) 1299176. 

BAETEN, J. C. M., AND VAN GLABBEEK, R. J. (1987) Another look at abstraction in process 
algebra, in “Proceedings, 14th ICALP, Karlsruhe” (Th. Ottmann, Ed.), Lecture Notes in 
Comput. Sci. Vol. 267, pp. 8494, Springer-Verlag, New York/Berlin. 

DE BAKKER, J. W., AND ZUCKER, J. I. (1982) Processes and the denotational semantics of 
concurrency, Inform. and Control 54 (l/2) 7@120. 

BERGSTRA, J. A., AND KLOP, J. W. (1986), Algebra of communicating processes, in 
“Proceedings, CWI Symp. Math. and Comput. Sci. (J. W. de Bakker, M. Hazewinkel, and 
J. K. Lenstra, Eds.) pp. 89-138, North-Holland, Amsterdam, 1986. 

BERGSTRA, J. A., AND KLOP, J. W. (1985). Algebra of communicating processes with abstrac- 
tion, Theoret. Comput. Sri. 37 (1) 77-121. 

BERGSTRA. J. A., AND KLOP, J. W. (1984) Process algebra for synchronous communication, 
Inform. and Control 60 (l/3) 109-137. 

BERGSTRA, J. A., KLOP, J. W., AND OLDEROG, E.-R. (1987) Readies and failures in the 
algebra of communicating processes, Report CS-R8748, Centre for Mathematics and Com- 
puter Science, Amsterdam; SIAM J. Comput., in press. 

BERGSTRA, J. A., KLOP, J. W.. AND TUCKER, J. V. (1985) Process algebra with asynchronous 
communication mechanisms, in “Proceedings, Seminar on Concurrency” (S. D. Brookes, 
A. W. Roscoe, G. Winskel, Eds.), pp. 7695, Lecture Notes in Comput. Sci. Vol. 197, 
Springer-Verlag, New York/Berlin. 

BERGSTRA, J. A., AND TIIJRYN. J. (1987) Process algebra semantics for queues, Fund. Inform. 
10 213-244. 

BERGSTRA, J. A., AND TUCKER. J. V. (1985) Top-down design and the algebra of com- 
municating processes, Sci. Comput. Programming 5 (2) 171-199. 

BROOKES, S. D., HOARE, C. A. R., AND ROSCOE, A. W. (1984) A theory of communicating 
sequential processes, J. Assoc. Comput. Mach. 31 (3) 56&599. 

ENGELFRIET, J. (1985), Determinacy -+ (observation equivalence = trace equivalence), Theoret. 
Comput. Sci. 36 (1) 21-25. 

GROENVELD, R. A. (1987), “Verification of a Sliding Window Protocol by Means of Process 
Algebra,” Report P8701, Programming Research Group, University of Amsterdam. 

HOARE, C. A. R. (1978) Communicating sequential processes, Comm. ACM 21 666677. 
MILNER, R. (1980), “A Calculus of Communicating Systems,” Lecture Notes in Comput. Sci. 

Vol. 92, Springer-Verlag, New York/Berlin. 
OWICKI, S., AND GRIES, D. (1983), An axiomatic proof technique for parallel programs, Acta 

Inform. 6 319-340. 
REM, M. (1983) Partially ordered computations, with applications to VLSI design, in 

“Proceedings, 4th Advanced Course on Found. of Comp. Sci., part 2” (J. W. de Bakker and 
J. van Leeuwen, Eds.), MC Tract 159, pp. 144, Math. Centre, Amsterdam. 

VAANDRAGER, F. W. (1986), “Verification of Two Communication Protocols by Means of 
Process Algebra,” Report CSR8608, Centre for Math. and Comput. Sci., Amsterdam. 


