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Global Routing Based on Steiner Min-Max Trees 

Abstract-We study global routing of multiterminal nets. We pro- 
pose a new global router: each step consists of finding a tree, called a 
Steiner min-max tree, that is a Steiner tree with maximum-weight edge 
minimized (real vertices represent channels containing terminals of a 
net, Steiner vertices represent intermediate channels, and weights cor- 
respond to densities). We propose an 0 (min { e loglog e ,  n* } ) time al- 
gorithm for obtaining a Steiner min-max tree in a weighted graph with 
e edges and n vertices (this result should be contrasted with the 
NP-completeness of the traditional minimum-length Steiner tree prob- 
lem). Experimental results on difficult examples, on randomly gener- 
ated data, on master slice chips, and on benchmark examples from the 
Physical Design Workshop are included. 

Key Words:-Global routing, greedy approach, Steiner min-max tree, 
optimal algorithm, gate array, difficult examples, master slice chips. 

I. INTRODUCTION 

IRCUIT layout (or simply, layout) is the process of C placing and interconnecting a set of modules as spec- 
ified by a collection of multiterminal nets. In the top-down 
approach to circuit layout, after placing the modules on 
the plane (placement), the routing region (i.e., region of 
the plane external to the modules) is partitioned into chan- 
nels. Global routing, is to find, for each net, a sequence 
of channels through which it passes. The final step of cir- 
cuit layout, detailed routing, is to find an exact path (rout- 
ing) for each net as dictated by the global routing. 

Here, we focus on the global routing problem. Re- 
searchers have studied global routing for the past two dec- 
ades. Various approaches have been proposed, for ex- 
ample, hierarchical wiring [2], [ 181, rerouting techniques 
[24], [ 11, [ 161, [20], simulated annealing [25], [ 171, mul- 
ticommodity-based techniques [23], and one-step (theo- 
retical) approaches [lo],  [22]. A survey of global routing 
methodologies appears in [ 1 11. 

In this paper, we propose a greedy approach to global 
routing. Our strategy is to route the nets ofie by one. First 
we decide on an ordering of nets to be processed. Then 
for each net we obtain a global routing trying to avoid 
“crowded” channels. (The first step has been tradition- 
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ally employed in conjunction with min-length Steiner trees 
[4], [15], [3], [5].) We formulate the second step as a 
graph problem: given a weighted graph we aim to obtain 
a Steiner tree, called a Steiner min-max tree, whose max- 
imum-weight edge is minimized over all Steiner trees. We 
propose an efficient polynomial-time algorithm for ob- 
taining an optimal Steiner min-max tree. This result 
should be contrasted with the intractability (i.e., NP-com- 
pleteness) of the min-length Steiner tree [7] which is used 
in traditional global routers (e.g., see [ l l ] ) .  Here, we 
place emphasis on gate arrays (or any environment where 
density minimization is the main objective). Experiments 
on “difficult examples,” randomly generated examples, 
IBM master slice chips, and Primary1 and Primary2 gate 
arrays from the Physical Design Workshop demonstrate 
the quality and simplicity of our technique. 

This paper is organized in the following manner. In 
Section 11, we outline the proposed algorithm for global 
routing in two-dimensional arrays (i.e., gate arrays). In 
Section 111, we devise an efficient algorithm for obtaining 
a Steiner min-max tree in a weighted graph, which is cen- 
tral to the proposed global router. In Section IV, the over- 
all implementation strategy is described. Experimental re- 
sults showing the effectiveness of the proposed technique 
are included in Section V. Generalization of the overall 
approach as well as extension of the algorithm to arbitrary 
floorplans, along with suggested heuristics, are described 
in Section VI. 

11. GLOBAL ROUTING I N  TWO-DIMENSIONAL ARRAYS 
Formally, in two-dimensional array global routing of 

multiterminal nets there are a set q = { N I ,  * * . , N,, } of 
multiterminal nets. The layout environment (plane grid) 
is a two-dimensional m x in grid, being a square tessel- 
lation of the plane. Note that all of our results can be 
trivially extended to a rectangular m ,  x m2 grid. We use 
a square grid just for simplicity. Each k-terminal net N is 

( x I ,  y l ) ,  1 I i I k, are the tiles containing terminals of 
N .  In a global routing, for each net, a sequence of tiles 
through which it passes, is specified. 

The following concepts are demonstrated in Fig. 1. 
In a global routing (i .e. ,  output of a global router) let 
dh ( i ,  j ) denote the number of nets crossing the border of 
tiles ( i , j )  and ( i , j  + l ) ,  I I i I m and 1 ~j I m - 
1. Similarly, let d,, ( i ,  j ) denote the number of nets cross- 
ing the border of tiles ( i ,  j )  and ( i  + 1, j ) ,  I I i I in 
- 1 and 1 I j I m.  drax = max,,,d,,(i, j )  is the hori- 

specified by a k-tuple [ ( x , ,  y , ) ,  * 1 ( X L ,  Yk) l ,  where 
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1 2 3 4 
Fig. 1 .  An instance of global routing in a two-dimensional arrays. 

zontal density of the problem and d y  = maxj,jd,( i ,  j ) 
is the vertical density of the problem; d* = m a x ( d y ,  
d y )  is the global-density of the problem. Let ch ( i ,  j )  
denote the capacity of the border of tiles ( i ,  j )  and ( i ,  j 
+ 1 ), 1 I i I m and 1 I j I m - 1 (i.e., the maximum 
number of nets that can cross this border). Similarly, let 
cz, ( i ,  j ) denote the maximum number of nets that can cross 
the border of tiles ( i , j )  and ( i  + l , j ) ,  1 I i I m - 1 
and 1 I j I m. c y  = maxi,jch(i, j ) is the horizontal 
capacity of the problem and c y  = maxi,jc,,(i, j )  is the 
vertical capacity of the problem; c* = max ( c y ,  c y )  is 
the global-capacity of the problem. 

An instance of global routing (in a two-dimensional ar- 
ray) is specified by a set q of multiterminal nets and two 
capacity matrices C,, and ch, corresponding to vertical and 
horizontal capacities, respectively, for all i and j .  A 
k-terminal net is said to have multiplicity k .  Multiplicity 
of q is the maximum number of terminals per net, over 
all nets in q.  The length of a net, in a global routing, is 
the number of edges of the grid it crosses. The bounding 
length of a net is half the perimeter of the smallest grid 
rectangle enclosing all terminals of that net. Clearly, the 
bounding length of a net is a (trivial) lower bound on the 
length of that net. The global routing problem (GRP) of 
an arbitrary instance (17, C ) is to find a global routing 
Withdh(i , j )  I c h ( i , j )  and d t , ( i , j )  I c t , ( i , j ) ,  for all 
i and j .  

Our strategy is to route the nets one by one. First we 
decide on an ordering of nets to be processed. Then for 
each net we obtain a global routing that avoids “crowded” 
channels. 

The first step is to assign a distinct number, called the 
order number, to each net. Here, we give a general de- 
scription of the order number. In our experiments, we 
have used a simpled version thereof (see Section IV). Nets 
that have lower order number will be routed first and in- 
tuitively will be shorter. In general, the order number of 
a net is a function (e.g., the sum) ofpriority, lengrh, and 
mulriplicity numbers. Each net has a priority number be- 
tween l and a. For example, power nets can be assigned 
priority number 1 and clock nets can be assigned priority 
number 2.  Length number of a net is proportional to its 
bounding length (normalized in the range 1 to 6) .  Fi- 
nally, multiplicity number of a net is its multiplicity (nor- 

malized in the range 1 to y ) .  a, p ,  and y dictate impor- 
tance of each criterion (see Sections IV-VI). 

We formulate the second step as a graph problem: given 
a weighted graph we aim to obtain a Steiner tree, called 
a Steiner min-max tree, whose maximum-weight edge is 
minimized over all Steiner trees. We propose (see Section 
111) a fast algorithm for obtaining an optimal Steiner min- 
max tree. In an instance (7, C )  of global routing, let N, 
be the current net to be processed. The weighted graph 
G, = (V , ,  E , )  is dual of the plane grid (i.e., each vertex 
in the dual graph corresponds to a finite face of the grid 
graph and vertices corresponding to two adjacent faces 
are connected by an edge) and hence is itself a grid graph. 
Thus ( V , (  = ( m  - 1)2 and ( E , (  = 2 m ( m  - 1) .  The 
weight of an edge is a function (e.g., ratio) of “current” 
density and capacity and measures “crowdedness” of a 
border. Each vertex is labeled with demand or (potential) 
Steiner depending on whether it is, respectively, a ter- 
minal of N I  or not. A Steiner min-max tree of GI dictates 
a global routing that minimizes traffic in the densest chan- 
nel. Each net requires O ( m 2  loglog m )  processing time 
(see Section 111). We concluded the following. 

Theorem 1: The proposed global router runs in 0 ( nm2 
loglog m )  time in an m X m plane grid, where n is total 
number of nets. 

While the Steiner min-max tree method tends to route 
nets through less crowded channels, it is also desirable to 
have nets with short length. Therefore, among all Steiner 
min-max trees of the given net, we are interested in those 
with minimum length. As will be discussed in Section 111, 
it is NP-hard to find a Steiner min-max tree whose total 
length is minimized. Thus currently we are employing a 
number of heuristics that tend to find a Steiner min-max 
tree with short length. For example, we have noticed that 
if the terminal closest to the (geometric) center of the 
bounding rectangle (i.e., the smallest rectangle enclosing 
all terminals of that net) is chosen to be the starting point 
of our Steiner min-max tree algorithm (see Section 111 for 
more details) then the final tree is shorter than when the 
starting point is on the boundary of the bounding rectan- 
gle. 

An example, demonstrating the behavior of an algo- 
rithm that minimizes the maximum density, is shown in 
Fig. 2 (our algorithm is different from this one, for we 
order the nets in a different manner). In this example, the 
problem has multiplicity 2 (i.e., all nets are two-terminal 
nets) and all capacities are equal to 2.  

111. STEINER MIN-MAX TREES 
Consider a weighted graph G = ( V ,  E ) with each edge 

e, having weight W (  e, ). The weight of a graph G is sum 
of weights of its edges; we write, W (  G )  = CCiEEW(e, ) .  
Each vertex U ,  is either a demand vertex, denoted by f (  U , )  

= d ,  or a Steiner vertex, denoted by f (  U , )  = s. A Steiner 
tree T = ( N ,  L )  is an acyclic subgraph of G such that U ,  

E N i f f (  U , )  = d,  that is, T contains all demand vertices 
of G and some (or none or all) of the Steiner vertices of 
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routing net 5 routing net 8 routing net 2 

routing net 3 routing net 4 routing net 1 

Fig. 2.  Example in a 4 x 4 plane grid; local densities are shown on the 
borders; density increases are circled. 

G. The maximum weight edge of L is denoted by Imax. A 
Steiner tree of G with weight I,,, minimized is called a 

.Steiner min-max tree (SMMT). Here, we propose an ef- 
ficient algorithm for finding an SMMT of a weighted 
graph. This result should be contrasted with NP-com- 
pleteness of the Steiner minimum weight-tree problem [7] 
(that is, a Steiner tree with minimum weight). (Also, a 
number of closely related problems, for example, the class 
of center4 problems, are known to be NP-complete [9], 

A minimum spanning tree (MST) T = ( V ,  L )  of G is a 
minimum weight tree containing all (demand and Steiner) 
vertices of G. Algorithms running in O (  min { I E I loglog 
I El,  I V I ’ } )  time forfinding an MSTof G = ( V ,  E )  have 
been proposed [21], [61, 1261. 

[131.) 

Lemma]:  A M S T o f G =  ( V , E ) i s a n S M M T o f G i f  
f (  v i )  = d for all vi E V .  

Proof: Consider a MST T = ( V ,  L )  of G. Let I,,, 
be a maximum weight edge of T. Removing I,,, from T 
leaves two subtrees T I  = ( V I ,  L , )  and T2 = (V, ,  L 2 )  as 
shown in Fig. 3 .  Note that I,,, is a minimum weight edge 
connecting VI and V2: otherwise, if there was an edge I*, 
W (  I*) < W (  I,,,), connecting VI and V2 then weight of 
T* = ( V ,  { L - I,,, } U I*) would be smaller than weight 
of T. This is a contradiction, for T is an MST. Thus the 
maximum weight edge of any spanning tree of G has 

‘In center problems. the objective is to locate K centers such that the 
maximum distance from any demand location to the closest center is min- 
imized. As opposed to SMMT, the resulting network need not be con- 
nected. 

Fig. 3 .  An MST of G 

weight no less than I,,,. Equivalently, T = ( V ,  L )  is an 
SMMT of G. 0 

Given a weighted graph G = ( V ,  E ), with a subset D 
of vertices labeled with d and the rest with s, we obtain 
an SMMT in the following manner: 

Procedure ALG-SMMT(G = ( V ,  E ) ,  D): 
begin 

T : =  A n M S T o f G :  
while there exists a degree 1 Steiner vertex5 in T 
do 

begin 
U : = a degree 1 Steiner vertex of T; (* a 

Remove U (and the corresponding edge) from 
Steiner leaf *) 

T; 
end 

OUTPUT( T ) ;  
end. 

Lemma 2: Procedure ALG-SMMT correctly computes 
an SMMT of G. 

Proof: Let T* = ( N ,  B )  be the output of ALG- 
SMMT and T = ( V ,  L )  be the MST of G = ( V ,  E ) com- 
puted at the first step. Consider a maximum-weight edge 
b,,, of T*, that is, W(b,,,) 2 W ( b i )  for bi E B .  The 
edge b,,, partitions T* into two subtrees T: = ( N I ,  BI ) 
and T; = ( N 2 ,  B 2 ) ,  as shown in Fig. 4. Consider edge 
b,,, = ( n1 , n2)  connecting vertices n l  and n2 of TT and 
T;, respectively. Vertex n l  is either a demand vertex or 
is eventually connected to a demand vertex 5, E T;, for 
there are no degree 1 Steiner vertices in TT. Similarly, 
vertex n2 is either a demand vertex or is eventually con- 
nected to a demand vertex 5’ E T;.  In any SMMT of G, 
N I  and N2 must be connected by at least one edge because 
each contains at least one demand vertex. b,,, is a mini- 
mum weight edge connecting N I  and N 2 .  Otherwise, as- 
sume there exists an edge 6, with W (  & )  < W (  b,,,), con- 
necting NI and N?.  Consider the tree 7 = ( N ,  { B - b,,,} 
U b ) .  By adding all degree 1 Steiner vertices (that have 
been removed from Tin ALG-SMMT, that is, L - B )  we 
obtain a spanning tree with total weight ( W(b,,,) - 
“(6)) less than the total weight of T = ( V ,  L ) .  This is 
a contradiction, for T is a minimum spanning tree. Thus 
the minimum max-weight edge in any tree on G including 
all demand vertices (and thus any SMMT of G )  is b,,,. 

n 

. .  

U 

51f there exists a Steiner vertex that is connected to at most one other 
vertex then remove it. Repeat this step while there remains such a Steiner 
vertex. 
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Fig. 4.  Output of ALG-SMMT 

Graph G SMT SMMT 
. demand rnax weight = 1 max weight = .$I 

St,einer total weight = 1 total weight = 7.2 
Fig. 5 .  Total weight of a SMMT. 

ALG-SMMT involves computing an MST [21], [6], 
[26]. Removing degree 1 Steiner vertices requires O (  1 VI ) 
time. We conclude the following: 

Theorem 2: A SMMT of a weighted graph G = ( V ,  E ) 
can be obtained in O (  min { 1 V 2  1 ,  I E I loglog I E I } ) time. 

First, we observe that the weight of a SMMT, in gen- 
eral, is greater than the weight of a Steiner minimum 
weight tree (SMT) as shown in Fig. 5 (the problem of 
finding a SMT is known to be NP-complete [7]). The 
problem of finding an SMMT whose total weight is min- 
imized over all SMMT’s (called MSMMT) is not poly- 
nomial-time solvable, unless P = NP. 

Theorem 3: MSMMT is NP-complete. 

Pro08 We transform SMT, in polynomial time, to 
MSMMT. SMT is known to be NP-complete [7]. 

Instance (of SMT): A weighted graph G = ( V ,  E ) with 
vertices classified as Steiner or demand vertices, and 
an integer K. 
Question: Is there an acyclic subgraph T = (N, L )  of 
G with all demand vertices of G in T such that (total) 
weight of T i s  less than K .  

Consider an arbitrary instance G = ( V ,  E )  of SMT. 
Let I,,, be a maximum weight edge of G. Consider a graph 
H = ( V  U U ,  E U ( U ,  u ~ ) ) ,  where ud is any demand 
vertex of G, “ ( e )  = W(lm,..) + 1 ,  where e = ( U ,  U(,). 
Vertices of H are labeled (demand or Steiner) exactly as 
vertices of G and vertex U is classified as a demand ver- 
tex. Consider an MSMMT T* of H .  Note that edge e must 
be in T * ,  for it is the only edge connecting U to the rest 
of the vertices. Thus there exists an SMT of G with weight 
less than K if and only if the weight of T* is less than 
K + W(fmax)  + 1 .  (By adding ( U ,  U(,) with weight 
W(lma,)  + 1 we have essentially removed max-weight 
edge restriction of MSMMT and this MSMMT will be 
equivalent to SMT.) 0 

We have introduced heuristics for obtaining optimal 
SMMT’s with “small” total length. For example, as 
mentioned in Section 11, by choosing, as the starting ter- 
minal of a net (in ALG-SMMT), the terminal closest to 
the geometric center of the smallest rectangle enclosing 
all terminals of that net, we obtain shorter trees (see Sec- 
tion IV). Other heuristics are outlined in Section VI. 

IV. OVERALL IMPLEMENTATION STRATEGY 
As described earlier, we have incorporated a number of 

heuristics in our algorithm. In our implementation, we 
have focused on heuristics that minimize the total length 
(see Section VI for overflow considerations). 

In general, the net ordering should be a function of 
priority, length, and multiplicity numbers. However, for 
our test cases, length alone seemed to be a sufficiently 
good ordering parameter. Specifically, let p ,  denote half 
the length of the perimeter of the smallest rectangle en- 
closing all terminals of N , .  Let II be a rank function on 
the set of p , ’ s .  That is, the smaller p ,  the lower its rank 
II ( i  ). We order the nets as dictated by IT. The algorithm 
is performed in two phases: the SMMT-phase and the SP- 
phase (SP-phase is essentially a minimum-spanning tree 
algorithm, to be elaborated on, below). The SMMT-phase 
consists of JI steps and the SP-phase consists of J 2  steps, 
where J1 and J 2  are heuristic design parameters. Intui- 
tively, J1 and J 2  are, respectively, based on the impor- 
tance of density and length minimization in a problem 
(specific values will be given in Section V). 

In the SMMT-phase, we route the nets one by one, em- 
ploying ALG-SMMT (see Section 111). At thej th  step of 
the SMMT-phase, if the length of routing of NI is within 
a constant factor, cJ of its “minimum length” (i .e. ,  p ,  or 
half the bounding length) then we accept it. Otherwise, 
the routing is rejected. If J ,  = 1 then we choose c ,  to be 
a number between 1 and 2,  normally, 1.5. Otherwise, we 
choose, cI  = 1,  cJ, = 03, and c, + I < c, + K for i > 1, 
where K is a number between 1 and 2. During the SMMT- 
phase, once a net is routed, it will not be routed again. 

In the SP-phase, we route all the nets one by one (as  
dictated by II) employing a shortest path heuristic (to be 
described later) and utilizing the results from the SMMT- 
phase. At thej th  step, we accept a routing if and only if 
it is better than the best routing obtained so far. 

In instances of global routing with limited capacities, 
such as the examples of the IBM master slice chips, where 
our goal is to increase the number of routed nets, we 
choose a large value for J ,  and a small value for J 2 .  In 
problems with enough capacity (i.e., the goal is to mini- 
mize the densities) we choose J ,  small and we pick a large 
value for J 2 .  (See Section V, for examples of specific 
numbers. In one case, J ,  is between 8 and 10 and J 2  is 
between 1 and 2. In the other case, the reverse is true.) 

A formal description of the proposed approach follows 
(for simplicity, we do not pass the grid graph to ALG- 
SMMT and ALG-SP): 

f o r i  = 1 to n do 
L(N,)  = 03; (;* initialize length of all nets *) 
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SMMT-phase 
P a s s j ( j  I jl); 

Assign e,; (* current constant *) 
f o r i  = 1 t o n  d o  
begin 

N,: = current net; (* as dictated by ll *) 
ifL(N,) = 00 then 
begin 

temp : = ALG-SMMT(N,); (* length of Ni 

iftemp I c,pi rhen 
by ALG-SMMT *) 

L(NJ : = temp; (*accepting routing ofN, *) 
end 

end 

SP-phase 
Passj(J, < j I JI + .I2); 

f o r i  = 1 t o n  do 
begin 

Nj : = current net; (* as dictated by II *) 
temp : = ALG-SP(i) (* length of Ni by ALG-SP *) 
iftemp < L(NJ then 

L(NJ := temp; 
(* changing the routing of previously 
routed nets will make some edges avail- 
able for unrouted nets *) 

end. 

ALG-SP is any minimum spanning tree algorithm, for 
example, [21], [26]. Indeed, both ALG-SMMT (see Sec- 
tion 111) and ALG-SP can be implemented in a manner 
similar to Prim’s minimum spanning tree algorithm [2 11. 
Consider a net N with terminals t l ,  * * ,  t k .  We start from 
a geometric center terminal ( i .e. ,  a terminal closest to the 
center of the smallest rectangle enclosing all terminals of 
N ) and expand from that terminal until all terminals of N 
are reached. Assume a partial routing R has been ob- 
tained. Initially, the partial routing is the center terminal 
of N. Among all terminals of N which have feasible paths 
leading to R,  i.e., paths not violating the current capacity 
constraints, we add a terminal t to R if a feasible path from 
c to R minimizes the maximum-weight edge in ALG- 
SMMT or minimizes the total-length in ALG-SP. Once 
all terminals are reached we remove all degree-1 Steiner 
vertices (see ALG-SMMT, Section 111). 

V. EXPERIMENTAL RESULTS 
The algorithm proposed in Section IV has been imple- 

mented in the C language running on a VAX 785 under 
Berkeley Unix. Performance of our algorithm on “diffi- 
cult examples,” randomly generated data, master slice 
chips, and benchmark examples from the Physical Design 
Workshop is very good. 

We convert Primary 1, Primary 2,  and the IBM chips 
into their gate-array images (see Fig. 1) using the tech- 
nique suggested by Nair [20]. That is, we draw vertical 
lines every k units. Horizontal lines are drawn to cut both 
the row of cells and the channels. 

5. I .  Benchmark Examples f rom Physical Design 
Workshop 

We have tested two gate array benchmark circuits 
(Primary1 and Primary2) from the 1988 IEEE Workshop 
on Placement and Routing (Research Triangle Park, NC, 
May 10-13). The placement of Priml-GA and Prim2-GA 
were obtained from TimberWolfSC Version 5.1 [ 17). The 
results of our global router is shown in Table I. To the 
best of our knowledge, no other global router which uses 
our particular density metric has been run on these ex- 
amples with the same value of m (i.e., number of col- 
umns). 

It is of some (indirect) interest that the exact routing 
channel (i.e., the region between the rows) densities were 
reported in [17]. In [17] density is defined as it is nor- 
mally defined in channel routing problems. Using this (dif- 
ferent) metric (and placements different from ours) the 
densities reported in [17] were 8 tracks for Primaryl-GA 
and 17 tracks for primary2-GA. 

It is possible to establish a (trivial) lower bound on the 
maximum density. Consider the boundary i of two col- 
umns i and i + 1 (see Fig. 1). Let & denote the number 
of nets with at least one terminal to the left of boundary i 
and at least one terminal to the right thereof. Let 6,,, de- 
note the maximum over all & S .  Then the maximum den- 
sity is lower bounded by Bmax/m,  where m is the number 
of rows. In Primaryl-GA we obtain A,,, = 5 and in 
Primaryl-GA 6,,, = 8. Note that 6,,, is just an indication 
of how good an upper bound is. Indeed, the (true) lower 
bound is normally much higher than those indicated by 
L a x .  

5.2. IBM Master Slice Chips 
We have tested examples used in [20] from IBM master 

slice chips. Table I1 summarizes our results. The column 
labeled “Total Nets” is the total number of nets in the 
circuit. “impossible nets” are obtained by searching all 
rectangles with size i x j ,  1 I i I m l  and 1 I j I m2.  
In each rectangle R ,  let M denote the set of nets with at 
least one terminal inside R and at least one terminal out- 
side R .  Let c denote the sum of capacities on the boundary 
of R. Clearly, (at least) 1 M 1 - c nets are impossible to 
route. A formal description of an algorithm for finding 
“impossible nets” follows: 

Pass(i, j )  (* rectangle with size i X j *) 
Set each net’s counter to 0; (* initialization *) 
f o r  each i x j rectangle R d o  

begin 
M := the set of nets which have terminals 

c := the sum of capacities on the boundary 

I f l M l  > c then  

both inside and outside rectangle R;  

of R; 

R has an ovelflow so increase the counter 
of each in M by one; 

end 
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Circuit No. cells 
Primaryl-GA 752 
Primarv2-GA 3000 

1323 

Max Density Time (sec.) 
6 25.5 

12 155.0.5 

Description 
Name No. of Multip- Bounding Max. 

Nets plicity Length Cap. 

Difficult-8 3 2  2 256 4 
1 Difficult-4 8 2 32 2 

TABLE I1 
IBM MASTER-SLICE C H I P  

Results 
Total Time 

Length (sec.) 
35 0.07 

296 0.15 1 

Part Total Impossible Effect. Unrouted Comp(%) Time (sec.) 

94.10 12.63 
1726 1697 94.70 42.08 
3041 3041 124 95.92 147.18 
3105 3105 100 53.80 

* Number of effective nets which could not be routed 
I* Percentage of completion of effective nets 

L := sorted list of net counters in descending 

while first(L) f 0 do (*  first element in list L *) 
order; 

begin 
N := net of first(L); 
N is designated an impossible net; 
delete first(L) form list L; 
delete all N’s  terminals from the grid; 
ifafter deleting N ,  R (which originally had an 

overflow) no longer has an overflow 

decrease the counter of each net in M by 1 ; 
L : = sorted list of net counters in descending 
order; 

then 

end. 

Effective nets are simply the total nets minus the im- 
possible nets. Note that we searched only rectangles. In- 
stead, if we search all rectilinear regions a better bound 
on the number of impossible nets is expected. However, 
the time complexity increases rapidly. Here, we have se- 

, c9 = 
2.6, and cIo = 03. 
lected J ,  = 10, J ,  = 0, cl = 1 ,  c2 = 1.2, . . 

5.3. Dificult and Random Data 
An rn X m grid is partitioned into four equal regions 

called NW, NE, SE, and SW with obvious meaning. An 
instance of global routing in an ni X m grid, for even 
values of m, is called a diflcult-m instance if there are 
tn’/2 two-terminal nets and each net has one terminal in 
the NW region and one terminal in the SE region, or if a 
net has one terminal in the SW region and one terminal in 
the NE region. Clearly, in a difficult-m instance d* 2 
m / 2 .  In fact, as shown in [IO] d*  I m/2 + 1 (form = 
2,  3 (mod 4)). We have tried a large number of difficult- 
m problems and we always achieve d * = m/2  or d *  = 
m/2 + 1 .  Three instances of difficult-m problems ( m  = 
4, 8,  and 16) are shown in Figs. 2,  6, and 7 .  (As shown 
in [22], problems involving “short” nets are easier.) 

Also, we have tried a number of randomly generated 

TABLE 111 
DIFFICULT A N D  R A N D O M  DATA RESULTS 

- 

Difficult-16 11 Random-4 1 12! I i 1 ”;! 1 11 2’:; I i::: 11 
Random-8 18 154 160 0.27 

1229 1.50 Random-16 72 1148 

examples involving multiterminal nets. An instance of a 
randomly generated data in an rn x m grid is denoted by 
random-tn (Table 111). In both difficult and random ex- 
iiiiples we have sclected J ,  = 1 ,  J 2  = 5 ,  and c, = 1.5. 

VI. EXTENSIONS 
In this section, we extend the algorithm proposed in 

Sections I1 and IV in two ways; first, we discuss a gen- 
eralization of the overall approach discussed in Section 
IV. Second, we consider arbitrary floorplans. 

First we note that the proposed technique can handle 
multilayer routing. Consider a horizontal edge of a tile 
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(see Section 11) with capacity c. If there are k layers al- 
lowed to use a horizontal edge then we let up to kc nets 
to cross this edge. In detailed routing, the wires will be 
assigned to distinct layers. 

Let m, be the multiplicity of net N ,  (i .e. ,  number of 
terminals of N , )  and pI  denote half the length of the perim- 
eter of the smallest rectangle enclosing all terminals of N , .  
For each net N ,  we define a limitation I ,  being a linear 
combination of p ,  and m,. Similarly, for N ,  we define an 
(allowable) overfrow J; which is also a linear combination 
of pc and m,. Intuitively, a routing of N, with total length 
proportional to 1, and causing overflow proportional to J; 
is acceptable; otherwise, it is not acceptable. 

, N , , }  we define an initial order 
number II’ ( i  ), for each net N , ,  as a linear combination 
of p,  and m,. A net with II’ ( i  ) = k is the kth net to be 

In the first pass, we route the nets, one by one, as dic- 
tated by their order number. Then we compare the current 
routing of a net, if it is routable, with its former routing 
(initially, the routing length of a net is set to infinity) to 
decide if this routing is accepted or not. In subsequent 
iterations, a new order number will be given to each net. 
A formal description of the proposed heuristic is given 
below. We run this heuristic J times in the following de- 
scription, where J is a constant. From step l to step JI (JI 
I J )  we employ ALG-SMMT (see Section 111). From 
step JI + 1 to step J we use a shortest path heuristic, 
called ALG-SP (see Section IV), to route each net. 

Given 77 = { N I ,  

routed. Thus 111 is a permutation of (1 ,  * * 3 n ) .  

Pass j ( j  I J ) ;  

begin 
for i = 1 to n do 

N ,  : = current net; (* as dictated by II’ *) 
i f j  < JI then 

else 

I: : = length of routing of N I ;  
f j  : = amount of overflow in routing of N , ;  
ifXJll;’ + XJ, f;’ I A(-‘& + X4-X then 

else 

ALG-SMMT ( N I ) ;  (* see Sections I11 and IV *) 

ALG-SP ( N , ) ;  (* see Section IV *) 

accept routing of N , ;  

reject routing of N I ;  
E ,  = [A(l;’ + A$fjJ/[X(-‘l, + )\4-)3; 
III’l(i) = a((,); (* CP is a rank function *) 

end 

For small j ,  we emphasize producing short nets and for 
large j we focus on reducing the amount of overflow. Thus 
for small j ,  XIl will be large and for large j ,  AIl will be 
small. For XJ, the reverse is true. Also, the closer a routing 
to the desired value the smaller is its E ,  so that with new 
A’s it has a better chance of being routed in the next it- 
eration. Therefore, it will have a smaller order number, 
as assigned by CP, in the next iteration. 

Next we discuss extension of the algorithm to arbitrary 
floorplans. Given a floorplan, we represent the input of 
the global routing by a weighted planar graph G = 

I I  I I I  

Fig. 8. An arbitrary floorplan 

( I/, E ), as shown in Fig. 8. In this graph, called an ad- 
jacency graph, vertices correspond to modules and edges 
denote adjacency of corresponding modules. The weight 
of an edge denotes the capacity between the correspond- 
ing modules. Also, we are given a set 7 = { N I ,  - . * , 
N,, }  of multiterminal nets. Each net specifies a subset of 
vertices of I/ to be interconnected. (In the two-dimen- 
sional arrays, discussed in Section 11, G is a grid graph.) 

As before, we propose the following two-step algo- 
rithm: first, decide on an ordering of nets (depending on 
their bounding length, multiplicity, and priority) and then 
route each net employing the proposed SMMT algorithm 
(see Section 111). 

Finally, we observe the following heuristics will en- 
hance the performance of our algorithm. 

Heuristic I: First, consider only very “short” nets 
(most of which are two-terminal nets). Assign a simple 
shape (e.g., L shape) to them. This provides an initial 
routing. Then proceed with the algorithm. 

Heuristic 2: Use the proposed algorithm iteratively 
(i.e., discard the routing of some nets and reroute them), 
as described in [20]. 

Heuristic 3: Modify the proposed SMMT algorithm 
so that a straight path is preferred to a bend (turn), since 
in most routing models each bend corresponds to a via. 

VI. CONCLUSION 
In this paper we proposed a two-step algorithm for 

global routing: first we order the nets using bounding 
length, multiplicity, and criticality criteria. Next, for each 
net, we find a Steiner SMMT, that is, a Steiner tree with 
maximum-weighted edge minimized. Experimental re- 
sults on various examples were given. 
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