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Abstract

Purpose Image-guidance systems have the potential to aid in laparoscopic interventions by providing sub-surface structure

information and tumour localisation. The registration of a preoperative 3D image with the intraoperative laparoscopic video

feed is an important component of image guidance, which should be fast, robust and cause minimal disruption to the surgical

procedure. Most methods for rigid and non-rigid registration require a good initial alignment. However, in most research

systems for abdominal surgery, the user has to manually rotate and translate the models, which is usually difficult to perform

quickly and intuitively.

Methods We propose a fast, global method for the initial rigid alignment between a 3D mesh derived from a preoperative CT

of the liver and a surface reconstruction of the intraoperative scene. We formulate the shape matching problem as a quadratic

assignment problem which minimises the dissimilarity between feature descriptors while enforcing geometrical consistency

between all the feature points. We incorporate a novel constraint based on the liver contours which deals specifically with the

challenges introduced by laparoscopic data.

Results We validate our proposed method on synthetic data, on a liver phantom and on retrospective clinical data acquired

during a laparoscopic liver resection. We show robustness over reduced partial size and increasing levels of deformation.

Our results on the phantom and on the real data show good initial alignment, which can successfully converge to the correct

position using fine alignment techniques. Furthermore, since we can pre-process the CT scan before surgery, the proposed

method runs faster than current algorithms.

Conclusion The proposed shape matching method can provide a fast, global initial registration, which can be further refined

by fine alignment methods. This approach will lead to a more usable and intuitive image-guidance system for laparoscopic

liver surgery.

Keywords Image guidance · Laparoscopic liver surgery · Global registration · Shape matching · Surface descriptors ·

Computer-assisted surgery

Introduction

Minimally invasive surgery offers the patient major bene-

fits over open surgery, including less trauma, less pain and

shorter hospital stays. However, these interventions present

several challenges for clinicians, such as weak depth percep-
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tion, constrained vantage point, limited field of view, poor

haptic feedback and occluded anatomy [1]. Image guidance

aims to assist the clinicians in localising and tracking sub-

surface structures such as abnormalities or major vessel trees.

Thus, these systems have the potential to aid in surgical inter-

ventions through improved resection quality and a reduction

in positive surgical margins [2]. The safety margin around a

possible tumour in current laparoscopic procedures is a min-

imum of 10 mm [3], so it is considered desirable to develop

systems with accuracy below 5 mm on average [4,5]. Current

rigid registration methods achieve accuracies of approxi-

mately 10 mm in phantom experiments [5–7]. Improving the

robustness, accessibility and reliability of image-guidance
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systems could potentially increase the number of patients

benefiting from minimally invasive surgeries.

Most hospitals require an abdominal CT scan to be

acquired before surgery for laparoscopic liver interventions.

A 3D model of the liver, major vessel trees and any abnormal-

ities can be segmented from the CT scan. The registration of

the preoperative liver model and the intraoperative laparo-

scopic images is an essential step towards developing an

image-guidance system. Most methods in the literature can

be divided between coarse alignment, defined as a global

alignment which can match the surfaces irrespective of their

initial transformation, and fine alignment techniques—in

which a good initial alignment is already provided as a

starting point. In this paper, we focus on coarse alignment

methods for surface-based registration.

Furthermore, most methods are only applicable in open

surgery [4,6–8] as a large surface of the intraoperative scene

is required. However, surfaces acquired laparoscopically

present the additional challenges that the camera has access to

a restricted region of the abdomen leading to an even smaller

partial view, lack of reliable landmarks and significant defor-

mation from pneumoperitoneum [7]. We address and discuss

the challenges inherent to laparoscopic surgeries which moti-

vated our method.

We propose a fast, semi-automatic global alignment

method which achieves the initial alignment between the

preoperative CT model of the liver surface and a surface

reconstruction of the intraoperative scene. The resulting

transformation could be further improved by fine alignment

algorithms [9,10] in order to get a rigid [5,6,11] or a non-rigid

alignment [3] between the two modalities. Our approach can

lead to a faster and more intuitive use of image-guidance

systems in laparoscopic surgeries. We show robustness to

reduced partial sizes and increasing deformations in the intra-

operative model on synthetic data. Moreover, we evaluate the

proposed method on a liver phantom and on retrospective data

from a dataset acquired in a laparoscopic liver resection with

promising results.

Background

The initial rigid registration of the preoperative 3D image and

the intraoperative scene has been explored through methods

that rely on fiducials, user interaction and through fully auto-

mated methods.

Several approaches propose the use of fiducials, either

on the patient skin [12] for needle guidance, or on the

organ itself [13] for tracking in laparoscopic partial nephrec-

tomy. Another more robust option, which is applicable in

laparoscopic interventions, would be to attach metabolisable

fluorescent markers on the organ [14]. Such fiducials can be

seen in both modalities. However, these strategies are disrup-

tive to the clinical workflow since they require the acquisition

of an additional CT or MRI scan immediately before the

intervention.

Surface acquisition of the intraoperative scene has been

proposed as an alternative. Several strategies have been

developed using laser range scanners [6], optically tracked

probes [11], time-of-flight (TOF) data [7] and stereo recon-

struction [5]. Once the surface is acquired, the clinician is

required to delineate salient anatomical features leading to

a point-based initial alignment [6,11] or to a more com-

plex non-rigid optimisation framework [3]. Another option

to obtain the rigid alignment is to manually rotate and trans-

late the 3D preoperative image until it fits the intraoperative

data [5]. While some level of user interaction is needed for

these approaches, it is generally more intuitive and faster to

select salient features than to manipulate the six degrees of

freedom associated with a rigid transform.

Hybrid methods have been proposed using cone beam

CT and fluoroscopy [15] as bridging modalities between the

laparoscopic camera and the preoperative CT, which deliv-

ers an additional radiation dose to the patient. Feuerstein

et al. [16] propose using intraoperative cone beam CT and

optical tracking to register directly to the laparoscopic view

without using preoperative information. While their methods

achieve promising results, they are based on advanced hard-

ware which might not be available in most clinical settings.

Finally, fully automated techniques have been proposed

in [7,17]. Fusaglia et al. [17] developed an exhaustive search

over the principal directions of the intraoperative surface,

which is acquired using a laparoscopic laser pointer. While

their proposed approach is promising, it still introduces addi-

tional tools into the clinical workflow. Dos Santos et al. [7]

introduced a novel automatic method to establish surface

correspondences between the 3D preoperative mesh and the

intraoperative surface acquired with a TOF camera in open

liver surgery. Their approach was validated on a phantom

of the human liver and on an ex-vivo porcine liver with

accuracy better than 1 cm and computation time ranging

from one minute to 5.5 h. While their phantom validation

under deformation from breathing motion can be sufficient

for open surgery, livers in laparoscopic interventions undergo

significant general deformation due to pneumoperitoneum.

Furthermore, it is unclear how both methods [7,17] would

be translated to laparoscopic interventions since they rely on

large surfaces of the liver being visible.

While promising results have been achieved in the liter-

ature, we aim to develop an image-guidance system which

can handle the challenges of laparoscopic interventions and

is easy to integrate with the current clinical protocol without

additional hardware or advanced cameras. Furthermore, the

system should be usable during surgical interventions, with

minimal disruption and fast computation.
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Fig. 1 An overview of our proposed global alignment framework, showing the preoperative and intraoperative steps

Contributions

We propose a fast, semi-automatic method to obtain a global

initial alignment between a 3D liver model extracted from

the preoperative CT scan and a surface reconstruction of the

intraoperative scene.

An existing formulation of shape matching is extended to

incorporate an additional constraint based on the contours of

the organ (the ridge line—see Fig. 1), which can be identified

on both surfaces with high confidence. Once the delineation

of the liver ridge line is given in the two modalities, no further

user interaction or initialisation is required for the alignment

stage. The proposed method is able to robustly estimate a

correspondence set between the two surfaces under defor-

mation, sparse data, partial views and realistic noise levels.

We validate our technique in a simulated environment to

show robustness to partial data and deformation. Moreover,

we provide quantitative results obtained on a liver phantom

and qualitative results on retrospective data from a laparo-

scopic liver resection to illustrate feasibility in a realistic

clinical setting.

Methods

Figure 1 illustrates the main steps of the proposed pipeline.

The input data include the segmentation of the 3D mesh from

the CT scan, a surface reconstruction represented as a point

cloud of the intraoperative data and the segmented contours

on both surfaces. The liver contour is defined as the ridge

line visible in yellow in Fig. 1 on both the preoperative and

the intraoperative surfaces.

Let M be the moving (preoperative CT mesh) model,

and let T be the target (intraoperative point cloud) model.

Sets of features, {mr } ⊂ M and {ts} ⊂ T , are selected on

both surfaces with f (·) as their corresponding descriptor. Let

dg(x, y) be the geodesic distance between any two points, x

and y, on a surface.

Generally, it is difficult to match surfaces in laparoscopic

liver surgery only based on descriptors since the surfaces

lack prominent, uniquely identifiable features. The use of

geometric consistency between the correspondences on both

shapes can further constrain the registration problem.

Shape matching can be formulated as a quadratic assign-

ment problem (QAP):

E(C) =
∑

(m,t)i ∈C

d( f (mi ), f (ti ))

+
∑

(m,t)i ∈C

∑

(m,t) j ∈C

(dg(mi , m j ) − dg(ti , t j ))
2 (1)

where C = {(m, t)i } ⊂ M×T is the initial correspondence

set composed of candidate pairs of feature points from the two

surfaces, d( f (·), f (·)) is the distance between the feature

descriptors and dg(·, ·) is the geodesic distance between two

correspondences on the same surface. This energy function

aims to output a set of correspondences for which the dissim-

ilarity between the descriptors is minimised and the geodesic

distances between pairs of correspondences are maintained.

While this approach works well in the vision literature for

complex shapes [18], the intraoperative surfaces pose several

challenges. It has been previously discussed in [7] that con-

straining the correspondence set based only on the geodesic

distances between them is still ambiguous for almost flat sur-

faces, in which the same spatial configuration of features can
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Fig. 2 Pairwise constraints on the moving, M (blue) and target, T (pink) models used for pruning the correspondence set

be identified in multiple locations. The same behaviour was

observed with our data. So, an additional constraint based on

the liver contour is proposed, which can be reliably observed

on both models. The existing spectral matching framework is

extended to incorporate the new term and robustly estimate

a set of correspondences.

Optimisation

In order to minimise E(C) from Eq. 1, the shape alignment

problem is formulated as graph matching [19]. Each node

consists of a candidate correspondence (i.e. (m, t)i ), and each

edge connects two nodes (i.e. (m, t)i and (m, t) j ). Moreover,

if pair (m, t)i corresponds to (m, t) j , the pairwise constraints

imposed will quantify how consistent this association is from

a geometrical point of view, thus providing weights for the

edges. Figure 2 highlights an example of a correct assign-

ment.

An affinity matrix, W , of the graph is built. The weights

associated with each node and edge will result in a strongly

connected cluster for data with high consistency. On the other

hand, outlier nodes will be either weakly linked or linked

in an unstructured way. In cases with a high number of out-

liers, large deformation or symmetry in the data, some wrong

correspondences might be included in the main cluster. As a

result, the initial correspondence set C is built by choosing for

each target feature point {ts} ⊂ T , the closest k neighbour-

ing descriptors on the moving surface {mr } ⊂ M , quickly

using kd trees. A spectral analysis method [19] is used to

obtain the filtered correspondence set Cp from the matrix W .

In the next few paragraphs, the proposed formulation for W

is detailed, which incorporates the additional term based on

the liver contours.

The affinity matrix, W , should have values which are non-

negative, symmetric and increasing with higher similarity

between the correspondences [19]. So, instead of working

with distances as in Eq. 1, the pairwise terms are parametrised

as consistency measures:

c(mi , m j , ti , t j ) = min

[

dg(mi , m j )

dg(ti , t j ) + ε
,

dg(ti , t j )

dg(mi , m j ) + ε

]

(2)

where ε is a small number to ensure the denominators are

not zero, c ∈ [0, 1] and it quantifies how similar the geodesic

distances are between the pairs (mi , m j ) and (ti , t j ). A pair

of correspondences is consistent from a geometric point of

view if the ratio of the geodesic distances on each shape is

close to 1 [20]. However, in the presence of non-isometric

deformation of the data, correct correspondences might have

consistency values, c, lower than 1. So, the non-rigidity of

the data is taken into account by using the following function

for c:

g(mi , m j , ti , t j , σ ) = exp

(

−
(c(mi , m j , ti , t j ) − 1)2

2σ 2

)

(3)

where the parameter σ sets the amount of non-rigidity

allowed for the correspondence set. Furthermore, the func-

tion g also helps in separating the outliers by lowering the

weights of highly unlikely candidate pairs.

Let B M ⊂ M and BT ⊂ T be the contour points on each

surface. The closest contour point to each feature point x

on either M or T is computed as bx = min(dg(x, B)). The

expression used for the proposed contour constraint is:

gb(mi , m j , ti , t j , σb)

=
1

2

(

g(mi , bmi , ti , bti , σb) + g(m j , bmj , t j , bt j , σb)

)

(4)
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where σb allows some deformation between the candidate

pairs and their corresponding contours. In practice, σb = σd

since they both represent variations in geodesic distances

illustrating how restrictive the geometric pairwise constraints

will be on the data.

Finally, the affinity matrix, W , is built by placing the unary

terms (similarity between descriptors sim( f (mi ), f (ti ))) on

the main diagonal and the pairwise constraints on the off-

diagonal:

W (i, j)

=

{

sim( f (mi ), f (ti )), i = j

αg(mi , m j , ti , t j , σd ) + (1 − α)gb(mi , m j , ti , t j , σb), i �= j

where α allows different weights for the importance of the

two pairwise constraints.

Spectral analysis on the initial formulation for E(C)

(Eq. 1) enforces high similarity between nodes (m, t)i and

(m, t) j , as well as approximately equal distances between

them (dg(mi , m j ) and dg(ti , t j )). In addition, the proposed

term weighs the edge connecting (m, t)i and (m, t) j higher

if the distances dg(mi , bmi ), dg(m j , bmj ) are similar to

dg(ti , bti ), dg(t j , bt j ), respectively. As a result, the estimated

correspondence set, Cp, is explicitly constrained to be con-

sistent with the liver contours on both surfaces, M and T .

Features and descriptors

Reliable landmarks are difficult to identify consistently

between the two surfaces. The strategies used are farthest

point sampling [21] and normal space sampling [22]. The

former approach was chosen for a uniform distribution of

the feature points on the surface. The latter aims to select

samples such that the normals are distributed as evenly as

possible, thus having fewer points in flat regions. The search

space is constrained to only select features on the visible

surface of the moving mesh, M , in order to eliminate unfea-

sible solutions (see Fig. 1). TOLDI was chosen as a feature

descriptor, because it was shown to be robust to data sampled

irregularly (which is the case for multiple stereo reconstruc-

tion surfaces merged together), robust to varying levels of

noise and invariant to rigid transformations [23].

Distances

The geodesic distance represents the shortest distance on the

surface between two points. If the surface changes topology

through holes or irregularities in the data, the geodesic dis-

tances might become unreliable. Another failure case would

be observed if distant parts of the object come into contact

and create new shortest paths between feature points. How-

ever, it is unlikely the liver shape will change topology in the

initial stages of the surgery.

The intraoperative data collected during laparoscopic

surgery will most likely have some degree of sparsity—

sparse point clouds [3], sparse data collection [4], sparse

stereo reconstructed patches [5].

So, let S be a smooth interpolated surface of the intraopera-

tive point cloud, T . The target feature points, {ts}, and contour

points, BT , can be expressed on the interpolated surface with

nearest neighbour computation. The geodesic distances on

S are computed using the fast marching algorithm [24,25].

This step is the most computationally expensive to compute

in our implementation. However, faster alternatives can be

employed [26].

Estimating the rigid transform

The proposed shape matching technique starts with a large set

of correspondences, C , and spectral analysis prunes out the

outliers, resulting in Cp. The final set of correspondences is

not guaranteed to consist only of correct matches, especially

in cases with significant deformation.

Random sampling and consensus (RANSAC) [27] (see

Fig. 1) is used to get the best minimal solution {(m, t)i } ∈ Cp

out of the pruned set of correspondences Cp. The final pairs

{(m, t)i } are used for the least squares estimation of rotation

and translation. The estimated transformation is considered

to be a good fit if the root-mean-squared error (RMSE)

between the target and moving models is less than a thresh-

old dRANSAC and the difference between the normals is

less than a specific angle threshold anormals: dot(nm, nt ) <

cos(anormals) ∀ (nm, nt )i ∈ Cp.

Results

Three sets of experiments were conducted to validate the

proposed method. Firstly, the robustness to the specific chal-

lenges present in laparoscopic interventions (partial views,

varying degrees of deformation) was tested on synthetic data.

Secondly, the proposed initial alignment method was quan-

titatively validated in a liver phantom experiment. Finally,

qualitative results are shown on retrospective clinical data

from a dataset acquired during a human liver resection.

The same parameters are used for all our experiments

both on synthetic and on clinical data (σd = σb = 0.3,

α = 0.6). The maximum number of iterations used for

RANSAC is 1000. The difference between the normals is

set as anormals = 60◦ in order to account for some of the

deformation. Similarly, dRANSAC = 5 mm in the rigid case

scenario (see “Robustness to reduced partial size” section)

and dRANSAC = 10 mm for the remaining experiments. If

no solution is found with the RMSE lower than dRANSAC,

the transformation which resulted in the smallest error over

all the iterations is used. The feature points, descriptors and
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Fig. 3 Experiments on synthetic data. Top: robustness to reduced par-

tial size in the target model, T , bottom: robustness to increasing levels of

deformation in T . The target model representing 23% of the total liver

surface is used in the bottom experiment with increasing deformation

levels. Color coding: moving model, M—blue, target model, T —pink

geodesic distances on the CT mesh are precomputed and

stored, in order to minimise the computation time during

surgery. The liver contours are currently manually delineated

in a matter of seconds, and techniques to automate this step

will be investigated in the future.

The proposed method was implemented in Matlab and

C++, on a MacOS 10.11.2 laptop with an Intel Core i7

3.1 GHz processor. The libraries used as dependencies can

be found in [21,23,25,28]. The mesh processing applications

MeshMixer1 and Meshlab [29] were used for visualisation

and simulation purposes.

Synthetic data

We validate the robustness of the proposed method to par-

tial views of the liver and to increasing deformation levels.

The mesh of a liver phantom (OpenCAS [8]) is used as the

moving model, M . The mean distance between the estimated

registration result and ground truth vertex correspondences

is measured. Three algorithms are compared:

– (R) RANSAC applied directly to the initial set of corre-

spondences, C . No pruning is applied.

1 http://www.meshmixer.com.

– (SM + R1) The initial set, C , is pruned based on geodesic

distances alone, following the spectral analysis technique

detailed above. RANSAC is applied on the pruned set,

Cp.

– (SM + R2—ours) The proposed technique with both

pairwise constraints.

Robustness to reduced partial size

We test the robustness of the proposed method to reduced

partial views of the liver. For this experiment, there is a rigid

transformation between the moving (M) and target (T ) mod-

els, with all the remaining parameters fixed.

In this experiment, the target model, T , is simulated by

creating 10 partial views of decreasing sizes (from 43 to 7%)

by cropping the original liver mesh M . This step was manu-

ally performed in Meshlab. Each algorithm is run 500 times

for each size. The mean and standard deviation of the result-

ing errors are reported in Fig. 3-top.

Robustness to deformation

We validate the robustness of the proposed algorithm to

increasing levels of deformation in the data. A large defor-

mation is applied with control points on the left lobe of the

liver mesh M . Intermediate levels of deformation are gener-
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Fig. 4 Phantom experiment. Our proposed global initial alignment is

sufficient to allow potentially any fine alignment method to successfully

converge. The TRE distribution after convergence of LM-ICP [10] is

shown for a partial region of the deformed surface (left) and a partial sur-

face reconstruction from an intraoperative stereo laparoscopic camera

(right) Color coding: moving model, M—blue, target model, T —pink

ated with vertex linear morphing between the original liver

shape and the deformed one. These steps were achieved in

MeshMixer and Meshlab. Figure 3-bottom shows examples

of the different deformation levels with 17 being the highest.

We choose the size of the partial view as 23% (Fig. 3-

top, middle shape) since this can be registered well by all

algorithms tested. Visually, it represents a realistic size for a

laparoscopic view.

In this experiment, the deformation level is the only vari-

able. Each algorithm is run 500 times for each deformation

level. The mean and standard deviation are presented in

Fig. 3-bottom.

Liver phantom

The proposed method is validated using the OpenCAS [8]

public dataset, which contains 3D meshes from an experi-

ment in which a silicone liver phantom is deformed by an

indentation. The positions of small Teflon marker balls in

both the initial and deformed states of the phantom are given.

Please refer to Suwelack et al. [8] for more details about how

the dataset was built.

The 3D model of the liver phantom in its initial state is

used as the moving model, M . The proposed coarse regis-

tration method is tested in two scenarios. Firstly, a partial

view of the deformed liver phantom is used as the target

model, T (Fig. 4-left), which tests the performance under

deformation, partial and sparse data. Secondly, a partial sur-

face reconstructed from an intraoperative stereo endoscopic

camera (Fig. 4-right) is used as T . On top of deformation

and partial data, this scenario also tests the proposed method

in realistic noise levels from a stereo reconstruction. After

the global alignment is estimated with the proposed method,

Levenberg–Marquardt iterative closest point (LM-ICP)[10]

is applied. The distribution of target registration error (TRE)

in mm is computed for both cases. The mean TRE for the par-

tial deformed surface is 7.94 mm after our proposed global

alignment, which is further reduced to 7.77 mm after LM-

ICP. Similarly, in the case of the intraoperative partial surface,

the mean TRE of 28.62 mm after the global alignment is

decreased to 12.10 mm after LM-ICP. The best case scenario

for rigid registration would be point-based alignment of the

marker ball positions before and after deformation, with a

mean TRE of 5.66 mm.

Application in clinical data

The proposed approach is demonstrated on clinical data from

a video sequence acquired during a laparoscopic liver resec-

tion. The 3D mesh of the liver surface was extracted from a

CT scan before surgery.2 We use the SmartLiver system [5]

to process the retrospective data. The liver is automatically

segmented in the laparoscopic video with a deep learning

framework [30]. Surface patches are collected to cover all

the visible surface in each video [31]. They are consequently

merged together using optical tracking data.

Figure 5 shows the visual assessment between the manual

alignment performed on the SmartLiver GUI and the pro-

posed method. The last column illustrates an example of

augmented reality in laparoscopic liver surgery after LM-

ICP is applied to the proposed alignment.

Discussion

The results from the first experiment show that when the

intraoperative surface is large enough, all three methods

have comparable results. However, having surfaces with size

smaller than 23% of the whole mesh becomes challenging

for both R and SM + R1. From what we noticed in our

2 www.visiblepatient.com.
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Fig. 5 Global alignment on clinical data from a dataset acquired during

a laparoscopic liver resection. Color coding Alignment: moving model,

M—blue, target model, T —pink. The overlay is computed after apply-

ing LM-ICP on the proposed alignment. Color coding Overlay: liver

tumour—green, vessels—purple, liver contour—yellow

datasets, such surfaces are characteristic for videos acquired

on the left lobe in laparoscopic interventions with restricted

camera movement. Note how the proposed method has less

variance in the solutions even for smaller partial shapes. The

additional pairwise term which incorporates the boundaries

of both M and T makes the problem less ambiguous, as

opposed to just using the geodesic distances between pairs

of correspondences.

The second experiment illustrates robustness to increas-

ing deformation levels in the partial views. Similarly to the

previous experiment, the proposed method is more consis-

tent across different deformations, with less variation in the

solutions it provides. This is mostly due to the fact that the set

of correspondences, Cp, obtained from the proposed method

contains fewer outliers than the other methods.

These methods are compared with RANSAC because it

is a popular algorithm for finding correspondences between

point sets related by parametric transformations. If RANSAC

is applied directly on the set of correspondences C , it is

unable to obtain a good alignment. This is mostly due to

the fact that the initial set will contain a high number of out-

liers, due to the low descriptiveness of the data. Moreover,

for partial shape sizes characteristic to laparoscopic surgeries

(less than 23% in Fig. 3), there are multiple locations on the

liver which result in a good fit. However, by allowing for

deformation in the proposed pruning technique, a set of cor-

respondences, Cp, is obtained in the correct region of interest,

which can be further refined by RANSAC. This approach

is also more computationally efficient since RANSAC has

to find three good pairs of correspondences from small sets

(approximately 10 correspondences, depending on the data).

A quantitative evaluation of the proposed algorithm is per-

formed on a phantom dataset with partial size, deformation

and realistic noise levels. The partial surface used in Fig. 4-

right is illustrative for an intraoperative scenario, since the

data are collected using a stereo laparoscope. The proposed

method succeeds in providing a good initial alignment, and

it is shown that further fine alignment methods (such as LM-

ICP) can successfully converge towards the correct location.

The current errors are comparable to the literature in the rigid

case scenario [5–7]. Since most fine registration algorithms

can converge successfully if the coarse alignment is within a

few cm [9], the proposed method achieves results within the

desired range. In order to decrease the errors further, we will

investigate non-rigid refinement methods in the future.

We show promising results on a retrospective video

acquisition from a laparoscopic liver surgery. The proposed

method is compared against a manual alignment performed

on the SmartLiver GUI. Qualitative results are provided to

illustrate that the proposed method manages to correctly

identify the liver region in a challenging environment with

realistic noise levels, significant deformation and small par-

tial views. Note that the proposed method aims to estimate a

coarse surface alignment, which can then be further refined

with a local algorithm. For example, Fig. 5-right shows an

overlay computed by applying LM-ICP on the coarse align-

ment estimated by our method. Furthermore, the current

computational time required to compute the initial alignment
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between surfaces is approximately 20 s with non-optimised

code, which makes it feasible for clinical usage.

Our experiments were all performed using the same choice

of parameters, suggesting the proposed method is not very

sensitive to variations. However, in the future we would like

to investigate their influence. Although the experiments pre-

sented here show promising results, we would like to validate

the proposed technique on clinical data from more patients

to test its robustness with respect to liver surface variations.

Furthermore, we are looking into ways to automate the liver

contour selection, such that no user interaction is needed and

the whole process is fully automated.

Conclusion

We propose a fast and global method for surface-based reg-

istration of a 3D liver mesh extracted from a preoperative

CT scan of the liver and the surface reconstruction of the

intraoperative laparoscopic video feed. We have validated

its performance with respect to the challenges characteris-

tic to laparoscopic surfaces on synthetic data, on a phantom

dataset and on retrospective clinical data. We conclude that

the proposed method could potentially be used as an auto-

matic way of obtaining a good initial alignment between the

two surfaces, given the required features. Moreover, it does

not require any advanced hardware, which makes it accessi-

ble and comparatively easy to translate to a clinical setting.
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