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Abstract

This paper presents a global scheduling method based
on condition vectors. The proposed method exploits a
more “global parallelism”. That is, it can parallelize mul-

tiple nests of conditional branches and optimize across the
boundaries of basic blocks thoroughly, and so on. Moreover,
it can optimize all possible execution paths. Also proposed
is an algorithm which generates a single finite state machine
cent roller from parallel individu aJ cent rol sequences derived
in the global parallelization process. Experimental results
proves that the global parallelization is markedly effective.

1 Introduction

In order to minimize the number of states in the final
schedule for a given behavior, it is very important to exploit
both parallelism and alternation among operations. Some
methods such as the Force-directed [2], the Schwa [3], the
Bridge [4] and Kim’s methods [5], are able to accomplish
conditional resource sharing for mutually exclusive oper-
ations. However, they cannot exploit sufficient potentiaJ
parallelism, because they cannot move an operation inside
a fork-join pair to a control step outside of it, even if there
are available resources left.

On the other hand, path-based scheduling [6] and perco-
lation scheduling[7] can somewhat exploit parallelism across
basic blocks boundaries. Though path-based scheduling
finds all possible execution paths and optimizes each of
them, the fundamental order of operations for a given path
is chosen in advance, then the scheduling result may not
be sufficiently optimized across the basic limit boundaries.
“Percolation” scheduling starts with optimal schedule and

applies semantics-preserving transformations. It can ex-
tract parallehsm beyond the basic block limits. However,
it does not consider conditional resource sharing well, and
it optimizes only the total number of control steps, not all
possible paths.

Moreover, no conventional method can exploit “global
parallelism”; no method deals with paralleliz ation of top

level conditional branches.
We previously proposed a List Scheduling method based

on Condition Vectors (CVLS) [9]. This method can deal
with single nested conditional branches systematically. It
can accomplish conditional resource sharing thoroughly,
and can optimize all possible execution paths. However,
this method did not overcome all of the above problems.

In order to overcome all of them, we have developed
some essential new improvements to the CVLS method.
These new techniques can schedule operations independent
of control dependencies. In other words, they transform

control structure of the
preserving semantics, in
states in finrd schedule.

2 Preliminaries

given behavior drastically, while
order to minimize the number of

2.1 Condition Vectors and Varieties of

Conditional Mutual Exclusiveness

We introduced the Condition Vector (CV) concept in
[9]. CVS show the execution conditions of an operation in a
vector form, which is a l-hot encoding for all leaf branches
in the behavior description, the value of CV for a particular
operation is the OR-cd result of all leaf branches reachable
from that operation. MutuaJ exclusiveness is derived by
means of a CV associated with each operation. The CVS
are defined for each top level nest of conditional branches,
called a “conditional tree”. Examples of CVS for a con-
ditional tree are shown in Fig.1. The “basic” column shows
basic CVS for each operation, which expresses explicit mu-
tual exclusiveness. If CVS have no common ‘1’ bit, they are
mutually exclusive, such as (3) and (4).

The scheduling method proposed in this paper allows
operations inside a conditional branch to be executed be-
fore the condition test operation itself, in order to save re-
sources and states. In that case, the operations are always
executed and afterward the result of operations will be used
or abandoned according to whether the conditional is true
or faJse. Therefore, the execution condition of operations
in a branch changes according to whether it is executed
before the conditional operation or after. CVS can express
such a dynamic execution condition. In the Figure, the ex-
ecution condition of operations in a branch will change on
the basis of whether or not condition test operations in 2

[1and (4) are previously executed. Columns (a) (b) and c
show three possible CV values for each operation. Such a
dynamic CV can be obtained aa the bitwise OR-cd result
between a operation and the ‘not done” condition test op-
eration. In column (c), if conditional (2) is ‘not done”, the
values of CV for all operation becomes [111], regardless of
whether conditional (4) is ‘done> or ‘not’.

Note that the vaJue of operation of (1) in column (a) is
[1,0,1], while that in ‘basic’ column is [1,1 ,1]. The variable
‘x’ is not used under the condition for executing branch
~~~(~~’~~~,~~~, therefore it is not necessary to calculate

Thus, the actuaJ execution condition is
expressed as [1,0,1]. This shows the operations in (1) and
(5) are actually mutually exclusive when conditionals (2)
and (4) are “donen , which is called data-dependent mutual
exclusivene99.

Similar solutions for detecting mutual exclusiveness in
vector form are adopted in Sehwa[3] and R2 S[8]. However,
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they can detect neither data-dependent mutual exclusive-
ness nor dynamic mutual exclusiveness. Moreover, for a
more significant difference, CVS can be used for optimizing
individual execution paths, as well as resource sharin as in

F
the following section. while vectors in Schwa and R S are
used only fo~ resource sharing.

basic (a) (b) (c)
z = a+b–c+d; -(1) [111] [lQ1] [111] [111]

if (a # O) -(2) ~ [111] [111] [111]
y=m+c; -(3) [100] [100] [100] [111]

else if (. + b < c) -(4) ~ [011] [011] [111]
y=c+d; -(5) [010] [010] [ollJ [111]

else y = r + d; -(6) [001] [001] [o~l] [111]
Conditionals: a # o -(2) done done not

a+b<c -(4) I done not %??

Figure 1: Example description and its CVS

‘2.2 Scheduling and control synthesis for
conditional tree

a

The List Scheduling can be extended to deal with nested
conditional branches through use of the CV concept. Such
extension is called CV based list scheduling (CVLS).
The CVLS can achieve both “conditional sharing” and “op-
timization of all possible paths”. Scheduling and control
synthesis techniques are both based on CVS.

In order to to keep track of the usage for various types
of FUS, we introduced Function unit Utilization Vector :

FUVFU ~(c-step k), each component of which represents

the number of FU f used in the c-step k under each CV
condition. FUVt (k) is the vector sum of CVS for all op-
erations in the c-step k which are assigned to the FU ~
in the scheduling. The value of the largest component of
FUVf (k) shows the necessary FU ~ number in c-step k.

In addition, FUV is used for optimizing all possible
paths. The number of possible paths for a conditional tree
is equal to the dimensions of its CVS. Here, FUVALL(c-
step k) is the vector sum of the CVS of any kinds of op-
erations scheduled in a c-step k; i.e. FUVALL(k) =

F
tEanFU,FUVf(k) . If any components of a FUVALL is

0’, the c-step k can be skipped under ‘O’ component condi-
tions, because the ’0’ components show that no operation
is performed under those conditions. The control sequences
for all possible paths are generated by using such character-
istics of FUVALL. (See [9] for a more detailed discussion.)

Fig.4 demonstrates the above discussions. There are two
conditional trees CT1 and CT2, and an unconditional op-
eration (3) in (a). The scheduling result for the CT1 and
the unconditional operation is shown in (CT1 ) of Fig.4 (b).
The maximum components of FUV+ and FUV- can be seen
to lie within the constraint (two adder and one subtracter)
shown in “RO” columns. Any c-step whose FUVALL has
a ‘O’ component can be skipped under the condition for ‘O’
compone~ts. Thus, the gen~~ated control sequence becomes
“FSM for CTI° in Fig.4(c).

3 Scheduling independent

dependencies

3.1 Operation Node Dividing

of control

Technique

This section presents a “node dividing technique”, by
which an unconditional operation can be duplicated and
moved inside conditional branches, if extra resource sharing

FUV+ FUV- FUVALL

0,0,1] [1,1,0] [0,0,0] [3,3,2]

[1,1,1][1,1,11 [I,l,fl [0,0,0] [3,3,3 )

\ ;,
;i

[0,1,0] [1.0,0] [1,1,0]
1

‘, , Ul,o] [1,0,0] Bl,o]

\ .

‘1 ‘1 i ,0,,,0] [1,0,0] [0,1,0] [1,1,0]

: ‘1 [1,0,0] [1,10] [0,1,0] [1,2,0]>
: ‘1
‘1 [1.1,1][0,0,0] [1,1,11
\ @q [0,0,0] fQQ,Ql2

I I ~.i
node drding

ave. q -3.5 [44,21
-2,5 [3,3,1] )

Figure 2: Node dividing technique

n box ADDER :1

if (a

else

-b>c)
t=x+y+z+u;

t=x+2;

-----e FUV+

. . ..

ST1 - [1,1] / + [1!11 [1,1]

I [1,11 [1,11

sT2 [1,1] > # + [1,1] 11.11

[0,11 [1,01

ST3 \ + 101J + [1,01 [1,1]
-.... -

Figure 3: Pr*execution of an operation in a branch

is possible. This technique minimizes the number of c-steps.

Fig.2 shows a typical example. The scheduling result
without node dividing, requires [4,4,2] c-step for each path.
If the unconditional node, whose CV is [11 I], is divided
into tree nodes whose CVS are [100], [010] and [001], the
scheduling can be improved into [3)3,1] c-steps. This exam-
ple shows that cm unconditional operation and an operation
inside conditional branches can be mutually exclusive, even
if they have no relation with each other.

Such node dividing can be applied for any operation
node whose CV has plural ‘1’ components. If a node di-
viding makes length of some paths shorter, the dividing
will be adopted. Node dividing is applied when a node be-
comes a candidate for allocation in List Scheduling as in
the Section 4. Note that unconditional operation can be
moved into any conditional trees by node dividing, while
operations inside a conditional tree can be moved into only
inner branches of the tree. In addition, one operation will
be executed in different c-steps for each execution instance,
when the node is divided.

3.2 Execution of operations inside a

branch before the condition test

This section presents a scheduling technique which al-
lows operations inside a conditional branch to be executed
before the conditional test operation itself, in order to save
resources and the number of c-steps. Fig.3 is an example
showing scheduling under one adder and one subtracter.
CVS of operators and registers are shown beside them. The
data lines for y, z, u and .2 are omitted. Only three c-steps

are required to execute the entire behavior, while, if the
scheduler didn’t allocate operations in a branch before the
conditional operation, five c-steps are required.

As explained in Section 2, CVS express dynamic mutual
exclusiveness. Consequently, the scheduler can neglect the
control dependencies. The semantic of the given behavior
is preserved by means of dynamic GVS. For example, the
‘+ ’[1,1] operations in ST1 and ST2 are always executed. On
the other hand, the result of ‘+’ in ST1 is always registered
( which CV is [1,1]), but the result of ‘+’ in ST2 is reg-
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istered only when the branching condition is true because
the registers CV is [1,0].

Note that an operation executed before a conditional
test, can be handled as unconditional operation. Hence, the
operation moved outside the conditional tree can be divided
and moved into another conditional tree by node dividing.
This means that operations in different conditional trees
can be mutually exclusive, and can share resources.

3.3 Conditional tree duplication

At the first stage of the scheduling, “conditional tree du-
plication” is optionaHy performed, which duplicates a tree
and move them into the previous tree as long as the num-
ber of leaves of the combined tree is less than 32, because
a CV is implemented as one word. This could parallelize
conditional trees. The following shows an example of the
duplication: CT1 and CT2 are combined into CT1-2.

CT1: if~$) [10] CT1-2: if (cl) if (c2) [1000]

II

01 + else

~1

0100
CT2: if (c2) 10 else if (c2) 0010

else [01] else 0001]

3.4 Parallelization of multiple conditional

trees

Previous sections presented how to exploit mutual exclu-
siveness among conditional trees and unconditional opera-
tions. This section presents how to exploit potential par-
allelism among multiple conditional trees. The proposed
scheduling method parallelizes conditional trees, indepen-
dent of control dependencies, while preserving data depen-
dencies and the semantics of the original design. For in-
stance, in Fig.4(a), some plus operations in CT1 and CT2
can be executed concurrently without violating the data
dependencies between them; ‘x’ in this case. ([1] denotes a
vector whose components are all ‘1 ‘.)

Conditional trees are scheduled in the order of the con-
trol flow of the given behavior. Operations in the first con-
ditional tree are scheduled first, under the given resources
constraints. When the first tree didn’t use all FUS in any c-
steps, some FUS remain in the c-steps. Thus, the remaining
FUS can be available for the next conditional tree. Then,
operations of the next tree are scheduled under the remain-
ing FUS. Namely, operations of each conditional tree are
scheduled under various resource constraints in each c-step.

Fig.4(b) shows a scheduling result for (a) under two
adders and one subtracter. (In the figure, FUVALL in ST1
cent ains CVS for cl, c2, c3. ) First, operations in the condi-
tional tree CT1 are scheduled. The number of remaining
FUS in each c-step are shown in column ‘R1’. Next, OF
erations in the second tree CT2 are scheduled, using the
remaining FUS: R1. Unconditional operations are sched-
ules with any conditional trees. They are scheduled ac-
cording to the priority function, and when all operations
in a conditional tree are scheduled, the remaining uncondi-
tional operations will be scheduled with the next branch.
(See Section 4,)

3.5 Control sequence synthesis for glob-

ally parallelized branches

This section presents how to synthesize and how to op-
timize the control sequence for the parallelized conditional
trees as in the previous section. Each conditional tree
has an active execution path, therefore, parallel conditional

CT1 :

CT2:

if (cl) x=a+b; [111-1 1,0
else x=a+b–c; 0,1
z=a —b;

‘[21 I ] 1
-3 1

if (c2) r/=a+c +x; -4 1,0,0
else {’ ~=a+c; -(5 [o,l,lj

1if (c3) y = y - c - d; }-(6 [0,1,0]

(a) Multiple conditional trees

RO a, b, FUV1 RI al IC FUV2 R2

(b) Parallelimtion of multiple conditional trees in (a)

FSM for CT1 FSM for CT2

EE!E”
1 1 I 1 1

t * v v T

Gsnsratad FSM

E

S1

S2

S2

S4

(c) Control sequence for the scheduling result shown in (b)

Figure 4: Scheduling of multiple conditional trees

trees requires the simultaneous activation of as many paths
as the number of them. “FSM for CTI° and “CT2” in
Fig.4 (c) shows control sequences for the scheduling of CT1
and CT2 in (b). Note that these two control sequences
are dependent, since there are some data dependencies and
some resources conflicts between them. Hence, the control
for the parallelized conditional trees cannot be realized in
two independent FSMS. A FSM shown in right-hand in (c)
shows the control sequence for the parallelized trees. The
FSM is obtained by combining the two FSMS expressing
sequences of individual conditional trees so that they could
move synchronously. That is, states in the same c-step for
the two FSMS should be executed at the same time.

Such combined FSM can be generated by determining
the transition destination and its condition from each c-
step. They are simply determined by enumerating all pos-
sible combinations of paths, but the number of the combi-
nation is equal to the product of the number of each path
and optimizing them. Then, we propose better generation
method. The method determines the nearest transition des-
tination and its condition first. In the figure example, they

are ‘S2 ‘ and ~. Under other conditions, it can transit to
a farer state. Second nearest destination is ‘S3’, and the

condition is ‘c2 + % . G3’. BY this way, the state transition

from ST1 (DSI) becomes the left-hand in the following:

DS1 = if (~) + S2; if (~) + S2;

~ if (c2 +Z. c3) + S3; - else ~ S5;
~ + S5;

The destinations for the other states can be determined
in the same way. If there are some relations between condi-
tional test operation cl, c2, c3, the FSM can be optimized
more. For example, if a relation such as ‘cl . C2 = O’ and

‘cl . ~ = O’holds, then state transition DSI is optimized
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as the right-hand in the previous example. In this way,
the proposed method can deal with the “false path” prob-
lem described in [6] by using such boolean relations among
condition al test operations.

4 Entire Scheduling Algorithm

crndtional tree duplication; /* option */

RFUf = number of FU j;

for CT= the fit conditional tree to the last do {

Irest = operations inside CT;

Orest = unconditional operations;

C8tep = O;
while (Irest # ~) {

Catep = Catep + 1;

compile ReadyList for Cd ep from Irest and Orest;

Irest, Orest = the remainder operation%

while (ReadyLkt # ~) {

m = operation with the largest priority;

calculate dynamic CV of n in Cstep;

if n is dividable (CV has plurrd ‘1’) then

divide ?z;

if the schedule becomes better then

allocate the divided nodes in the /ormer c-step

goto L1 ;

if max(FUVf) < Rf then allocate n to Cstep
else Irest or Orest = n;

Ll:

/“ for operation chaining *j

if n is allocated then renew Readylist, Irest,Orest;

}
}
tiFUj = RFUf - number of used FU -f for CT;

1

)* node re-allocation *I

for Cstep = the last ~step -1 downto the first do

re-allocate n to the later c-step if ‘O’ of FUVALLL increases;

Control sequence synthesis for the scheduling result;

s Experimental results and remarks

The proposed method is implemented in Cyber sys-
tem [10]. Table.1 shows comparisons with “MAHA” in

[1], “PATH” in [6], “KIM” in [5], “R’S” in [8] and our
method “CVLS”. In the table, “maha”, “kim” are examples
in [1] and [5], and “parker’ is parker1986 in the HLS bench-
mark1991. “Wmaha” and “25maha” are obtained by du-
plicating “maha” twice and twenty five times respectively,
and connecting them in series (we put one data dependency
among each “maha” data). “Paths” shows the length of
longest and shortest path and the average where all condi-
tionals have equal probabilities. “Full” shows results for the
proposed method. ‘Not par” shows results without paral-
lelization of multiple conditional trees and node dividing,
and “not end” shows results also without branch operation
pre-execution.

Examples “maha” and “parker” have only two condi-
tional trees, but our method gives significantly better re-
sults than other methods. Note that our method produce
good results without chaining, this shows our method has
high ability to exploit potential parallelism. Our method
gives a better result also for “Kim”. “Kim” has only one
conditional trees, therefor the result shows the ability of
node dividing and pre-execution of branch operations are

effective. The results for “Wmaha” and “25maha” show the
powerful ability to exploit potential parallelism of CVLS.
The “full” results are much better than “not par” and “not

end”. In addition, the path length for ‘25maha” is far less
than 25 times of maha. Moreover, the path length in “full”
drastically decreases according to the increase of FU num-
bers, on the other hand, that in “not end” decrease slightly.
These results prove that the CVLS scheduling can utilize
FUS sufficiently.

The CVLS algorithm is so simple that it runs fast. The
behavior containing more than one thousand operations can
be scheduled in about a minute on 28.5 MIPS work station.

Table 1: Scheduling Results

6/3(4.12)

-J-l3/3 3.00
5 33.75

M
4 33.38
6 34.12
5 33.75

++

666.00
.0 56.38
6/5(5.38]

Y

.3 68.25

.0266 .25
:0771.75

LX+!@

%%

8/3(4.62)

-d-l4/3 3.25
8 34.62

M

5 34.00

8 34.62
8 34.62

-w
8 77.25
[45.5
6/5(5.38)

T

[6 69.25
15383.00
15787.12
[80 96.38

add fsub: No. of adder/subtracter; Ch: No. of chaini~

St: No. of state;

6 Conclusions

This paper proposed a novel scheduling method based
on condition vectors which can schedule operations inde-
pendent of the control dependencies, such as node divid-
ing, pre-execution of branch operation and parallelization of
multiple conditional trees. Also, presented is a FSM synthe-
sis algorithm for the parallelized multiple conditional trees.
The experimental results show that our method can pro-
duce remarkably better scheduling and it runs efficiently.
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