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Abstract

Scene recognition and content-based procedures are of great interest for image indexing applications
processing very large databases. Knowing the category to which a scene belongs, a retrieval system may
�lter out images belonging to other categories.

In this paper, we introduce a computational approach which classi�es and organises real-world scenes
along broad semantic axes. Fundamental to our approach is the computation of global spectral templates
providing a continuous organisation of scenes between two categories. These templates encode the
structure which is discriminant between two categories. We propose a hierarchical procedure of two
stages, that organises images along three semantic axis. Firstly, all the scenes are classi�ed according to
an Arti�cial to Natural axis. Then, natural scenes are organised along the Open to Closed axis whereas
arti�cial environments are classi�ed according to the Expanded to Enclosed scenes axis.

1 Introduction

Everyday complex scenes depicted in photographs and movies are recognised by the human visual system
as rapidly as objects presented individually. Such an automatic and e�cient recognition is currently a
computational dream (or nightmare) for arti�cial visual systems. In particular, reaching such a level of
performance is a critical feature of indexing of image databases.

Image retrieval systems usually represent images by a collection of low-level features such as colour,
texture, edge positions and spatial relationships in the image. These features are used to compute the
similarity between a picture selected by the user and the images in the database. The query is based on
an image features vector matching between images while human classi�cations are based on fuzzy similarity
computations that are often context-driven.

Bridging the gap between higher concepts such as \urban scenes" or \snowy mountains" and low-level
features extracted from the picture, requires two fundamental operations: �nding the relevant semantic
description of the concept and �nding the relevant low-level features.

In this paper, we present the �rst results of a computational approach that classi�es and organises real-
world scenes along semantic axes. The research introduces the main concepts of the approach and describes
classi�cation results in "super-ordinate semantic classes" 1. The main marks of our approach are two-fold:

1A super-ordinate category (e.g. arti�cial or natural scenes, urban areas, horizon landscapes, indoor scenes, etc.) can be
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1) determine the relevant spectral features correlated with the semantic content of the image 2) a continuous

organisation of scenes.
The low-level features set is represented by a template. This template uses the spectral content of the

image (i.e. the energy distribution through spatial frequencies and orientations) in order to discriminate
between images with di�erent semantic contents. We propose to call it a Discriminant Spectral Template

(DST). The main properties of a DST are the following: 1) it is dependant upon a speci�c semantic image
contain 2) it allows to continuously organise pictures along a speci�c semantic axis and 3) it is robust to
image variability.

In the following, we describe the organisation of real-world scenes along three semantic axes, each one
providing an ideal DST (e.g. from arti�cial scenes to natural scenes; from \open" landscapes to \closed"
landscapes, and from "city scenes" to \enclosed" urban scenes and indoors).

2 Context-Driven Recognition

Context-driven recognition procedures usually assume that a semantic classi�cation can emerge from very
simple computations based on low-level features [3-5,8,11,16,17]. Knowing the meaning of the scene, a
retrieval system may compute in advance its semantic category.

Recent studies attempt to address this complex issue. For instance, Lipson et al. [6] reasoned that scene
categories should be invariant to image transformations such as scaling, illumination and precise objects
location. They encode the global con�guration of the scene by using spatial and photometric relationships
within and across regions of images. Even though it is e�ective for scene categories that are geometrically
well-de�ned (e.g. snowy mountains with blue sky), their method cannot be generalised to broader categories
or scenes where parts and objects are randomly localised (such as rooms or indoor buildings). In a similar
vein, Picard and collaborators [3, 7, 16] represent scenes by a collection of features (texture, colour, spatial
frequencies) locally computed on tessellated images. Their strategy can retrieve images of urban scenes from
landscapes [3] or classify pictures in indoor vs. outdoor categories [16]. The work of Vailaya et al. evaluates
the discrimination power of several low-level features in order to classify city images versus landscapes [17].
Common to all these approaches is the classi�cation into exclusive classes. However, when dealing with
large databases, exclusive classi�cation may increase irrelevant classi�cation rate as most of pictures are
ambiguous in terms of category.

Fundamental to our approach is the notion that scene recognition requires the de�nition of continuous
semantic axis. The keystone is the computation of Discriminant Spectral Templates, encoding the spectral
features that better discriminate between two categories.

3 Power Spectrum Families

The search for an unique template came from experimental results about how the human visual system
may recognise a complex scene. Typically, real-world scenes belonging to the same category tend to have a
similar organisation of their main component objects. Oriented shapes of the main components de�ne the
\skeleton" of the spatial organisation [14]. Human visual processing seems to use these spatial regularities to
categorise a picture in broad classes (e.g. urban areas, coastlines, landscapes, rooms, textured environments,
...) [9,10,14]. This \express" visual categorisation is based on a coarse invariant information which is
independent of the viewpoint, object locations, occlusions, shadows, colour and illuminant variations.

To this extent, the power spectrum turns out to be a very good candidate for encoding such a structural
information. The power spectrum of an image is the square of the magnitude of its Fourier transform. It
gives global information about the basic elements that form the image. Here, we are not interested in a
detailed analysis of the power spectrum which would be as complicated as studying the pixelised image itself.
We only look for global characteristics in terms of the main orientations in the image, the dominant spatial

described as a broad semantic category which subsumes several basic-level scene categories (respectively cities or mountains,
city center or streets, panoramic beaches or valleys, kitchens or bedrooms).
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a) b) c) d) e)

Figure 1: Examples of power spectrum forms for prototypical images (vertical axis is the magnitude in
logarithmic scale, horizontal axis are the spatial frequencies fx and fy). At the bottom, we show sections at
several levels of the power spectrum of each image.

scales, the periodic patterns, etc. Power spectrum answers to questions such as: which frequency band
encodes most of the energy; what is its global form through spatial scales; are there poles and narrow lines of
energy? All these features would mostly be independent of objects arrangements, point of view, illumination,
etc. For example, typical beach scenes have a strong horizontal organisation (Fig. 1 c). Therefore, their
power spectra will display a dominance of energy on the fy axis, mostly at low fy spatial frequencies. At the
opposite extreme, city scenes are usually structured along vertical and horizontal directions whereas spectra
of forests would be mainly isotropic from low to high spatial frequencies (some examples are shown Fig. 1).

The power spectra of real-world images exhibit very di�erent energy distributions for each orientations
and spatial frequencies. In analysing images from a wide set of real-world environments, we observed a
strong bias towards horizontal and vertical orientations [1, 2, 13].

We observed that �ve families of power spectrum can be de�ned showing a strong correlation with the
semantic content of the image [18]. Figure 1 shows prototypical power spectra for the �ve proposed families.
These families are characterised by the shape of their dominant orientations:

1. Horizontal shape: The power spectrum exhibits an horizontal dominant line, on the fx axis, from low
to high spatial frequencies. A good example is a city scene composed of tall buildings (Fig.1a).

2. Cross shape: Vertical and horizontal directions are represented approximately equally in the power
spectrum. A typical scene exhibiting such a cross form at all spatial frequencies is an indoor scene of a
kitchen or a living-room, mainly composed of man-made objects of small and medium sizes (Fig.1b).

3. Vertical shape: The power spectrum shows a vertically dominant line (fy axis) revealing that the scene
has an horizontal structure. Examples are beach and �eld scenes, as well as other panoramic scenes
(Fig.1c).

4. Oblique shape: Oblique orientations (mainly orientations at 45 deg plus or minus 15 deg) dominate the
power spectrum. Examples are images of mountain areas, canyons, valleys (Fig.1d).

5. Circular shape: All the orientations are equally represented in the picture, leading to an isotropic power
spectrum. Common examples are highly textured environments such as forests, �elds (Fig.1e).

Fig 1 shows typical examples of scenes belonging to each of the �ve power spectrum categories outlined
above. For these prototypical images, the shape of the power spectrum is conserved across spatial scale.
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a) b) c) d)
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Figure 2: This �gure shows the main steps for computing the vector of 100 components used to represent an
image. a) Original image. b) Output of the pre-processing stage. The e�ect of illuminant and shadows have
been reduced. c) Power spectrum of the pre�ltered image. It is computed as the squared of the magnitude
of the Fourier Transform. d) -3dB sections of the set of gabor �lters used to sample the power spectrum.
The highest frequency is 1/3 cycles/image and the lowest one is 1/72 cycles/image.

For most images however, the shape of the power spectrum varies gradually from one of these categories to
another. For example, a �eld scene may display a vertical dominance at low-spatial frequencies corresponding
to the horizon, and a \ring" at medium and high spatial frequencies corresponding respectively to the texture
of the trees behind and the texture of the grass in front. As a consequence, the variety of natural images and
their \intertwined" distributions of orientations is at the origin of the continuity along the semantic axes
de�ned in this paper.

Instead of searching for low-level features (e.g. red and yellow) describing a speci�c semantic category
(e.g. sunset beaches), we looked for semantic categories that would naturally emerge from the �ve major
power spectrum forms. From the �ve main power spectrum forms displayed on Figure 1, we propose a
hierarchical classi�cation procedure as follows: a �rst level of classi�cation discriminates between arti�cial
vs. natural environements. The Horizontal and the Cross shapes together represent arti�cial environements
(e.g. man-made scenes), whereas the three other shapes are typical of natural scenes 2. Following this initial
classi�cation, the second level assesses natural scenes along an axis representing scenes from Open to Closed
environments (e.g. open scenes are mainly horizontally structured with depth view {beaches, �elds{ whereas
closed scenes are bounded environments, highly textured {forests, mountains. Open environments have a
vertical spectrum shape and closed environments have circular and oblique spectrum shapes). This second
level represents also arti�cial scenes along an axis revealing the vertical dominant structure of man-made
outdoor and indoor environments that we call Expanded-Enclosed axis. This axis represents a continuum
between unbroken areas of urban scenes made with tall and large buildings (horizontal spectrum shape) and
con�ned images of indoor buildings and rooms (cross spectrum shape).

4 Computational Model

4.1 Image database

We chose 700 pictures from the Corel Image database so as to cover a large variety of real-world scenes. We
imposed the constraint that images must not be pictures of isolated objects. Examples of scenes included
beaches, �elds, forests, mountain areas, deserts, waterfalls, canyons, urban areas such as shopping centers,
streets, highways, skyscrapers and di�erent kind of rooms. Out of the 700 images, 300 were classi�ed as
arti�cial environments (man-made scenes), another 300 were classi�ed as natural, and the remaining 100

2As outlined in the previous section, classi�cation must be done on continuus axes. Thus, a panoramic view with an urban
area in the background would be located between the arti�cial and the natural poles, exhibing a power spectrum form having
both a cross form and a vertical form.
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Figure 3: The �rst 8 Principal Components calculated from the power spectrum of 700 scenes. The horizontal
coordinate is fx and the vertical one is fy. The symmetrical structure of the principal components is due to
the mirror transformation applied to the image power spectrum.

were ambiguous scenes, namely natural scenes containing man-made objects (e.g. farm buildings in a �eld,
benches in a garden, boats in an harbour, bridges over a ravine, . . . ). This classi�cation was obtained by
asking 4 observers to place each image in the arti�cial or the natural group. Images were 256 by 256 pixels
in size, coded in 8-bit grey-levels.

4.2 Pre-processing

The aim of pre-processing is two-fold: reducing the e�ects of large shadows that may hide important parts
of the scene and minimising the impact of high contrasted objects which would disturb the power spectrum
shape of the background image. Firstly, we apply a logarithmic function to the intensity distribution. Then,
we attenuate the very low spatial frequencies by applying a high pass �lter. We apply an adjustment of the
local standard deviation at each pixel of the image. This operation makes large regions of the image being
equally bright (see Fig 2b).

4.3 Global Semantic Axes

The aim of the approach is to determine a unique template that can be applied to the power spectrum of
an image so as to localise the image along a continuous one-dimensional semantic axis. We compute three
di�erent templates (DST) corresponding to the three semantic axes of the hierarchical procedure (arti�cial to
natural scenes, open to closed scenes for natural environments and expanded to enclosed scenes for arti�cial
environments).

The computation phases are as follows:

1) After the pre-processing stage, we compute the power spectrum (see Fig 2c) and we sample it with a
set of narrow band Gabor �lters (see Fig. 2d).

2) We use Discriminant Analysis in order to compute the axes. To de�ne each axis, we have chosen two
sets of prototypical scenes in order to set up the extremities of the axis. The Discriminant Analysis computes
the axis that both maximises the distance between the two prototypical groups and minimises the standard
deviation of the images belonging to the same group.

4.3.1 Spectral Representation

If we compute the power spectrum of an image of size 256x256 pixels (by computing the magnitude of
the Discrete Fourier Transform of the image), we obtain a 256x128 (discarding the radial symmetry of the
power spectrum) vector of low-level features for each image. Therefore, images are distributed in a very
high dimensional space. To reduce dimensionality, we sample the power spectrum by a set of narrow-band
Gabor �lters (100, see Fig. 2d) tuned to di�erent spatial frequencies (orientations and scales) from low
spatial frequencies (1/72 cycles/image) to high spatial frequencies (1/3 cycles/image). We sample the power
spectrum with 10 spatial frequency radial bands and a decreasing number of orientations from high (24) to
medium (12) and low (4) spatial scales.

Challenge of Image Retrieval, Newcastle, 1999 5
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The transfer function of a Gabor �lter tuned to the spatial frequency fr in the direction determined by
the angle � is given by the expression:

G(fx; fy) = K e�2�2(�2x(f
0

x
�fr)

2+�2
y
f 02

y ) (1)

where f 0x and f 0y are obtained by rotation of the spatial frequencies f 0x = fx cos(�) + fy sin(�) and f 0y =
�fx sin(�) + fy cos(�). �x and �y give the shape and frequency resolution of the Gabor �lter. K is a
constant. The full set of �lters is obtained by rotation and scaling of this expression. This gives a high
frequency resolution at low spatial frequencies and a low frequency resolution at high spatial frequencies.
The values �x and �y are chosen in order to have coincidence in the contour section of the magnitude at
-3dB.

Given an image, its semantic content is invariant with respect to an horizontal mirror transformation of
the image. Therefore, we compute the symmetric energy outputs of the Gabor �lters which are invariant
with respect to an horizontal mirror transformation:

�fr;� =

Z Z
jI(fx; fy)j

2 �
G2
fr ;�

(fx; fy) +G2
fr ;���(fx; fy)

�
dfx dfy (2)

where jI(fx; fy)j
2 is the power spectrum of the image. Gfr ;� and Gfr ;��� are two Gabor �lters tuned to the

spatial frequencies given by the radial frequency fr and the directions � and � � �. Therefore, the value
�fr ;� is invariant with respect to an horizontal mirror transformation of the image.

The features we are going to use are the normalised ones:

e�fr ;� = �fr;� �E (�fr ;�)

std (�fr ;�)
(3)

where E and std are the mean and the standard deviation of the features �fr ;� computed over the entire

image database. Therefore, for each image, we have a feature vector de�ned by the collection of e�fr;�
obtained at di�erent frequencies and orientations.

4.3.2 Discriminant Spectral Template

Before applying the discriminant analysis, we performed a second dimensionality reduction (from 100 to 8).
We computed the principal components (PC) of the normalised energy features (eq. 3) over the entire image
database. Principal Component Analysis (PCA) gives the orthogonal axes (called principal components)
that best represent the variance of the distribution. This operation reduces the dimensionality by taking
into account only the most important components, the components that are responsible of the variability
between images in the feature space [15]. Figure 3 shows the eight �rst Principal Components computed
from the entire database. The PC pictures are computed by addition of the set of Gabor �lters, weighted by
the components of the principal vectors obtained by the PCA. The symmetrical structure of the principal
components is due to the mirror transformation originally applied to the features 3 (eq. 3).

After projection of each image spectral features onto the principal components, we compute the semantic
axis by applying Discriminant Analysis. The following method is applied to each of the three semantic axes.
Firstly, we separate the database in two groups de�ning the extremities of the axis. For this purpose, we only
use prototypical images. Discriminant Analysis consists in the search of the axis maximising the distance
between classes while minimising the dispersion between elements of the same class [see [12] for a descriptive
review of the method]. Half of the image database is used for the learning stage and the other half for the
testing stage.

As two prototypical groups of images are considered, Discriminant Analysis provides only one discriminant
vector. This discriminant vector is expected to represent a relevant organisation of pictures along the
semantic axis we are looking for. Therefore, we compute the projection of each image spectral features on

3Note that computing the PCA directly from the Gabor outputs without the mirror transformation shows poorer perfor-
mances, because only some of the principal components are nearly symmetric.

Challenge of Image Retrieval, Newcastle, 1999 6



Global Semantic Classi�cation of Scenes using Power Spectrum Templates

-6 -2 0 2 6

0

10

25

-6 -2 0 2 6

0

10

25
Artificial Natural

f
x

f
y

Figure 4: Results of projection of the testing group onto the Arti�cial-Natural axis. The histograms show
the distribution of both the arti�cial and the natural images sets onto the axis (testing phase). 90 % of the
images are accurately classi�ed in the testing phase (91 % in the learning phase). At the righthand side,
we show the resulting DST. The angular anisotropy reveals the importance of the statistics of dominant
orientations between di�erent groups of images.

the semantic axis. Figures 4, 7 and 9 display the three discriminant vectors. As in Figure 3, these pictures
are obtained by addition of the set of Gabor �lters, each one weighted by the components of the discriminant
vector. They have been computed from the eight �rst principal components. We call this representation a
Discriminant Spectral Template or DST.

4.4 Arti�cial-Natural Axis

The objective is to compute the DST associated with the Arti�cial-Natural axis. Arti�cial scenes are
composed of man-made objects, having dominant vertical and horizontal edges. Thus, their power spectrum
displays an horizontal shape or a cross form (see Fig. 1 a and b). On the contrary, the orientation distribution
in the power spectrum of a natural scene is usually isotropic (Fig. 1 e) or has an oblique dominance (Fig. 1 d).
Other natural scenes have a strong horizontal component due to the horizon (Fig. 1 c). Out of 600 arti�cial
and natural images, 300 prototypical scenes have been used in the learning phase (150 for each class) in
order to compute the Arti�cial-Natural DST, as described in the previous section.

The validity of the DST is assessed along two criteria. We desire that the classi�cation rate obtained by
the discriminant analysis approximates the classi�cation obtained by humans in the two-alternative forced
choice task (Arti�cial vs. Natural). Then, the pictures should organise themselves in a coherent and dense
way along the considered axis.

In the testing phase, 300 new pictures are projected using the DST shown in Figure 4. The DST
shows how the spectral components should be weighted in order to di�erentiate arti�cial from natural
environments: the white and dark parts respectively represent natural and arti�cial components. Natural
components are found at very low vertically oriented spatial frequencies and oblique orientations at all spatial
scales. Arti�cial components describe a cross, strengthened along the horizontal at low and medium spatial
frequencies. Results of the classi�cation in exclusive groups are displayed Figure 4 (the histograms). Both
learning and testing performances are slightly larger than 90 %.

The second criterion has been tested in two ways. First, Figure 5 displays prototypical pictures randomly
selected and equally spaced along the axis. We observed that the left side exhibits arti�cial scenes and the
right side exhibits natural scenes.

To fully investigate the relevance of the arti�cial-natural DST, we projected 100 other new pictures,
supposed to be \ambiguous" regarding their arti�cial or natural status (e.g. natural environments containing
more or less man-made structures).
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Artificial Natural

Figure 5: Organisation of new prototypical scenes on the Arti�cial-Natural axis. Pictures have been randomly
selected and are equally spaced along the axis. The left side exhibits arti�cial scenes and the right side
exhibits natural scenes.

Figure 6 shows a sample of the results: the images with an underlined segment are prototypical pictures
displayed to show the extremities of the axis. Interestingly, the new ambiguous images are mainly projected
around the middle of the axis (represented by the center line of Figure 6) rather than the extremities. The
bottom line displays pictures seen as mainly natural: indeed, the farm scene contains a dominant textured
�eld and the panoramic view over the village scene is strongly horizontally structured like a natural open
landscape. Thus, the model prefers to classify these pictures as \natural". In a similar vein, the top line
shows four ambiguous pictures considered as \more" arti�cial. In fact, their power spectrum exhibits a cross
form style. The medium line of Figure 6 represents pictures classi�ed around the center of the axis. Note
that the right images in the central line, are horizontally structured: at low spatial frequencies, vertical
components (fy) are dominant, corresponding to the natural components of the DST (white). Note also
that the images left of the medium line are mainly composed of arti�cial objects (the boat and the farm).
Their power spectra are closer to the arti�cial components of the DST (dark).

4.5 Open-Closed Axis

Knowing that a picture belongs more to the natural or the arti�cial set, we propose to compute another DST
which purpose is to organise natural scenes along a speci�c semantic axis (Open to Closed axis). This axis
originally comes from three power spectrum shapes (cf. Fig. 1-c-d-e). Looking at natural environments, we
propose to represent scenes from open, unbroken areas with an horizon (Vertical Power Spectrum family) to
bounded and closed textural environments (Circular and Oblique Power Spectrum families). Ideally, imagine
a scene with a prominent horizon (e.g. a panoramic view on a valley) being slowly \�lled in", either by
distant large and tall objects in the background (e.g. mountains) or by closer textured parts (e.g. trees,
bushes, grass).

From the 300 prototypical natural images (e.g. beaches, seashores, oceans, deserts, �elds, various land-
scapes, forests, gardens, waterfall areas, snowy or rocky mountains, valleys, open and closed canyons, ...),
150 were used for the learning phase and the DST computation and 150 for the testing phase. Learning and
testing performances of classi�cation rate in Open-Closed are about 88 % (cf. histograms of Figure 7). 4

Figure 8 displays exemplars of natural scenes randomly selected and equally spaced along the axis.
We observe an appropriate organisation from open areas (left side of Figure 8) such as �elds, coastlines,
panoramic valley views, progressively replaced by mountains environments and wide textured scenes (e.g.
gardens, close-up bushes views, forests,...). The Open-Closed DST is displayed in Figure 7. The dark parts
(negative values) represent the open components whereas the white parts (positive values) represent the
closed ones. The intensity of dark and white parts reveals how the spectral components of a natural image
should be weighted to compute its position on the axis.

4Note that the rate in exclusive classi�cation is only indicative of the projection of prototypical images. The purpose of the
DST representation is to look for a continuous organisation from Open to Closed environments.
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Figure 6: Examples of ambiguous scenes and their organisation along the Arti�cial-Natural axis. Images
are sorted according to the Arti�cial-Natural DST: from the top to the bottom and from the left to the
right, scenes are organised from the most arti�cial to the most natural. Underlined images belong to the
prototypical groups.

f
x

f
y

-6 -2 0 2 6

0

10

25
Open

-6 -2 0 2 6

0

10

25
Closed

Figure 7: Results of projection of the testing group of natural images onto the Open-Closed axis. At the
rigthhand side we show the resulting DST. 88 % of images are well-classi�ed both in the learning and the
testing phases.

Open Closed

Figure 8: Organisation of new scenes randomly selected from the testing group along the Open-Closed axis.
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Figure 9: Results of projection of the testing group of prototypical arti�cial images onto the Expanded-
Enclosed axis. At the rigthhand we show the resulting DST. 82 % of images are well-classi�ed.

Expanded Enclosed

Figure 10: Organisation of new scenes randomly selected from the testing group along the Expanded-Enclosed
axis.

4.6 Expanded-Enclosed Axis

In a way similar to the analysis along the Open-Closed axis, we looked at a possible super-ordinate semantic
for the arti�cial scenes. From the Horizontal and the Cross power spectra shapes (Figs. 1 a and 1 b),
two broad categories seem to emerge: Expanded areas of urban scenes with vertically structured parts and
con�ned and Enclosed scenes as urban areas and indoors. The image database was composed of 200 arti�cial
scenes representing prototypical images grouped either in the Expanded or Enclosed classes. The learning
stage was performed on half of the database (100) and used to de�ne the Expanded-Enclosed DST (see
Figure 9).

The classi�cation rate both for learning and testing was 82 % (Figure 9). Note that this two-alternative
forced choice task (Expanded vs. Enclosed) is ambiguous for human subjects. The organisation is shown
in Figure 10. A careful look at the selected pictures, from left to right, shows a \broad" regularity of the
organisation chosen by the model, e.g. from vertically structured areas, some with strong vanishing lines
(see the left picture of the Figure 10), to indoor scenes characterised by a double dominance of horizontal
and vertical edges. The dark parts of the Expanded-Enclosed DST represent the Expanded components and
the white parts represent the Enclosed components. The dark Expanded components are located along the
horizontal direction (fx) and at an orientation plus or minus 30 deg. around (fy). These latter components
may characterise the vanishing lines of images with perspective views. The white Enclosed components are
vertically displayed.

5 Conclusion

In this paper, we present a novel computational method for performing broad semantic categorisation.
Images are organised along semantic axes using a hierarchical representation (arti�cial to natural scenes,
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open to closed natural scenes and expanded to enclosed arti�cial scenes). The position of an image along each
axis is obtained by matching its power spectrum with a Discriminant Spectral Template (DST) computed
from learning over a subset of the image database. The DSTs appear to be a suitable representation for
continuously organising pictures along semantic axes and thus, taking into account the ambiguous nature of
real-world scenes.

Scene recognition algorithms and context-driven procedures are of great interest for image indexing
applications processing very large databases. Our approach o�ers a collection of features (DST) 5 that
appears to be strongly correlated with a meaningful content of the scene.
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