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Renaming operators are introduced in concrete process algebra (concrete means 
that abstraction and silent moves are not considered). Examples of renaming 
operators are given: encapsulation, pre-abstraction, and localization. We show that 
renamings enhance the defining power of concrete process algebra by using the 
example of a queue. We give a definition of the trace set of a process, see when 
equality of trace sets implies equality of processes, and use trace sets to define the 
restriction of a process. Finally, we describe processes with actions that have a side 
effect on a state space and show how to use this for a translation of computer 
programs into process algebra. CJ 1988 Academic Press, Inc. 

INTRODUCTION 

Concrete process algebra is that part of process algebra that does not 
involve r-steps which are the result of abstraction. We introduce concrete 
process algebras as an extension of ACP, the algebra of communicating 
processes (see Bergstra and Klop, 1986). Concrete process algebra does not 
consider silent moves or abstraction as is done in abstract process algebra 
(see Bergstra and Klop, 1985). The main advantages of not considering 
abstraction are that it leads to a clearer, and less problematic theory, with 
an easy to understand axiomatization. Contrary to the case with abstrac- 
tion, concrete process algebra is amenable to a term rewriting analysis and 
can be studied using initial algebra semantics. Also, concrete process 
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algebra is the starting point for designing a programming language. It is 
very useful for specification of processes or protocols, not so much for a 
verification formalism. Another article about processes without abstraction, 
and with essentially the same semantics, is de Bakker and Zucker (1982). 

In concrete process algebra, we introduce renaming operators. In Sec- 
tion 2, we define simple renaming operators, called relabelings in CCS (see 
Milner, 1980), and give three examples of such operators, namely the 
encapsulation operator (used to shield off a process, to prohibit com- 
munications with the environment), the pre-abstraction operator (used to 
obtain a small degree of abstraction within concrete process algebra), and 
the localization operator (which allows us to “view” a process while it is 
interacting with an environment, or, in other words, allows us to focus on 
some actions and forget about others). 

In Section 3, we look at the defining power of renamings. We give a 
specification of a queue in concrete process algebra with renamings and 
show that a queue cannot be defined in concrete process algebra without 
renamings, thus showing that the defining power of concrete process 
algebra is increased by adding renamings. 

In Section 4, we define a renaming operator with a memory, namely the 
restriction operator, that restricts a process to a set of possible execution 
traces. Before we define the restriction operator, we first give a short 
introduction to the theory of trace sets (for more information, see Rem 
1983), in which we prove that two processes with identical trace sets, that 
do not deadlock and are deterministic, must in fact be equal (also see 
Engelfriet 1985). Then we define the restriction operator, and use it in com- 
bination with the localization operator to show that in a context (or 
environment) we can restrict a process to the set of “localized” traces. In 
our view, this theorem constitutes an important interface between trace 
theory and process algebra. 

In Section 5, we introduce the state space of a process, and talk about 
actions that have a side effect on the state. We implement this with a 
generalized renaming operator, namely the state operator (for a different 
approach, see the theory of nonuniform processes in de Bakker and 
Zucker, 1982). We use the state operator to discuss processes having 
shared variables, and to (mechanically) translate a given computer 
program into process algebra. We see that this operator can be very useful 
in the design of a programming language that is based on concrete process 
algebra. We finish by giving a different specification of the queue. 

This article is a revision of (Baeten and Bergstra, 1985). Since that report 
appeared, the operators introduced there have been used in several other 
papers, notably Vaandrager (1986) and Groenveld (1987), thereby 
demonstrating their usefulness. We thank the referees for their valuable 
comments and many suggestions for improvements. 
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1. CONCRETE PROCESS ALGEBRA 

In this section, we describe the axiomatic theory of concrete process 
algebra. This theory extends the theory ACP (the algebra of com- 
municating processes) as described in Bergstra and Klop (1986). In this 
paper, we do not consider silent moves (or z-steps) or abstraction as is 
done in ACP, (see Bergstra and Klop, 1985). 

1.1. Atomic Actions. Concrete process algebra starts with a set of 
atomic actions A. We will assume that A is finite, that A contains two 
special elements 6 (for deadlock) and t (for hidden step), and that a com- 
munication function y: A x A -+ A is given with the following properties: 

1. y is commutative, Vu, b E A ~(a, 6) = y(b, a) 

2. y is associative, Vu, b, CEA y(y(u, b), c) =~(a, y(b, c)). 

3. 6 is a neutral element, Vu E A y(u, 6) = 6 

4. t does not communicate, Vu E A y(a, t) = 6. 

If a and b are two atomic actions, then y(u, b) is the result of the com- 
munication between a and b, the result of executing a and b 
simultaneously. The communication merge 1 will extend y to the set of all 
processes. If y(u, 6) = 6, we say a and b do not communicate. 

Next we define the signature C of concrete process algebra. We have 
three sorts: A, the set of atomic actions was defined in 1.1; P is the set of 
processes, the subject of investigation, and contains A, and finally d, the 
set of subsets of A - {6}, is the set of alphabets. Functions 

+, ., Il. IL, I, al/, =,, and constant 6 are discussed in Bergstra and Klop 
(1986) (rc, is called( ), there), and a and t are discussed in Baeten, 
Bergstra and Klop (1987a). 

1.2. Signature C. 1. Sorts. 

A (see 1.1) 

P (set of processes; A c P) 

d (&=Pow(A- (6))). 

2. Functions. 

+:PxP+P (alternative composition or sum) 

.:PxP+P (sequential composition or product) 

)I: Px P+ P (parallel composition or merge) 

[I:PxP+P (left-merge) 
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j:PxP-rP (communication merge) 

a,94 (encapsulation; H s A - ( t } ) 

lI,:P+P (projection; n > 0) 

a:P+d (alphabet function). 

3. Constants. 

dEA (deadlock) 

tEA (hidden step). 

1.3. Equations. Concrete process algebra deals with statements of the 
form 

P’4 

called equations; here p, q are process expressions, possibly containing 
variables. 

We use letters a, b, c, ..1 for elements of A, letters x, y, z, . . . for arbitrary 
processes (in some model of the theory), and we use capital letters 
X, Y, Z, . . . for variables, ranging over P (often called formal variables, since 
we will use them in specifications to define processes, not, like x, y, z, in 
quantified statements about processes). 

4x1 

is an equation with variables among X, and 

e(x) 

is the same equation with processes x substituted for variables X. Often, we 
want to focus on one of the variables, so writing 

4x, -) 

means that equation e holds for x and a fixed set of other processes. 

1.4. Specifications. A (recursioe) specljkation E is a set of equations 
{ej: ~EJ} (J is an index set), with ej of the form 

x, = Sj(X), 

sj is a term with variables from {X,: Jo J}, and J has a distinguished 
element j, . 

A set of processes x = {xi: i E J} (in a particular model) is a solution oec- 
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tor of E if E(x), i.e., substituting processes x for the variables of E gives 
ej(x) for all Jo J. Process x is a solution of E, E(x, -), if there is a solution 
vector of E with x in the &position. x is (recursively) definable (in a par- 
ticular model) if there is a specification E such that E(y, -) o x = y. (For 
these definitions, also see Baeten, Bergstra and Klop, 1987b.) 

1.5. DEFINITION. The set of finite closed process expressions, FCPE, is 
defined inductively: 

1. A z FCPE; 

2. XGFCPE and ~EA*uxEFCPE 

3. x,y~FcPE*x+y~FcpE. 

The set FCPE will allow us to use induction in proofs (when combined 
with the limit rule) and recursion in definitions. 

Next we define a notion of guardedness (taken from Baeten, Bergstra 
and Klop 1987b). Specifications must be guarded in order to prove that 
they have unique solutions (see 1.11). 

1.6. DEFINITION. Let s be an open term, possibly containing variables. 
An occurrence of a variable X in s is guarded ifs has a subterm of the form 
aM, with a E A and this occurrence of X is in M; otherwise, the occurrence 
is unguarded. 

Let E = {e,: j E J} be a specification. Define Xi --+’ Xj o X, occurs 
unguarded in si (the right-hand side of e,), and E is guarded o --+’ is well 
founded (i.e., there is no infinite sequence Xi, -+” X, +“...). 

1.7. AXIOMS. The axioms for concrete process algebra are presented in 
Table I. We use the following abbreviations: ACP = Al-7 + Cl-3 + 
CMl-9 + D14; P = PR1-4; AB = ABl-6; CPA = ACP + PR + AB + AIP, 
and CPA, = CPA + C4, so in Table I we have CPA, + RDP + HNF. 

1.8. Comments. For a discussion of axioms ACP, see Bergstra and 
Klop (1986 or 1984). Axiom C4 says that the communication merge 1 
extends the communication function y given in 1.1. We often have an extra 
restriction on the communication function, namely the handshaking axiom 

(HA), that says that all communications are binary: 

xlyl z=6. 

Axioms PR14 define the projection operator z,, for nE N, n >O. Their 
intuitive meaning is that II, “cuts off” a process at depth n, n,(x) stops 
after executing n steps. Axioms ABl-6 define the alphabet of a process, and 
were introduced and discussed in Baeten, Bergstra and Klop (1987a). Note 
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TABLE I 

Concrete Process Algebra 

x+y=y+x 
x+(y+z)=(x+y)+z 
x+x=x 
(x+y)z=xz+yz 
(XY)Z = x(y--) 
x+6=x 
6X=6 

AI 

A2 

A3 

A4 

A5 

A6 

Al 

alb=bla Cl 

(alb)lc=al(blc) c2 

6la=6 c3 

.ylly=x [y+y ilx+.u I) 

a Lx=ax 

(ax) li Y=a(xl/ Y) 

(x+y) iiz=x Lz+y [z 

(ax)Ib=(alb)x 

al(bx)=(alb)x 

(ax) I (by) = (a I bit-x II Y) 

(x+y)lz=xI=+yIz 

xl(y+z)=xly+xlz 

d,(a)=a if a$H 

d,(a)=6 ifaEH 

J”(X + Y) = a,(x) + a”(Y) 

d&Y) = a,(x) .d,(Y) 

CM1 

CM2 

CM3 

CM4 

CM5 

CM6 

CM7 

CM8 

CM9 

Dl 

D2 

D3 

D4 

c4 

n,(a) = a 

n,(ax) =a 

n,+ 1(0x) = Q%(x) 

n,(x + Y) = n,(x) + n*(y) 

PRI 

PR2 

PR3 

PR4 

a(d)=0 
a(a)= {u} if a#6 

a(6x) = 0 

a(m) = {u} u a(x) if a # 6 

a@ + v) = 4x1 u a(y) 

a(x)= 6 a(n,(x)) 
n=, 

E guarded 

3x E(x, -) 

ABl 

AB2 

AB3 

AB4 

ABS 

AB6 

RDP 

vn %(X1 = n.(Y) 
x=y 

AIP 

x = 1 a, x, + 1 b, 
rcn ,<m 

HNF 

that it is not necessary to use the extra sort d, for instead of saying that 
the alphabet is a set of atomic actions, it works equally well to say that the 
alphabet is a sum of atomic actions. If we take the latter option, we 
preserve the algebraic framework more strictly. 

The recursive definition principle (RDP) states that every guarded 
specification has a solution, and the approximation induction principle 
(AIP) states that two processes are equal if all their projections are equal. 
For RDP and AIP, see Baeten, Bergstra, and Klop (1987b). Finally, the 
principle of head normal forms (HNF) is formulated in Baeten and van 
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Glabbeek (1987). It says that every process has a head normal form, i.e., 
can be written as a sum of finitely many alternatives, each of which starts 
with an atomic action. The second sum is needed, in case some of these 
alternatives consist of just an atomic action. 

1.9. THEOREM. For every closed term t there is a term SE FCPE such 
that CPA, + t = s. (This is the so-called elimination theorem,) 

Proof: See Bergstra and Klop (1984). 

1.10. DEFINITION. The recursive speczjkation principle (RSP) is 

E(x, -1 E(Y, -1 

E r:y (RSP). 

Note that the solution vector in E(x, -) may be specified completely 
different than the solution vector in E( y, -) (see 1.18). 

1.11, LEMMA. HNF implies that for every x and n, z,(x) is equal to a 

term in FCPE. 

Proof: By induction on n. Write x = Ciin ai. xi + c,,,,, bj, for certain 
n, m, ai, xi, bj. For n = 1, we see immediately that rc,(~)=C~<~ ai+ 
cjCmbj. For n>l, we write 71,(~)=C~<~a~.7c,~,(x~)+C~<~bj, and use 
the induction hypothesis for the xi, 

1.12. LEMMA. RSP holds in concrete process algebra. 

Proof: See Baeten, Bergstra and Klop (1987a). 

Since some observations made in this proof will be used more often, we 
will state these here. Let E = (ei: jc J> be a guarded recursive specification. 
Now the condition of guardedness ensures that we can write each equation 
in the form Xj=Citnai.si+C- ,tm bj, for certain expressions si. Thus, the 
head normal form of each variable in a guarded recursive specification is 
completely determined by the specification and does not depend on the 
chosen solution (vector). Using 1.11, we see that we can calculate the finite 
projections of each variable as a term in FCPE. Now, if x and y are two 
solutions of a guarded recursive specification E, we find X,(X) = n,(y) for 
alln>l,sox=ybyAIP. 

1.13. DEFINITION. The limit rule (LR) is 
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In words, if an equation holds for all finite processes (more precisely, for all 
elements of FCPE), then it holds for all processes. The limit rule allows us 
to prove identities by induction, since FCPE is defined recursively. 

1.14. LEMMA. LR holds in concrete process algebra. 

Proof. Suppose that s(x) = t(x) is an equation in which a variable x 
occurs, and we know that it holds, when we substitute a term in FCPE for 
X. We have to prove that S(X) = t(x) holds. By AIP, it is enough to prove 
rrJs(x)) = rc,(t(x)), for each n > 1. Fix n > 1. For terms in FCPE, we can 
prove by structural induction that X,(X 0 y) = n,(n,(x) 0 n,(y)) for 
q =+;, I/, II, 1 and n,(a,(x)) = rc,(8,(n,(x)). For general processes, we 
can prove these equations by use of HNF. It follows that in the equation 
n,(s(x))=n,(t(x)), we can replace each occurrence of x by n,(x), by 1.11 
equal to a term in FCPE. By assumption, the equation holds for this term. 
It is easy to finish the proof. 

1.15. EXAMPLES. 1. In the previous theorem, the use of the principle of 
head normal forms is essential. For, if we consider the initial algebra of the 
theory with atomic actions {a, b}, but restrict the signature to {a} (so that 
the element b cannot be described by a closed term), then AIP does hold, 
but HNF and LR do not. HNF does not hold, since the element b does not 
have a head normal form, and LR does not hold, since the equation 
n](x) + a= a holds for all closed terms (since they must consist of a-steps 
or be equal to 6) but not for the element b. 

2. Even when we replace the principle HNF by the weaker 
assumption, that every finite projection of every process is equal to a term 
in FCPE (see 1.1 l), we cannot derive LR. For, consider the initial algebra 
of the theory with infinitely many atomic actions (ai: iE N >, also contain- 
ing one constant c that does not correspond to an element in the signature. 
Then, we define J-C,(C) = a,, and further define projection in accordance 
with the axioms. Then, the model does satisfy AIP (as it contains no 
infinite elements) and the assumption, but not HNF (as c does not have a 
head normal form) or LR (the equation ~~(rr~(x))=rr,(x) holds for all 
closed terms, as projection is defined normally on the ai, but not for c). To 
see that the model satisfies AIP, use the fact that each element has an 
alphabet, containing only finitely many of the ai. Thus, the occurrence of a 
c in a term can be detected in the sequence of its projections, as infinitely 
many a, appear in that position. 

3. We leave it as an open problem, to construct models of concrete 
process algebra, that satisfy LR, but not AIP or HNF. 
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1.16. THEOREM. The identities in Table II are provable from the axioms 

of concrete process algebra. Also the expansion theorem: 

x,IIxzII . ..IIx.= 1 x;kx’+ C (xiIxj) kx’,‘ET 
1 <i<n l.sr</Cn 

(here xi= 11 I<kcn k+;xk and ~“‘=Il,~k~~,k~~.k~~Xk). . . . 

Proof: Identities SCl-6 are proved in Bergstra and Klop (1984), 
CA 1, 3, 5 in Baeten, Bergstra and Klop (1987a), and ET in Bergstra and 
Tucker (1985), for all terms in FCPE. The general identities then follow by 
applying the limit rule. 

1.17. Initial Algebra. Suppose we have a guarded finite recursive 
specification E = (e,: 1 <j< n}. By RDP + RSP, E has a unique solution 
in concrete process algebra. Now if C is the signature of concrete process 
algebra defined in 1.2, let .Z(x,, . . . . x,) denote the signature C with extra 
constants x,, . . . . x, E P. Then, the initial algebra 

A = T, Z (x1, . . . . x,J, CPA, + E(x,, . . . . x,) 

will exist, because CPA, + E(x,, . . . . x,) is a positive conditional system. In 
A, the principles AIP, LR, HNF (by 1.12) and RSP hold, but RDP does 
not hold (not all guarded recursive specifications have solutions). (Of 
course, we could add constants for more than one specification.) 

1.18. EXAMPLES. 1. Suppose y(a, b)=6 for all a, bEA. Take a, bEA, 
and consider the initial algebra A = T,(Z(x, y, z, w), CPA, + {x = (a + b)x, 

y=ay,z=bz,w=yIIz}). In A we have w=yllz=y[Iz+z[ly+ylz= 

TABLE II 

Standard concurrency Conditional axioms 

(x ILU) ilz=x L(YllZ) SC1 4x1 I (a(u) n H) = H 

dH(X II Y) = d”(X II a,(Y)) 

(XIY) Ilz=.xI(.Y IL21 SC2 

x I Y = Y I x SC3 

xllY=Yllx SC4 
a(x) n H= 0 

a,(x) = x 

CA1 

CA3 

xl(Ylz)=(xlY)lz SC5 

xll(vllz)=(xllY)llz SC6 
H=H,uH, 

a,(x) = aH, a a,,(x) 
CA5 
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(~Y)llz+(~z)IIY+~Yl~z=~(Y/Iz)+~(zIIY)+(~I~)(YI/z) = (a+b)(yIIz) 
+J=(a+b)w, so with RSPx=w. (Note that zlly=yllz sinceyIz=a.) 

2. Suppose UEA, and consider the initial algebra A = 
T,(Z(x, y), CPA, + {x = uy, y = ux}). Using RSP we obtain x = y. 

The existence of inital algebras shows that concrete process algebra is 
consistent. To show however, that there exists a model also satisfying RDP, 
we need a result from Bergstra and Klop (1986). 

1.19. THEOREM. G, the set of all finitely branching process graphs 

modulo bisimulution, is a model of concrete process algebra, HNF and RDP. 

1.20. THEOREM. G is the final model for concrete process algebra plus 
HNF, in the sense that any other model that has the same equalities for 

closed terms, must be a submodel of 63. 

Proof: If B is any other model for concrete process algebra plus HNF, 
and x is an element of IEB, construct a process graph for x as follows: write x 
in head normal form Cicn ai .x, + c,,,,, b,. Then, the root of the process 
graph for x has edges labeled ui to nodes pi, and edges labeled bj to an 
endnode. At node pi we continue in the same way with the head normal 
form of process -xi. By 1.11, the head normal forms determine the finite 
projections, and the principle AIP says that a process is determined by its 
finite projections. The proof is finished, if we remark that in G two graphs 
are bisimilar, iff they are bisimilar to any finite depth. 

1.21. COROLLARY. If A is an initial algebra of concrete process algebra 
us defined in 1.17, then A is a subalgebra of 6.3. 

2. RENAMINGS 

In this section, we define global renaming operators in concrete process 
algebra, and consider three examples of renaming operators, namely the 
encapsulation operator aH, the pre-abstraction operator t, and the 
localization operator 0;. The localization operator will again be used in 
Section 4. 

2.1. DEFINITION. If u E A, and HE A - {S}, then the renaming operator 
uH will rename all elements of H into u. This renaming operator was 
introduced in process algebra in Bergstra, Klop and Olderog, (1987). To be 
more precise, we extend the signature with operators 

u,:P+P (aEA, HEA- {a}), 
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and add axioms of Table III. We still have the existence of initial algebras 
(as defined in 1.12) for this extended system. 

2.2. EXAMPLE I: Encapsulation. The simplest example of a renaming 
operator is, of course, the encapsulation operator 13~=6, (for 
HE A - (6, t}). Its usefulness is demonstrated in every paper on the 
algebra of communicating processes. Usually, we are dealing with the 
merge of a number of processes, that can communicate, and we shield them 
off from the outside by encapsulation; i.e., we set the communication 
“halves” equal to 6. Thus, if x is the merge of a number of processes, set 
H = {a E a(x): 3b E a(x), y(a, 6) # S}, and we consider a,(x). For example, 
if ?(a, b)=c#6, and a#c, b#c, then 8,,,,(aIIb)=c. 

2.3. EXAMPLE II: Pre-abstraction. We do not consider silent moves or 
abstraction in concrete process algebra, but using a special constant t E A 
we can capture part of abstraction by the renaming operator t, (for 
ZcA- {S}), h’ h w  ic we call the pre-abstraction operator. The pre-abstrac- 
tion operator will identify all internal actions, will abstract from their iden- 
tity, but no action can be removed altogether; for that purpose we need the 
(full) abstraction operator 7,. (Note that when we use an encapsulation 
operator aH, we always require t # H, so that d,(t) = t.) 

In 2.4, we explain some notation for distributed systems, which we use in 
2.5-2.7 to give an example of the use of t,. 

2.4. Distributed Systems. Suppose we have a number of locations, and 
a number of ports (or channels) linking them. We assume that at each 
location a certain process is executed, and that these processes can com- 
municate via the ports, thus obtaining a communication network. These 
communications will consist of the transfer of a piece of data. So suppose 
we have a finite set of data D (often, D = (0, 1 >), and we have com- 
munication channels 1, 2, . . . . k. Then we have the following atomic actions: 

ri(d) = read d along port i (d E D, 1~ i 6 k); 

si(d) = send d along port i (d E D, 16 i 6 k); 

ci( d) = communicate d along port i (d E D, 1~ i Q k), 

TABLE III 

u,,(b) = b 

a,(b) = a 

UH(X + Y) = UHb) + aif(Y) 

ad-v) = U”(X) ‘U”(Y) 

ifb$H 

ifbeH 

RN1 

RN2 

RN3 

RN4 
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and on these atomic actions, we define the communication function as 

y(r,(d), si(d)) = y(si(d), ri(d)) = ci(d)(d~ D, 1 d id k) 

y(a, b) = 6 in all other cases. 

We call this restricted communication format read/send communication (or 
read/write communication). 

2.5. DEFINITION. We consider the communication network of Fig. 1 (so 
we represent locations by circles, with the name of its process inside, and 
ports by lines). The processes P, Q, B,, B, are given by the FCPE terms: 

P= 1 r,(d). c rI(e) .sAd) .de) 
dsD CED 

Q = 1 r4(4. 1 rde) .skf(d, e)) 
dsD PED 

(here f: D x D + D is some given function) 

Bi= 1 ri+,(4~si+A4. 1 ri+I(e).si+2(e) (i= 1, 2). 
dsD FED 

Thus, P is a two-place buffer that works only once, B, and B, are one- 
place buffers that work twice, and Q transforms incoming data usingf: Put 
H= {ri(d), si(d): dE D, i= 2, 3, 4}, so lJH will encapsulate all internal 
communications. 

2.6. LEMMA. a,(PIl BI 11 &I/ Q) = x:dc D r,(d) C,?ED r,(e) cl(d) cd4 

(the) c,(d) + cd4 c*(e)) cde) c+(e) sAf(d, e)). 

Proof: Since we have binary communication, we can use the expansion 
theorem proved in Section 1, so we start with an action from one of the 
processes or a communication between two of them. Only the first step we 
will write out in full. 

FIGURE 1 
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+ C r2(4 PII 
dsD 

( (s,(d) 1 rAe~~~~e))ll~~l/Q) 
eGD 

+ 1 r,(d) PII Bl II 
dcD 

( (s,(d) c rde) de)) II Q) 
CIED 

= c r,(d). C rl(e) -dH(M4 de)) II 4 II 4 II Q) 

= C rA4. C rl(e) -44 

= 1 rl(4. 1 rl(e) .c2(4 .c3(4 

4, (44 II ( c df) s,(f)) II (~~(4 1 r,(g) d)) II 8) 
/ED gED 

= C r,(d) 1 rl(e) cd4 CA4 de) 
dsD eED 

. b de) II ( (s,(d) c rAg) s&)) II Q) + cd4 
E?eD 
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+ cd4 de) 

1)) 

= 1 r,(d) C rl(e) ~(4 cJd)(de) ~(4 + 44 de)) 
dED tZt?D 

= dFD r,(d) eFD r,(e) CAdI c3(4(c2(e) cd4 

+ 44 CAe)). c3(e) de) s5Uld, e)). 

2.7. We can simplify the expression derived in 2.6 considerably, if we 
use pre-abstraction. Put I= {c,(d): d E D, i = 2, 3,4}, the set of all internal 
communications. then 

f~ 0 a,(P II B, II 4 II Q, 

=dFDrl(d) 1 r,(e).t.t(t.t+t.t).t.t.s,(f(d,e)) 
PED 

= dFD r,(d) 1 r,(e). t6 .sMd e)). 

FED 

Thus, we only see the input and output actions, and we no longer see the 
alternatives in the formula of 2.6. 

2.8. EXAMPLE III: Localization. For sake of simplicity, we only define 
this operator in the case of read/send communication as described in 2.4. 
Let B c A - { 6 > be such that for each port i and each d E D at most one of 
the atoms ri(d), si(d), ci(d) is in B. If B satisfies this requirement, then the 
communication function y has an “inverse” on B 1 A; i.e., if ci(d) E B ( A, then 
exactly one of ri(d), si(d) is in B. Thus, we can call the original in B 

Y-‘(ci(d)). 

Now we can define the localization operator. 
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2.9. DEFINITION. Let B G A - (6, t} satisfy the requirement in 2.8. Let 
BI A = {c,, . . . . c,}. We define the localization operator vi by 

It is easy to see that vi has the properties: 

1. vi(y(b,a))=b, ifbEB, aEA, y(b,a)#6 

2. &(b)=b, if beB 

3. z&(c)=t, ifcEA-(AIBuBu(6)) 

4. v;(8)=6 

5. l&(x + y) = t&(x) + u;(y) 

6. v~(xy)=v~(x)~u;(y). 

Intuitively, we think of vi as the operator that ‘localizes’ a process to 
actions from B, so that, in a context, typically a merge of communicating 
processes, we can focus on some actions and (pre-) abstract from others. 
We give an example of the use of localization in 2.10, 11 and will discuss 
this example again in 5 4. 

2.10. DEFINITION. We consider the communication network shown in 
Fig. 2. Think of S as a sender, R as a receiver, and E as an environment. We 
define S and R as the unique solutions in concrete process algebra of the 
following two guarded recursive specifications: 

S= c r,(d) s*(d) r,(ack) s,(ack)S 

R = 1 r2(d) SJd) s,(ack)R. 

Here we have a special element ack denoting acknowledgment (it is easiest 
to take ack # D), so S sends a de D to R, receives an acknowledgment, and 
then sends the next d; R receives the data and sends back an 
acknowledgment. 

S and R also communicate with the environment E; so E can send data 

1 
E 

4 

a 

2 

s R 

3 

FIGURE 2 
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along 1, receive an acknowledgment along 1 or receive data along 4. Thus 
we can put 

E= 1 s,(d) + c r,(d)+r,(ack) E. 
deD dsD 

2.11. But, we have the feeling that E cannot do any of these things at 
any time: first we must have a s,(d), then a r,Jd), and then a r,(ack), before 
a next s,(d’) can follow. We can express this by using the localization 
operator. We put H= {si(d), ri(d): dED, in { 1, 2, 3,4)}, and look at 

so in the process cY~(EII S I( R) we focus on actions from E and we localize 
to E. It is easily seen that a(E) = {s,(d), r,(d): dED} u {ri(ack)} and that 
a(E) satisfies the requirement of 2.8. We see 

= d;D s1(4 t . u:(E) (dd) .d,(Ell (r,(ack)s,(ack)W II Mack)R))) 

= d;D s,(d) .f’r4(4. t .$,,(c,(ack) .dAEll SII NJ 

= c s,(d).t .r4(d). t.r,(ack)~~~,,,~~,(ElISIlR), 
dsD 

so that the actions from E indeed occur in the right order. 

3. DEFINING POWER OF RENAMINGS 

3.1. Suppose we want to give a recursive specification of a queue Q 
with input channel 1 and output channel 2, over a data set D with more 
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than one element (see Fig. 3). An infinite guarded specification can be given 
by the equations 

Q=Qc= 1 r,(d).Q, 

Qa*d = G(d) . Q, + 1 ‘-l(e). !&a 

CJED 

(for any word 0 ED* and any dE D). 

Now we look for a finite recursive specification of Q, in the context of 
handshaking communication (i.e., a finite specification E which has a 
solution x in some model iff the specification above has a solution x). We 
may assume that r,(d) and sZ(d) are not the result of communications, for 
we need the following interactions with the environment: 

y(ri(d), si(d)) = ci(d) (i= 1, 2; dE D). 

That is why we want to specify Q under the condition 

a(Q) C-J ran(y) = 0 (since a(Q)= {r,(d), s,(d): deD}). 

3.2. Next, we will prove two theorems: 

THEOREM 1. We cannot define Q by a finite guarded recursive 

specification in concrete process algebra without renaming under the con- 
dition a(Q) n ran(y) = 0. 

THEOREM 2. We can define Q by a finite guarded recursive specification 

in concrete process algebra with renaming operators (as defined in Section 2) 
under the condition a(Q) n ran(y) = 0. 

We will prove Theorem 1 in 3.10. First we need a number of intermediate 
results. We define the following axiom systems: 

PA = Al-5 + Ml4 + PR14 

(here Ml is axiom x 11 y = x [y + y Lx and M24 = CM2-4) and 

PA, = PA + A6,7. 

3.3. LEMMA. Q is not definable by a finite guarded recursive specljkation 

in PA. 

7-&- 
FIGURE 3 
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Proof: See Bergstra and Tiuryn (1987). 

3.4. DEFINITION. Let XE P. We say x does not deadlock (or 1 DL(x)) if 
for each n 2 1, there is a term s E FCPE such that X,(X) = s and 6 does not 
occur in 3. 

3.5. LEMMA. Suppose process x is definable by a finite guarded 

specification in PA, and x does not deadlock. Then x is definable by a finite 
guarded specification in PA. 

Proof: Let E = { ej: 1 < j Q n ) be a guarded recursive specification in 
PA, defining x (so x = s,(x, x2, . . . . x,) for some x2, . . . . x,). We define a 
theory PA*, intermediate between PA and PA,. The set of PA*-terms is 
defined inductively: 

1. any a E A - {S } and any variable X is a PA*-term; 

2. if s, r are PA*-terms, then so are s + r, s . r, s /I r, s kr, and s .6. 

The axioms of PA* are 

PA*=PA+{a& [Ix=ax6}. 

Note that rewriting a PA*-term by use of a PA*-axiom will yield a PA*- 
term. Note also that CPA kad Lx=ax6 (use induction on FCPE plus 
limit rule). Now we can assume that all right-hand sides of the equations in 
E are PA*-terms (if some are not, apply axioms A6 and A7, and if an 
equation Xj = 6 appears, substitute 6 for occurrences of X, in right-hand 
sides, and leave out equation X, = 6). Let E’ be the specification obtained 
from E by leaving out all occurring 6 (i.e., we replace each (sub)term SS by 

s). 
Then E’ is a finite guarded specification in PA, and we claim that E’ also 

defines x. To see that x is a solution of E’, let n > 1 be given. By 1.12, there 
is an expansion ST of s, in which all xj are n times guarded, so that we can 
reduce, in PA,, 7cJ.s~) to a term in FCPE. Likewise, for E’ there is an 
expansion s’; of s;, so that x,(s’;) reduces in PA to a v; in FCPE. Now the 
reduction from n,(sy) to VA in PA can be exactly transcribed to a reduction 
from R,(s;) to a v, E FCPE in PA* (sometimes using the PA*-axiom 
instead of CM2). 

Since x is a solution of E we have n,(x) = v,. But u, is a PA*-term, and 
so A6 and A7 cannot be applied to v,, so since x does not deadlock, 6 can- 
not occur in v,. But that means that v, = I&, so rc,(s;) = v, = v; = n,(s’;), 
and x is a solution of E’. 

3.6. COROLLARY. Q is not definable by a finite guarded recursive 
specfica tion in PA *. 
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Proof: That Q does not deadlock can be seen using the iniinitary 
specification given in 3.1. Now use 3.3 and 3.5. 

3.7. LEMMA. Let x be a solution of the guarded recursive specification E. 
Then a,(x) is a solution of a,(E), where a,(E) is obtained from E by 
replacing each right-hand side ti by a,( tj) (where H G A - {S } ). 

Proof. Use 1.12 and the observation 

CPA + 7r, o a,tx) = aH o 7~,(~). 

3.8. LEMMA. Suppose process x is definable by a finite guarded 
specification in ACP, + PR and LX(X) n ran(y) = 0. Then x is definable by a 
finite guarded specfication in PA6 (ACP, = ACP + C4). 

Proof Let E be a finite guarded recursive specification in ACP, + PR 
defining x. Put H = A 1 A = ran y - (6}, then by 3.7, a,(E) defines a,(x). 
But d”(x)=x, by applying rule CA3 (see 1.11). But it is not hard to see 
that applying aH to an open (ACP, + PR)-term amounts to leaving out 
(i.e., set equal to 6) all communication (sub)terms of the form x 1 y and has 
the same effect as having a trivial communication function y with 
r(a, b) = 6 for all a, b E A. The theory ACP, + PR with trivial y is the same 
as theory PA,. 

3.9. COROLLARY. Q is not definable by a finite guarded recursive 
specification in ACP, + PR, zf we require a(Q) n ran(y) = 0. 

3.10. THEOREM. Q is not definable by a finite guarded recursive 

specification in concrete process algebra, if we require LX(Q) n ran(y) = 0. 

Proof: This immediately follows from 3.9, since any specification in 
concrete process algebra uses the signature of ACP, + PR, so it is a 
(ACP, + PR)-specification. 

3.11. THEOREM. Q is definable by a finite guarded recursive specification 

in concrete process algebra with renaming operators, such that 

a(Q) n ran(y) = 0. 

Proof: Let A contain atoms rl (d), sZ(d), l(d), and u(d), for each d E D, 
and suppose 

y(44 44) = 44 (de D) 

are the only non-trivial communications. 

Suppose D = (4, . . . . d,}, and define s2iu) = s2(d,)f,cd,,j ~S2(d2)iUcd2,1 0 
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operators, and H = (l(d): ds D}. We claim we can define Q by 

Q= c Wb,,u~ 0 W,,,,(Q) II s,(d) . Z) 
dcD 

Z= 1 l(d).Z. 
dcD 

To show this specification is correct, define R,, for a ED*, inductively: 

&=Q (as given above) 

R O*d= 32(u) 0 &&,~(R,) II sAd)Z). 

First we need the following observation: 

&=~2(u~ 0 h&,#CJ II Z). 

We prove this by RSP, showing that both sides satisfy the same equations: 
we have, on the one hand, 

R, = c r,(d) .szjul 0 %IU~~,~R) II sz(W) 

deD 

= dFD r,(d) ’ Rd, 

and 

Ra*d= sz(u) o 4A~1s,lR) II+(W) 

= S2{u) 4U~,,~(R,) IL +(d)Z) + ~2~,) ~,Md)Z lLZ&W 

(since s2(d) does not communicate) 

= SZ{u} “Mu,,,, 

(eeD ) 

C r,(e) C~&bo) IIdWl 

(by induction) 

+ rc,,,(s2(f))CZ{,,,(R~,*~) II dd)Zl) 

(if a = a’*f; if a = E, this term does not appear) 

+ s,(d) -~2~u) +A~i,,iVL) IIZ) 

= c r,(e) .~2~u)(aH(z~s*)(Rp’o) II +(W) + 8 
CED 

+d4~s,~u~ 4#,,,,R) II Z) 

= ZD r,(e) . &o*d + dd) .~2~u) 4U,,,,(Ro) II Zh 
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On the other hand, we have 

S2(“} “hf(~{s,}(RJ II a 

= SZ(u) o 8H 
( 

d;D r,(d). C~(s2}(h(u} o W,s,,@) II S2(4Z)) II Zl 

+ 64. C~{s,)(Re) II Zl 
) 

= dFD r,(d) ‘32(u) o &fV{s,)(Rd) II 3 

and 

SZ(u} o u4,2}ubd) II a 

= S2(u} o M4,)(~2{u) 4(~(s,,W) II ~2(4Z)ll~) 

= S2(u} 4 
( 

JD +9(~~s,~(Re*,~d) II Z) 
) 

+ ~Z(“) o ww)(~2{“) 4f(~{,,,W,) II Z) II .a) 

Therefore, we have shown R,=sZiul ~I?,(~~,,~(R,)IIZ), and so the 
equations for R, simplify to 

R,= c r,(d) .R, 
doD 

Reed= 1 rl(e) . Reeaed + s,(d). R,. 
CED 

But that means that the R, satisfy the equations for Q, in 3.1, so by RSP 
R, = QC; in particular, R, = QE, so the equations above indeed define the 
queue Q. Finally, a(Q) n ran(y) = a is obvious. 
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4. TRACES AND RESTRICTION 

In this section, we define the trace set (set of execution paths) of a 
process. It is well known that in concrete process algebra, two processes 
with identical trace sets need not be equal (consider, e.g., processes a(b + c) 
and ab + ac). We will define for a process, what it means that it does not 
deadlock, and when it is deterministic, and then we show that if two 
processes have the same trace set, do not deadlock, and are deterministic, 
then they must be equal. Next, we define a restriction operator, that can 
limit a process to a set of possible traces, and we give an example of the use 
of this operator by again considering example 2.10 and 2.11. 

4.1. Note. The principle we will use very often in this section is the 
principle of head normal forms (HNF), in particular the following con- 
sequence of HNF: each projection must be a finite term (1.11). 

4.2. Deadlock Behaviour. We define a predicate DL in concrete process 
algebra as follows: on FCPE, we define DL inductively by 

1. DL(6) 

2. DL(x) =- DL(ax + y) (UE A, x, ye FCPE); and in general, we 
define 

3. DL(x) o 3n DL(rc,,(.lz)). 

4.3. LEMMA. The following hold: 

1. 1 DL(a) ifaeA - (6}, 

2. 1 DL(x) =z- 1 DL(ax) (UEA - {6}), 

3. -I DL(x) and 1 DL(y) j 1 DL(x + y). 

Proof Easy. 

4.4. THEOREM. Let UEA- {6}, HsA - (6) and x any process, then 

DL(a,(x)) o DL(x). 

Proof: * Suppose 1 DL(x). Take n > 1. Then 1 DL(rc,(x)). By 
1.11, there must be an SE FCPE such that n,(x) = s. Then 1 DL(s), 
and by applying 4.3, we find 1 DL(a,(s)). Then 1 DL(a,(n,(x))), 
and since by limit rule we can easily show uHo z, = rc,,oaH, we have 
1 DL(n,(a,(x))). Since n was chosen arbitrarily, we have -I DL(a,(x)). 

-z= Just as simple. 

4.5. Notes. 1. In 4.4, we can take a = t, so pre-abstraction is safe with 
respect to deadlocks. 
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2. In 4.4, we cannot take a= 6, as the following counterexamples 
show: 

2.1. if a, bE A - (6) with afb, then 

DL(aG + 6) but -I DL(a,,,(aG + 6)); 

2.2. if a~,4 - {6}, then 1 DL(a) but DL(J(,,(a)). 

Thus, neither of the implications 

Wxl =j Wa,(x)) 

DL(a,(x)) * DL(x) 

holds, in general. 

3. By 4.2.3., the predicate DL is semi-recursive. In general, DL will, 
however, not be decidable. 

4.6. Note. The following statements are easily proved: 

1. DL(x (I y) * DL(x) v DL()I) 

2. DL(x . y) = DL(x) v DL(y). 
(The converse only holds for 1, if both x and y are finite, and the converse 
holds for 2, if x is finite.) 

We define determinism in 4.8. First we need another definition, which 
appeared earlier in, e.g., Bergstra and Klop (1986). 

4.7. DEFINITION. The set of subprocesses (or states) of x is the set of all 
processes obtained by executing a number of steps from x. We have the 
following inductive definition: 

1. x E Sub(x) 

2. uy + z E Sub(x) = y E Sub(x). 

4.8. DEFINITIONS. Let x be any process: 

1. x is root nondeterministic if there is an a E A - (6 > and processes 
x1, x2, y such that x, #x, and 

x=ux,+ux,+y. 

2. x is nondeterministic if there is a y E Sub(x) which is root nondeter- 
ministic. 

3. DET(x) o x is not nondeterministic. 
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4.9. Notes. 1. Neither of the implications 

DET(x) 3 DET(a,(x)) 

DET(a,(x)) =P DET(x) 

holds in general (for aeA - (61, H&A- (6)), as the following coun- 
terexamples show. If a, b E A - { 6 > with a # b, then 

1.1. DET(aa + b6) but 1 DET(a&za + b6)); 

1.2. 1 DET(au + ub) but DET(ul,l(uu + ub)). 

2. In case a = 6, the implication 

DET(x) =G- DET(a,(x)) 

does hold, as is easily shown by induction, but the implication 

DET(a,(x)) * DET(x) 

does not, as the following counterexample shows. 
If a E A - (6}, then 

DET($,,(uu + us)) but 1 DET(uu + ~6). 

4.10. It is easily seen that DET(x) and DET(y) is not a sufficient con- 
dition to conclude to DET(xI) y) (take x= au, y=ub), so we need some 
extra condition(s). When we deal with large systems, we do want to be able 
to conclude the determinacy of the whole system from the determinacy of 
the parts. The following proposition (whose proof we omit) lists sufficient 
conditions for this. 

PROPOSITION. 

DET(x) DWY 1 

a(x) n a(y) c H 

(a(x) I a(y)) n (a(x) u a(y)) s H 

DEVa,(x II Y)) ’ 

4.11. THEOREM. Let x be any process in concrete process algebra. Then 

DET( x) o for all n > 1 DWT,(X)). 

Proof: * Suppose n > 1 is such that 1 DET(n,(x)), so there is a 
ye Sub(rr,(x)) and UE A - (6}, processes x,, x2, x3 with xi fx, and 
y = ax, + ax, + x3. Using induction, it is not hard to show that for each 
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y E Sub(rc,(x)), there is a y’ E Sub(x) and an m <n such that n,(y’) = y. It 
follows that y’ = ax; + ax; + xi, with n,- i(x;) = xi, rc,_ i(x;) = x2 
(xi =x, and x;=x, if m = 1) and rr,(x;) =x3. Since xi #x2, a fortiori 
xi # x;, whence 1 DET(x). 

-= Suppose 1 DET(x), so there is a ye Sub(x) and a~,4 - {a}, 
andprocessesx,,x,,x,withy=ax,+ax,+x,andx,#x,.Sincex,#x,, 
there must be an n z 1 with q,(xi) # 7rn(x2) (by AIP). Therefore we have 
that n,, i(y) is root nondeterministic. Now if the top of y is “at depth m” 

in x (y is reached after executing m steps from x), then 

1 DET(G+,+ I(X)). 

4.12. Note. By 4.11, the predicate DET is co-semi-recursive. In general, 
DET will, however, not be decidable. 

4.13. DEFINITION. Now, we will define the trace set of a process in con- 
crete process algebra. A trace set is a set of words from A - (6). On FCPE, 
we define tr inductively: 

1. tr(a)= {E, a}, if aEA - {a}, 

2. tr(6) = {E}, 

3. tr(ax)= {E}U {a*a:a~tr(x)}, if UEA- {ii}, 

4. tr(x + y) = tr(x) u tr( y); 

and we extend this definition to all processes by 

5. tr(x) = U,“= i tr(x,(x)). 

4.14. Definition 4.13.5 is correct, because trace sets are prefix closed, i.e., 
if ap is in some trace set (0, p E (A - {S})*, op is word g followed by word 
p), then (T is too. We define the set of trace sets Y as the set of all prefix 
closed subsets of (A - {6})*. Note that Y = {@} u ran(tr). 

4.15. DEFINITIONS. On F-, we define three operations: 

1. if ZEY, (iJ/aa)(Z)= {o:a*aEZ}, so (iY/aa):Y+T for a 
UEA - (6). 

2. If ZEF, first(Z) = {a: 30~ (A - {a))* a*oEZ}, so 
first: 5 + &( = Pow(A - (6))). 

3. If ZEY and UEA- {6}, a*Z= {E} u {a*o:a~Z), so 

*: (A- {6})xc+F. 

Note that a*@ = {E}. 

4.16. LEMMA. For all ZEY- {@} Z= UaeaPfsj a*(iY/iJa)(Z). 
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ProoJ: This follows easily from 4.15. 

Next we see when equality of trace sets implies equality of processes. A 
theorem similar to this one was proved by Engelfriet (1985), in the setting 
of CCS, (Milner, 1980) or CSP (Brookes, Hoare, and Roscoe, 1984). Here, 
in the setting of concrete process algebra, we need an extra condition, 
because we have both successful and unsuccessful termination (the process 
a vs the process ah). 

4.17. THEOREM. Let x, y he any processes. rf DET(x) and DET(y) and 
-IDL(x) and 1 DL(y) and tr(x) = tr(y), then x = y. 

Proof: We prove this for x, y E FCPE. The general case then follows 
from AIP. We use induction, but in a little different form as in the 
definition of FCPE. We will prove the statement: Suppose DET(x) and 
DET(y) and 1 DL(x) and 1 DL(y) and tr(x) = tr(y), 

x= i a,x,+ f b, (ai, b,EA, n+m>O) 
r=l ;= I 

Y= i ckyk+ i 4 (ck, d,EA, r+s>O) 
k=l /= I 

and the theorem holds for all xi, y,. Then x = y. So suppose x and y are as 
specified. By applying A6 and A7, we can assume ai, b,, ck, d,E A - (6). By 
applying A3, we can assume all the bj are distinct, and all the d, are dis- 
tinct. Since DET(x) and DET(y), we can assume all the ai are distinct, and 
all the ck are distinct. Since 1 DL(x) and 1 DL( y), we can assume 
that xi# 6 (if 1 < i< n) and y, #6 (if 1 <k d r). Using Definition 4.13, 
we see that this implies that there is a 0 E tr(x,) and a CE tr(yk) with 
a#~. Now {ai: < 1 <i<n} u {b,: 1 <j<m} =lirst(tr(x))=lirst(tr(y))= 
{ck: 1 <k<r} u {d,: 1616s). If 1 <i<n, then there is a oEtr(xi) with 
0 #E. Then a*a E tr(x), so a* [T E tr(y). It follows that there must be a k 
(1 <k<r) with ai=c, and oEtr(yk). Thus {ai: 1 <ibn}= {ck: 1 <kdr} 

and also {bj: 1 <j<m} = {d,: 1 <l<s}, whence cj!!r bj=CfE1 dl. 
Therefore, we can write y = I:=, ai yi + c,“=, bj (maybe after a renumber- 
ing of the y,). 

Let 1 < i< n, then tr(x,) = (a/&r,)(tr(x)) = (iY/&z,)(tr(y)) = tr(y,) (since all 
the ai are distinct). Since xie Sub(x), yie Sub(y), we have DET(xi) and 
DET(y,) immediately from Definition 4.8; we have 1 DL(x,) and 
1 DL(yi) from 4.2.2. Thus, applying the induction hypothesis, we have 
xi = yi, and therefore x = y. 

Now we define the restriction of a process to a trace set. If x is a process, 
and Z a trace set, then V,(x) is the result of disallowing every step in x 
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that will result in a trace outside Z. V, is not strictly a renaming operator 
(axiom RN4 will not be satisfied), so if we formally want to define the 
restriction operator in concrete process algebra, we need to extend our 
signature and set of axioms. We formulate this in 4.18. 

4.18. DEFINITION. Extend signature z with operators 

V,:P+P for each Z E Y 

(Y, defined in 4.14, is an algebra with functions first, a/&, *, defined in 
4.15) and extend CPA, + RDP with axioms 

Vz(4 = aA -first(z~W 

VAax) = a, -first(z) ~Vo,,,,(,,(4 

vz(x+Y)=vz(x)+vz(Y). 

4.19. LEMMA. Let x be a process and Z E F. Then: 

1. tr(V,(x)) E Z 

2. tr(x) c Z*V,(x) =x. 

Prooj: Use induction on x. 

4.20. DEFINITION. Let ZcA - (6). For a word cr in (A - (a})*, let 
cl(b) be the word obtained from c by leaving out all elements from I. Then, 
if x is a process, we define tr,(x), the set of I-abstracted traces of x, by 

tr,(x) = {E,(O): 0~ tr(x)}. 

Often, when we study a large system, it becomes very difficult to calculate 
its external behaviour because of the great number of states of the system 
(many times an infinite number). In such cases, the trace set of the system, 
or the trace set of some components of the system, may be much easier to 
calculate. The following theorem gives us a way to use such information to 
simplify a component in the context of the system. This makes it possible 
to reduce the number of states before the interaction of the components is 
calculated. Since this theorem allows us to use trace information in a 
process algebra verification, it constitutes, in our view, an important inter- 
face between trace theory and process algebra. Indeed, this technique has 
been used extensively in the papers Vaandrager (1986) and Groenveld 
(1987). 

4.21. THEOREM. Let p, q be two processes in concrete process algebra. 
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Suppose u(p) satisfies 2.8, so that I&,, is defined. Then ZEJ 

tr{t} 04(p) o~~(P II 4) implies aH(p II 4) = ~H(vz(~) II 4). 

Proof Let p, q be given, and suppose 

It suffices to prove the theorem for p, q E FCPE (by limit rule). We will use 
simultaneous induction on p and q to prove the following live statements: 

1. 8H(P II 4) = a”(v,(P) II 4). 

2. 8”(P IL 4) = ~HmP) IL 4). 

3. aH(q It PI = dff(q IL V,(P)). 

4. ~H(PIq)=~H(vz(P)Iq). 

5. a,(P) = a/fw,(P)). 

If V,(p) = p, there is nothing to prove, so we can assume V,(p) # p. 

Case 1. p=aEA. Since V,(p)#p, we must have a#& and V,(a)=6, 
so a $ first(Z). If we would have a 4 H, then a E lirst(trt,) 0 utOi o a,(a)) E 
first(tr{,) 0 via, 0 a,(a [ q)) E tirst(trt,) OU\,~ 0 c?,(a 11 q)) c first(Z), which is a 
contradiction. Therefore a E H. Now we use induction on q. 

Case 1.1. q=bEA. Since u\~~ Oa,(aIb)=a, if alb#b and alb#H, 
and that will give a contradiction as above, we must have a,(a 1 b) = 6. But 
then a,(a II 6) = a,(s 1) b) and 2-5 follow. 

Case 1.2. q=bx, beA. Again cY,(a I b) = 6, so a,(a II bx) = 

a,(a) d,(bx) + a,(b) a,ta II x) + aH(a 16) ~&I = da,(bx) + d,(b) dH(d II x) 
+ da,(x) (use induction for the middle term) = aH(d 11 bx). Statements 2-5 
are easier. 

Case 1.3. q = x + y. Then aH(a II (x + y)) = a,(a) aH(x + y) + 

8,(x lla)+aH(y lLa)+~&Ix)+~&Iy) = ~~&+y)+a& lLS)+ 
a,(~ U_ 6) + a,(s I x) + a”(8 1 y) (induction on terms 2-5) = a,(s 11 (x + y), 
and again, 2-5 are easier. 

This finishes Case 1. 

Case 2. p = ax, a E A. If a#tirst(Z), we conclude as in Case 1 that 
cYH(p 11 q) = a,(8 11 q) = a,(V,(p) (1 q). Therefore, we can assume a E first(Z), 
so a$ H. 

Claim. (a/da)(Z) 3 tr(,) ~u&,~d,(xllq). 



GLOBAL RENAMING OPERATORS 233 

ProoJ Suppose (T E tr (,) 0 u& 0 a,(~ I( q). Then 

a*~ E a* RI 0 u:(,) 0 &Ax II 4) 

=tr(,)(a.o:(,,~a,(xIIq)) 

=tr(,l~u~~.~,vi~i(a.~,(xl19)) 

= tq&~ppUax IL 4) 

Etrj,p:c,, ~~H(PIlq)~z, 

so by definition (T E (a/L%)(Z). 

Now we use induction on q. 

Case 2.1. q=bEA. Then 

a,(ax II b) = a,(a). 8,(x II b) + a,(b) a,(a) a,(x) 

+ a,(~ I b) a,(x) 

= d,(a) .dH(V wwz44 II 6) + a,(b) ada V,,,,,,,(x)) 

+ a,(~ I b) hAv,,,,,,,(xN 

=d,((aV ca,a,,zW) II b) = a,(V,(ax) II b), 

and 2-5 are easier. 

Case 2.2. q - by, b E A. Then 

adax II by) = a,(a) 8,(x II by) + d,(b) a,(ax II y) + a,(a 1 b) 8,(x II y) 

= aH(a) GAV(d,,,,, (xl II by) + a,(b) d,(V,(ax) II Y) 

+ a,(~ I b) a,(v tii,cla&) II Y) = a,(V,(ax) II by), 

and 2-5 are easier. 

Case 2.3. q- y+z. Then 

d,(ax II (Y + z)) = a,(a) 8,(x II (y + z)) + a,( y u_ ax) + 8,(z [ ax) 

+ afftax I Y) + d,(ax I z) 

= a,(a) MV(,,,,,,(X) II (Y + z)) + d”(Y IL V,(ax)) 

+ a/AZ ILVAax)) + a,P,(ax) I Y) + uv,(ag 12) 

= ~,(V.Aax) II (Y + z)), 

and 2-5 are easier. 

This finishes case 2. 
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Case 3. p = x + y. 

~Etrf,l~ub(.y, oJ~((x+Y) [I~)~~~{,}~U~,.~,~JH(PII~) 

~tr~r)ouicp, o dff(P II 4) c z. 

If OEtri,lOu:CV, o dH(q L x), take a trace 

with 

If r = t*r’, for some r’, this t-step came from a b-step in q, i.e., q = bz + w 
with t’ E tr 0 ui(,) 0 8H(xjl z). In the other case, if r E a*?, for some z’ and 
a E R(X), we have q = az + M: with r’ E tr 0 u&, 0 a,(x II z). 

In either case, we can conclude by using an induction argument that 
T’ E tr 0 u&, o J,((x + y) 11 z), whence, in the first case 

7= t*r’e t* trou&,oa,((x+ y)Jlz) 

= tr(t . &, 0 Jd(x + y) II 2) 

= tro u&) (b J,((x + Y) II z) 

= tro u&, oJ,(bz IL (x + Y)) 

C tr 0 u:(,) oJ,(q IL P) 

Etrov’ .(,)“b(Pll4)~ 

so ~=EI,~(~)Etr(,~~v~~,,~~H(PI14)EZ. 
The other case is similar. 
Lastly, if rr E tr(,) o u&) 0 3,(x\ q), then 

fl+tpkr, ~~,((x+y)lq)~tr~,,~~:,,,~~,(pllq)~Z. 
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Thus tr (,) 0 u&,) od,(xIlq)cZ. Similarly tr~,)ovlxc,,oa,(yllq)cZ, and the 
claim is proved. 

Then we prove Case 3 by induction on q. 

Case 3.1. q=aaA. Then 

a,(@ + y) II a) =8,(x IL a) + a,(.~ IL a) + aH(a)(aH(x) + a,(y)) 

+aH(xIa)+aH(yla) 

= ~,dVAx) IL a) + aH(Vz(y) IL a) + ~H(a)(aH(Vz(x)) 

+ ~H(VAY) + aHPAx) I a) + ~,(V.&) I a) 

= ~A(VAx) +V,(Y)) II a) = WAX + Y) II a), 

and 2-5 are easier. 

Case 3.2. q E az, a E A. Then 

aff((x + Y) II a4 = a& IL az) + aH(y IL az) + a,(a) .aH((x + Y) 11~) 

+~&Iaz)+JH(yIaz) 

=aAVAx) lLax)+~H(Vz(Y) IIaz)+a,(a)a,(V,(x+y)Ilz) 

+ ~H(Vz(x) I az) + aH(Vz(y) I az) = ~,(VAx + Y) II az), 

and 2-5 are easier. 

Case 3.3. q = z + w. Then 

a,((x + Y) II (2 + w)) = a& II (z + w)) + a&Y IL (z + w)) + aIf@ II (x + Y)) 

+ d”(W IL (x + Y)) + dffb I (z + WI) + aH(Yl (z + w)) 

= ~,(V,(x + Y) II (z + w)h 

and 2-5 are easier. 

This finishes the proof of the theorem. 

4.22. EXAMPLE. We will illustrate the use of Theorem 4.21 by again 
considering Example 2.10. Define F = C dsD s,(d) r4(d) r,(ack)F (meaning 
that F is the unique solution of this guarded recursive specification), then 
2.11 shows that in the context 
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F should do the same as E. We use 4.21 to prove this. Define the trace set 
Z inductively by: 

1. for all de D 

E, s,(d), s,(d) r4(d), s,(d) rdd) r,(ack) E Z; 

2. if oeZ, then s,(d)r,(d)r,(ack)*oeZ (for all dED). 

CLAIM 1. Z=trj,l~u:(E)~aH(EIISIIR). 

Proof: Using 2.11, we get 

trio “U&I oa,(ElI S/I R) 

~~~slld)rr,(d)tr,(ack)-u:,,,~BH(EIISllR) 
> 

= u (s,(d)* trf,i(t r,(d) t r,(ack) ~~&,,~a,(Ell S/I R)) 
dSD 

= dyD (s,(d)* (r4(4* (r,(ack)*tri,) o~&,~d~(Ell SII NJ)). 

It is not hard to finish the proof. 

Thus aH(EII SII R) = i?,(V,(E) I( S/I R), and so we are done if we prove 
V,(E) = F. 

CLAIM 2. V,(E) = F. 

Proof: Since Z = UdE D (s,(d)* (r4(d)* (r,(ack)* Z))), we have, for 
dED, 

a 
- Z = r,(d)* (r,(ack)* Z), - 
as,(d) 

and 

Then 

VAE)=V, (( c s,(d)+ 1 rdd)+r,(ack) E 
d.ZD JED >> 

= 1 VAs,(d)E) + c VAr4(4E) +VAr,(ack)E) 

dED dED 
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= c 64 - (sl(d):deD]h(4) V(,,,,,,d,,,(~) + 6 + f3 
dcD 

=d~DJlv)v u(d)* (rj(ack)* .Z,@) 

= <,sD ‘,(d d,4- {r4(d,+-4(d)) Vr,,ack)* ,cE) + 6 

= c s,(d) ‘-4(d) a~- (r,(ack,j(‘daCk)) V,(E) + 6 

dtD 

= dFD s,(d) rd4 r,(ack) VAJ% 

Thus V,(E) satisfies the defining specification of F, so by RSP, V,(E) = F. 

5. PROCESSES WITH SIDE EFFECT ON A STATE SPACE 

In this section, we introduce processes that can be in different states. In 
fact, we introduce an operator I, (the state operator) so that A.,(x) is 
process x in state s. Thus, executing process A,(x) means that we start the 
execution of process x in state s. We give some examples and show that we 
can use the state operator to translate computer programs (in some high 
level language) into the language of concrete process algebra. 

5.1. State Operator. We want to define the state operator I,, for s E S, 
the state space. The principal idea is that executing a step of a process will 
result in a certain effect on the state, so our main equation will look like 

l,(ax) = a’&(x), 

and here a’ is the action resulting from execution of a in state s, and s’ is 
the state resulting from execution of a in state s. In fact, when we talk 
about a state, what we have in mind is the state of a certain object. 
Therefore, we will have a set of names M, and we will also index the state 
operator with a name m E M, so A: symbolizes that the object named by m 
is in state s. 

The action and effect functions will also depend on m. Now we are ready 
to give the formal definition. The basic idea for this definition came from 
Bergstra, Klop and Tucker (1985), where asynchronous communication 
was described as a mechanism with effect on the state. 

5.2. DEFINITION. Let A4 and S be two given sets (with A4 linite), so that 
sets A, M, S are pairwise disjoint. Suppose two functions act, eff are given: 
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act:AxMxS+A, 

eff: A x M x S -+ S. We will write a(m, s) for act(a, m, s) 
and s(m, a) for eff(a, m, s). 

We require 

6(m, s) = 6 s(m, 6) = s (formfzM,sES). 

Now we extend the signature of concrete process algebra with operators 

1.:: P-, P (for mEkf,sES), 

and extend the set of axioms by 

l;(a) = a(m, s) 11 

A,“(a-T) = ah s) A;,, .,(x1 12 

q!(x + y) = n;(x) + Ayyy) 13 

5.3. Note. The state operator is a generalization of the renaming 
operator defined in 2.1. For, if b E A and HG A - (6 f are given, define 
M= (m) and S= {s}, and 

a(m, s) = 
b if UEH 

a if a$H, 

then b, = 2; follows. 

5.4. DEFINITION. We define the alphabet of an object rneA4, a(m), as 
the set of all actions that can be changed, so a(m) = (u E A: there is s ES 
with a(m, s) #a}. 

5.5. Theorem. If there is no communication (i.e., y is trivial), and 
a(x) n a(m2) = a(y) n a(ml) = 121, then J$o 12(x 11 y) = n;‘(x) 1) l?(y). 

Proof. In fact, we do not need to assume that y is trivial but it is 
enough if the following statement is satisfied: 

a(x)Ia(y)=@and {a(m,,s):a~a(x),s~S}~{u(m2,.s):u~a(y),s~S}=@. 

The proof consists of a simultaneous induction on x and y to prove the 
statement above simultaneously with two similar statements, with a left- 
merge (resp. communication merge) instead of the merge operator. The 
proof follows the lines of the proof of 4.21 (only simpler), and is 
straightforward, which is why it is omitted here. 
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5.6. Remark. In 5.5, we have the case where we can separate the 
“variables” m,, m2. If either a(x)na(m,) # 0 or a(y)na(m,) # 0, we 
have so-called shared variables, a situation that is also described in GPL 
(in the absence of communication), see Owicki and Gries (1976). 

5.7. EXAMPLE I. Suppose we have a serial switch as depicted in Fig. 4. 
(For the formulation of this example, we are grateful to Jos Vrancken.) 
The switches A and B are given by 

A=aA 

B=bB 

(action a is the action of flipping switch A, and action b is the action of 
flipping switch B). Define M= {m}, S = (0, 1 } x (0, 1 } (state (i, j) is the 
state when switch A is in position i and switch B in position j, with 
i, Jo (0, 1 }). Now we define functions act and ejj’j We do this by listing all 
the relevant instances of axiom 12. 

JTi.j>(ax) = 

i 

on(a). A’;, - i,j>tx) 
if i#j 

off(a) . Jr;, - r,j)tX) 
if i=j 

(on(a) means that the lamp is turned on by doing a, off(a) it is turned off 

by a), 

ilyi~j)(bx) = 
on(b) .n;li, i-j>(x) if i#j 

off(b). 2;1;, , -Jx) if i= j. 

We assume there is no communication, so y(a, 6) = 6. Now suppose we 
start in state (0, 1) (so the lamp is off), then we have process 

P = A;I,, 1 >(A II B). 

CLAIM. P= (on(a) + on(b))(off(a) + off(b))P. 

Proof: We use RSP to show 

“&>(A II B) = J:,,,,(A II B) 

FIGURE 4 
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and 

~~O,O>(~ II B) = q,,, >(A II w 
Then 

= qo,, ,((a + b)(A II B)) 
= 0W .1;1*., >(A II B) + on(b) -~;b,o@ II 4 

= (on(a) + on(b)) ~~o,o,(A II B) 

= (on(a) + on(b))(off(a) ~:,,,,(A II B) 

+ off(b) q$,l>(A II B)) 

= (on@) + on(b))(off(a) + off(b)) d’;o.,j(A II W 

= (on(a) + on(b))(off(a) + off(b)) P. 

5.8. EXAMPLE II. Random walk. Suppose we have given squares as in 
Fig. 5, and processes A and B each occupying one square. Then both start 
a random walk, so 

A=(I,+r,)A+h, 

B=(/,+r,)B+h, 

(possible actions are left, right, and halt). We implement this using the 
following state operator. Take M= {m} ( we will omit this m in the sequel) 
and S= (0, 1,2,3,4) x (0, 1, 2, 3,4). We list the relevant instances of 
axiom 12: 

A<i.j)UAX) = 

6 if i=O orj=i- 1 

l,j ’ A<i- 1. j>tx) otherwise, 

if i=4 orj=i+ 1 

<I+ *.j>tx) otherwise, 

A<t,j>(hAx) = hA(i) . A<i.j>(X) (A halts at i); 

FIGURE 5 
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and we have similar equations for B: 

A<i,j>(lBx)= f 

i 

if j=O or i=j- 1 

B’ 
3 
*<,.,- ,>(x) otherwise; 

if j=4 or i=j+ 1 

otherwise; 

A<i.j>(hBx) = hB(j) . A<i. j>Cx). 

Then the situation pictured in Fig. 5 is described by 

~<o,,,(A II W 

Using abstract process algebra, we can establish the following claim. 

CLAIM. Process 1,,,,(A Ij B) terminates, and will do so in a state (i, j) 
with i < j. To be more precise, if we define Z= {I,, rA, I,, rB}, then 

~I~A<o,,>(AIIB)=~ (i hA(i). i h,(j)+ i h,(j)-‘f’h,(i)). 
i=O J=i+ 1 j=l i=o 

The main tool used in proving this is Koomen’s fair abstraction rule 
(KFAR, see Baeten, Bergstra and Klop, 1987b). We will not give the proof 
here, since it is outside the scope of this paper. 

5.9. The following two statements list conditions which enable us to 
interchange two state operators, or a state operator and an encapsulation 
operator. We omit the proofs. 

1. If HA or(m) = /zr and if a$ H implies a(m, s) $ H (for all SE S), 
then JT 0 a,(x) = ~3~ 0 n;(x). 

2. If a(x)na(m,)na(m,)= 0 and if a~a(x)na(m,) implies 
a(ml, s) $ a(mJ (for all s E S) and a E a(x) n a(m2) implies a(m,, s) $ a(m,) 
(for all s E S), then A;’ o L:(x) = 2~ o J;l(x), 

5.10. DEFINITION. In order to be able to give the following examples, 
we need to extend the notion of a state operator a little. What we need is 
that executing a step in a process can result in several possible actions, i.e., 
a(m, s) c A, not a(m, s) E A. Thus act: A x M x S + Pow(A). The state 
following will depend on the alternative chosen, so eff: A x A x M x S + S, 
where s(m, a, b) will matter only when bE a(m, s). We still have 
6(m, s) = (6) and s(m, S,6) = s, and then we can define the extended state 
operator A; by 
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AtTax) = 1 b .K&?,u.&) L2 
bco(m.s) 

47x + Y) = 47x) + A,“(Y) L3 

Note that if each a(m, s) is a singleton, we get back the (simple) state 
operator defined in 5.2. 

5.11. EXAMPLE III. We will describe a small part of a CSP language 
(see Hoare 1978). We have finite sets C (channels), X (variables), and D 
(data). We have atomic actions c? x(for c E C, x E X; receive) and c! d (send 
d). The only non-trivial communications are c?dl c! d = c# d (d is com- 
municated along channel c). 

We implement this as follows: Take M = X, S= D, then we define act 

and effso that 

A;;(c! x.Z)=c! d-A;;(Z) (for any process Z, and x E X, d E D, c E C) 

A;(c? x .Z) = C c? e. A:(Z) (anyZ,xEX,dED,cEC); 
PED 

thus, in environment Ai, variable x has value d). 

5.12. EXAMPLE IV. We can mechanically translate any computer 
program into process algebra. We illustrate this by means of the following 
example, a simple program to double a given number. Suppose we work on 
data structure Z, = (0, 1, . . . . n - 1 } with functions s (successor modulo n) 
and p (predecessor modulo n), and constant 0. We have program P: 

read(x) 

y:=o 

while x # 0 do y := ss(y); x := p(x) 

write(y). 

We translate this into process algebra as: All simple statements will become 
atomic actions, and program constructs become process algebra constructs; 
for instance, a while- loop will become a recursive specification. Thus 

P = read(x). (y := 0). Z . write(y), 

z=(X#O).(y:=ss(y))~(x:=p(x))-Z+(x=0). 
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Now we describe the state operator: 

and for any d E H,, and any process q: 

~3read(x)s) = 1 r(e) 44) 
ecz. 

A;((y:=o)q)=(y:=o).Ayo(q) 

A;(write(y)q) = w(d). As(q) 

n;(X#O.q)=6 

4x(x := MY)h) = (Y := W)) 4(,(,,,(q) 

n;;ttx := P(X)b3) = (x := p(x)) +&,(q) 

A;((x=O)q)=6 if d#O 

The functions act and eff are trivial in all other cases. In order to see what 
happens, we will use pre-abstraction as defined in 2.3. Take 

CLAIM. t,o~i;onX(P)=C,,=,r(e) t2+3eiv(2e(mod n)). (Note. If the 
program contains statements of the form x := y, we have to use an 
operator A $;e’>’ instead of A;o/i;.) We will sketch the proof of the claim 
by taking n = 2, so Z, = { 0, 1 }. Then 

= t,oA;(read(x) . Ag((y :=0) Z write(y)) 

= t,(r(O) . A;((y := 0). Ag(Z write(y))) 

+r(l).A;((y:=O).fl$(Zwrite(y)))) 

= r(0) t. t,(s + (x = 0). A; 0 Ag(write(y))) 

+r(l)t.t,((x#0)./1~~/I~((~:=ss(y).(x:=p(x)).Z.write(y))) 

=r(O)-t.t.w(O)+r(l).t.t.t,((y:=ss(y)) 

.(x :=p(x))A;;oAg(Z.write(y))) 

= r(0) ttw(0) + r( 1) ttttt,(b + (x = 0) A; 0 Ag(write(y))) 

= r(0) ttw(0) + r( 1) tttttw(0). 
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5.13. EXAMPLE V. Consider again the queue defined in 3.1. Looked at 
in a certain way, all it does is actions read and write, so we might want to 

say 

queue = read” I( write’“, 

where for an atom a, the process a@ is defined by the recursive specification 
X= aX. We can realise this view in the following way: take M= { ( 1, 2) } 
(we have input channel 1 and output channel 2) and S= D* (if we want 
the state space to be finite, we need to limit the capacity of the queue). 
Now we define act and eff: 

A,<‘x2>(read.q)= c r,(d).A6<!j2)(q) 
dell 

A (1%2>(write . q) = 6 

A,&>(write. q) =3,(d). A,<1*2>(q). 

CLAIM. Q = A,<1,2)(readw I( writem). 

Proof: We define, for o ED* 

R, = A:L-2>(readW 11 write”). 

Then: 

1. R, = ,4,<‘-*)(read(read” 11 write”) + write(read” 11 writea)) 

=c dsD rI(d).Aj’,2) (read” II write”) + 6 = EdeD r,(d) R,. 

2. Rmed= A:!$)(read(read” II write”) + write(read” 11 writew)) 

=Ceeo rl(e) . ,4$i’.>,(read” II writew) + s2(d) A:‘**)(readO II writew) 

=LeD r,(e) Ro8d8e + s,(d) 4,. 

Therefore, the R, satisfy the equations for the Qp in 3.1, so by RSP 

R, = Qr 

RECEIVED May 1986; ACCEPTED December 14, 1987 
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