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Abstract The global sensitivity analysis method used to
quantify the influence of uncertain input variables on the
variability in numerical model responses has already been
applied to deterministic computer codes; deterministic
means here that the same set of input variables always gives
the same output value. This paper proposes a global sensi-
tivity analysis methodology for stochastic computer codes,
for which the result of each code run is itself random. The
framework of the joint modeling of the mean and dispersion
of heteroscedastic data is used. To deal with the complexity
of computer experiment outputs, nonparametric joint mod-
els are discussed and a new Gaussian process-based joint
model is proposed. The relevance of these models is ana-
lyzed based upon two case studies. Results show that the
joint modeling approach yields accurate sensitivity index
estimators even when heteroscedasticity is strong.
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1 Introduction

Many phenomena are modeled by mathematical equations
which are implemented and solved using complex computer
codes. These computer models often take as inputs a high
number of numerical and physical variables. They can also
generate several outputs (scalars or functions). For the de-
velopment and the analyses of such computer models, the
global Sensitivity Analysis (SA) method is an invaluable
tool (Saltelli et al. 2000; Kleijnen 2008; Helton 2009). It
accounts for the whole input range of variation, and tries to
explain output uncertainties on the basis of input uncertain-
ties. These techniques, which often refer to the probabilistic
framework and Monte Carlo methods, require a lot of sim-
ulations. The uncertain input variables are modeled by ran-
dom variables and characterized by their probabilistic den-
sity functions. The SA methods are used for model calibra-
tion (Kennedy and O’Hagan 2001), model validation (Ba-
yarri et al. 2007a, 2007b), decision making process (De Roc-
quigny et al. 2008), i.e. all processes where it is useful to
know which variables contribute most to output variability.

Current SA methods can handle deterministic computer
codes; that is codes providing the same output values for
the same input variables. Randomness is limited to model
inputs, whereas the model itself is deterministic. For ex-
ample, global sensitivity analysis tools have been applied
to nuclear waste storage safety studies (Helton et al. 2006)
and pollutant transport modeling in aquifers (Volkova et al.
2008). In such industrial studies, numerical models are of-
ten too time consuming, preventing the global SA methods
from being applied directly. To overcome this problem, the
time consuming computer code is substituted by an approx-
imate mathematical model, called metamodel (Sacks et al.
1989; Fang et al. 2006). This function must be as represen-
tative as possible of the computer code, with good prediction
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capabilities. In addition, it must require a negligible calcula-
tion time. Several metamodels are classically used: Polyno-
mials, splines, neural networks, Gaussian processes (Chen
et al. 2006; Fang et al. 2006).

This paper does not deal with deterministic computer
codes, but focuses on stochastic numerical models—i.e.
codes yielding different output values even with identical
input variables. In other words, a stochastic model refers
to the random simulation case, as introduced by Kleijnen
(1997) for a queuing model. Such a computer model is in-
herently stochastic because the simulator uses random num-
bers. Contrary to noisy simulations (see for example Yeşi-
lyurt et al. 1996 and Forrester et al. 2006), a random simula-
tion is not tunable and involves a random seed. The effect of
this random seed on the output may be chaotic: a slight vari-
ation in the random seed can lead to a very different event re-
alization. In the past, these input variables have been called
“discontinuous parameters” (Zabalza et al. 2001), “stochas-
tic parameters” (Zabalza et al. 2004), “scenario parameters”
(Ruffo et al. 2006) or “uncontrollable parameters” (Iooss
and Ribatet 2009). To avoid any confusion, we refer now
to the generic term “seed variables”, since it refers to the
original nature of these input variables.

Typical stochastic computer codes are agent-based mod-
els (Siebers et al. 2010), for instance simulating disease
propagation (Boukouvalas and Cornford 2009) or atmo-
spheric pollution (Reich et al. 2011). There are also models
involving partial differential equations applied to heteroge-
neous random media, for instance fluid flows in oil reser-
voirs (Zabalza et al. 1998) or acoustical wave propagation in
turbulent fluids (Iooss et al. 2002). Other examples are the
unitary simulations of Monte Carlo neutronic models (com-
puting elementary particle trajectories in a nuclear reactor,
Picheny et al. 2011) and the Lagrangian stochastic models
(computing particle trajectories inside atmospheric or hy-
draulic turbulent media, Pope 1994).

To approximate stochastic computer codes by metamod-
els, the simplest way is to model the mean and dispersion
(i.e. the variance) of computer code outputs by two poly-
nomial linear-regression models. This is used in the well-
known context of experimental data modeling under the
name of Taguchian model in Response Surface Methodol-
ogy (Myers et al. 2009). Polynomial metamodels for robust
optimization in deterministic simulation are discussed in
Dellino et al. (2010). In stochastic simulation, Zabalza et al.
(1998) proposed to model the mean and dispersion (i.e. the
variance) of computer code outputs by two interlinked Gen-
eralized Linear Models (GLMs). This approach, called joint
modeling, was previously studied in the context of experi-
mental data modeling (Smyth 1989; McCullagh and Nelder
1989). However, the parametric form of GLMs is restric-
tive for modeling complex computer code outputs. To by-
pass these limitations, Iooss and Ribatet (2009) suggested

to use nonparametric models such as Generalized Additive
Models (GAM, see Hastie and Tibshirani 1990; Wood and
Augustin 2002). In this paper, we develop a new joint meta-
model, based upon the Gaussian process (Gp) model, which
is one of the most relevant choices when dealing with com-
puter experiments (Sacks et al. 1989; Chen et al. 2006).

Iooss and Ribatet (2009) also developed a method rooted
in joint modeling to perform a global sensitivity analysis of
computer codes containing a functional input (governed by a
seed variable). Their results stressed that the total sensitivity
index of the seed variable can be derived just by taking the
expectation of the dispersion component of the joint model.

In this paper, we first recap how to build a joint model
when referring both to GLM and GAM. An original method-
ology based upon Gp is then proposed. The third section
recalls the variance-based method of global sensitivity anal-
ysis for deterministic models, and shows how it can be ex-
tended to stochastic models using joint models. Particular
attention is paid to the calculation of the so-called Sobol
indices. The performance of the different joint metamodels
are compared in the next section for a simple analytic func-
tion. Last, an industrial application is presented; namely, on
a reservoir engineering case.

2 Joint modeling of mean and dispersion

Modeling the mean and variance of a response variable
against some explanatory controllable variables is of pri-
mary concern in product development and quality engineer-
ing methods. For example in Phadke (1989), experimenta-
tion is used to determine factor levels so that the product
is insensitive to potential variations in environmental con-
ditions. In the framework of robust design, it is equivalent
to the optimization of a mean response function while min-
imizing a variance function. A first approach consists of
building polynomial models approximating the mean and
variance separately (Vining and Myers 1990; Bursztyn and
Steinberg 2006), based on repeated calculations with the
same set of controllable input variables. This dual model-
ing approach has been successfully applied in many situa-
tions, especially for robust conception problems. However,
our purpose here is to fit accurately both mean and disper-
sion components. Within this context, it has been shown
that the dual model is less competitive than the joint model
which simultaneously models the mean and variance (Za-
balza et al. 1998; Lee and Nelder 2003). The same authors
have also shown that repeating calculations with the same
set of controllable variables is inefficient in the joint model-
ing approach. It is actually recommended to keep all possi-
ble experiments to optimally cover the input variable space
(which can be highly dimensional in real problems).
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In this section, we describe three different joint mod-
els based on the metamodels classically used in the con-
text of computer experiments. The computer code output
is denoted Y and the random input variables are denoted
X = (X1, . . . ,Xp). Input random vector X has a known dis-
tribution in a bounded domain X of R

p .

2.1 Joint generalized linear models

The class of GLM allows us to extend the class of tradi-
tional linear models by the use of: (a) a distribution which
belongs to the exponential family and (b) a link function
which connects the explanatory variables to the explained
variable (Nelder and Wedderburn 1972). The first compo-
nent of the model concerns the mean while the second one
concerns the dispersion. The mean is described as follows:{

E(Yi) = μi, ηi = g(μi) = ∑
j xij βj ,

Var(Yi) = φiv(μi),
(1)

(Yi)i=1,...,n are independent random variables with mean μi ;
xij are the observations of variable Xj ; βj are the regression
parameters which have to be estimated; ηi is the mean lin-
ear predictor; g(·) is a differentiable monotonous function
called link function; φi is the dispersion parameter and v(·)
is the variance function. To estimate the mean component,
the functions g(·) and v(·) have to be specified. Some ex-
amples of link functions are the identity (traditional linear
model), root square, logarithm, and inverse functions. Some
examples of variance functions are the constant (traditional
linear model), identity and square functions.

Within the joint model framework, the dispersion param-
eter φi is no longer supposed to be constant as in a tradi-
tional GLM. Indeed, it is assumed to vary accordingly to the
following model:{

E(di) = φi, ζi = h(φi) = ∑
j uij γj ,

Var(di) = τvd(φi),
(2)

di is a statistic representative of dispersion, γj are regression
parameters which have to be estimated, h(·) is the dispersion
link function, ζi is the dispersion linear predictor, τ is a con-
stant and vd(·) is the dispersion variance function. uij are
the observations of the explanatory variable Uj . Variables
(Uj ) are generally taken among the explanatory variables of
mean (Xj ). However, they can also be different. To ensure
positivity, h(φ) = logφ is often taken as the dispersion link
function. In addition, statistic d representing dispersion is
generally considered as the deviance contribution—which is
approximately χ2 distributed. Therefore, as the χ2 distribu-
tion is a particular case of the Gamma distribution, we have
vd(φ) = φ2 and τ ∼ 2.

Finally, the joint model is fitted by maximizing the Ex-
tended Quasi Loglikelihood (EQL, Nelder and Pregibon

1987). The EQL behaves as a log-likelihood for both mean
and dispersion parameters. This justifies an iterative proce-
dure to fit the joint model. First, a GLM is fitted on the mean;
then from the estimate of d , another GLM is fitted on the
dispersion. Weights for the next estimate of the GLM on the
mean are obtained from the estimate of φ. This process can
be repeated as often as required. Thus, it allows for entirely
fitting the joint model (McCullagh and Nelder 1989).

2.2 Extension to generalized additive models

GAMs were introduced by Hastie and Tibshirani (1990).
They extended the linear terms in the predictor expression
η = ∑

j βjXj of (1) to smooth functions η = ∑
j sj (Xj ).

The sj (.) are unspecified functions obtained from the iter-
ative fit of data by a smoothing function. GAMs provide a
flexible method for identifying nonlinear covariate effects
in exponential family models and other likelihood-based re-
gression models. Fitting GAMs introduces an extra level of
iteration in which each sj (.) function is alternately fitted as-
suming the others known. GAM terms can be mixed quite
generally with GLM terms in deriving a model.

One common choice for sj is smoothing splines, i.e.
splines with knots at each distinct value of the variables. In
regression problems, smoothing splines have to be penal-
ized in order to avoid data overfitting. Wood and Augustin
(2002) described in details how GAMs can be constructed
using penalized regression splines. Since numerical models
often exhibit strong interactions between input variables, the
incorporation of multidimensional smooth functions, like bi-
dimensional spline terms sij (Xi,Xj ), is particularly impor-
tant here.

Clearly, GAMs are a natural extension of GLMs. There-
fore, in order to overcome limitations of joint GLM on prac-
tical cases, Iooss and Ribatet (2009) extended the joint GLM
model to a joint GAM one. In (1) and (2), the linear predic-
tors are replaced by sums of spline functions.

GAMs are generally fitted using penalized likelihood
maximization. For this purpose, the likelihood is modified
by adding a penalty term to each smooth function to penalize
its wigglyness. More precisely, the penalized loglikelihood
is defined as:

PL = L +
p∑

j=1

λj

∫ (
∂2sj

∂x2
j

)2

dxj (3)

where L is the loglikelihood function, p is the total number
of smoothing terms and λj are penalized parameters which
make it possible to balance goodness of fit and smoothness.
The estimation of these penalized parameters is generally
performed using score minimization and selection by Gener-
alized Cross Validation (GCV) (Hastie and Tibshirani 1990).
Extension to EQL models is straightforward by substituting
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the likelihood function and deviance d by their EQ analo-
gous. In practice, all smoothing parameters are jointly up-
dated at each iteration of the fitting procedure. Therefore,
a GLM/GAM is fitted for each trial set of smoothing param-
eters at each iteration, while GCV scores are evaluated only
at convergence. One drawback of this approach is that the
convergence of the algorithm is not ensured.

2.3 Joint Gaussian process modeling

In the computer experiment community, one popular choice
of metamodel is the Gaussian process one. This model can
be viewed as an extension of the kriging method, a spa-
tial data interpolation method, to computer code data (Sacks
et al. 1989). Gaussian process (Gp) modeling considers the
deterministic response

y = f (X) (4)

of the computer code as a realization of a random function
YGp(X) defined as follows:

YGp(X) = f0(X) + Z(X). (5)

f0(X) is a deterministic function (for example a polyno-
mial) that provides the mean approximation of the computer
code, and Z(X) is a Gaussian centered stationary stochastic
process fully characterized by its variance σ 2 and correla-
tion function R(·). Given a learning sample of n simulation
points (Xs,Ys) = ((x(1), y(1)), . . . , (x(n), y(n))), the condi-
tional distribution of the response for a new input vector x∗
is a Gaussian distribution with the two following moments:

E[YGp(x∗)|Xs,Ys] = f0(x∗) + k(x∗)t�−1
s (Ys − Fs), (6)

Var[YGp(x∗)|Xs,Ys] = σ 2 − k(x∗)t�−1
s k(x∗), (7)

with Fs = f (Xs); k(x∗) is the covariance vector between x∗
and the learning sample and �s the covariance matrix of the
learning sample. The conditional mean (6) is used as a pre-
dictor and it can be shown, using its analytical expression,
that it is an exact interpolator for the points of the learning
sample. The variance formula (7) corresponds to the mean
squared error (MSE) of this predictor and is also known as
the kriging variance. Under the hypothesis of Gp model, this
analytical formula for MSE gives a local indicator of the pre-
diction accuracy.

For stochastic computer models, using an exact interpo-
lator as the Gp is not pertinent. This property can be relaxed
using a nugget effect. In this case, a constant term ξ (ξ > 0)
is added to the covariance function of the Gp:

Cov(Y (x), Y (u)) = σ 2 (R(x − u) + ξδ(x − u))

where δ(v) =
{

1, if v = 0,

0, otherwise.
(8)

However, doing so, we suppose that the dispersion of the
output is the same in the whole input variable domain. This
homoscedasticity hypothesis is somewhat limitative and an
heteroscedastic nugget effect can be considered. Recently,
some authors (e.g. Kleijnen and van Beers 2005, Gins-
bourger et al. 2008, Ankenman et al. 2010) showed the
usefulness of Gp for stochastic computer models in het-
eroscedastic cases. This approach consists of modeling the
mean of the computer code with a Gp metamodel for which
the nugget effect is assumed to vary with inputs (ξ(x)).
Referring to the fitted Gp, one can derive the dispersion
statistic d introduced in (2) from the estimation of the MSE
(given by the Gp model). This model does not include any
fitting of the dispersion component but it involves a nugget
effect that is different for each point of the learning sample.
The dependence between dispersion and inputs is not really
explained. Another approach, the treed Gaussian process of
Gramacy and Lee (2008) is a fully non stationary model.
It is then well-adapted to heteroscedastic computer codes.
However, once again, this approach does not allow to obtain
a metamodel for both mean and dispersion components.

Therefore, we focus on another method which is more
relevant with the previous joint models: the joint Gp model.
Robinson et al. (2010) recently proposed a semi-parametric
dual modeling approach when there is no replication. Their
methodology is based upon a Gp modeling for the mean
component and a GLM for the squared residuals, which
yields a parametric model for the dispersion. Kersting et al.
(2007) and more recently Boukouvalas and Cornford (2009)
introduced a joint model with a Gp for both mean and dis-
persion components. First, a Gp is fitted to the mean com-
ponent. Its predictive distribution is then used to simulate
a sample and compute an estimation of the noise level at
each point. The MSE is used to compute several residuals
for each point and estimate dispersion. A second Gp model
is then fitted on the estimated dispersion. Finally, a com-
bined Gp is deduced from these two Gp models. The process
can be repeated until convergence. However, this methodol-
ogy strongly depends on the MSE formulation and, conse-
quently, on the Gp hypothesis, which is difficult to assess in
practice.

In this paper, we prefer to deal only with the residuals
observed at each point, after approximating the mean by a
Gp model. We propose the following methodology:

– Step 1: Gp modeling of the mean component with ho-
moscedastic nugget effect (8), denoted Gpm,1. A nugget
effect is required to relax the interpolation property of the
Gp metamodel, which would yield zero residuals for the
whole learning sample. We choose a first-degree polyno-
mial trend with f0(x) written as:

f0(x) = β0 +
p∑

j=1

βjxj ,
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where β = [β0, . . . , βp]t is the regression parameter vec-
tor. Such a function was shown to be sufficient to cap-
ture the global trend of the computer code (Marrel et al.
2008, Martin and Simpson 2005). The stochastic part
Z(x) is considered as a stationary process. For its corre-
lation function, we propose a multidimensional differen-
tiable exponential (MDE) function. This function, which
is an anisotropic extension of the DE correlation function
introduced by Chilès and Delfiner (1999) is defined as:

R(u,v) =
p∏

l=1

(1 + θl |ul − vl |) exp(−θl |ul − vl |)

where θ = [θ1, . . . , θp]t are the correlation parameters
(also called hyperparameters) with θl ≥ 0 ∀l = 1, . . . , p.
The MDE correlation function offers a good compro-
mise between the classical exponential and Gaussian
correlation functions (it corresponds to the well-known
Matérn correlation function with a power hyperparam-
eter equal to 3/2). The MDE correlation is differen-
tiable like the Gaussian one and, consequently, com-
bined with a nugget effect, results in a smooth mod-
eling which is well-suited to extract the mean compo-
nent from noisy data. Moreover, the MDE correlation
function, like the exponential one, tends to reduce the
problems of ill-conditioned covariance matrix often ob-
served with Gaussian correlation. Finally, on the analyti-
cal test in Sect. 4, the MDE correlation function yields the
best results in comparison with exponential and Gaussian
ones, which confirms the good properties of MDE cor-
relation function. Note that all Gp hyperparameters and
the nugget effect are estimated by maximum likelihood
method.

– Step 2: Gp modeling of the dispersion component with
homoscedastic nugget effect, denoted Gpv,1. We com-
pute the residuals from the predictor of Gpm,1. Since
there is no replication, we have only one residual for
each point of the learning sample. No empirical estima-
tion of the dispersion component can be made. How-
ever, the squared residuals can be considered as a re-
alization of a process with the dispersion component
as mean function. Consequently, a Gp metamodel with
a nugget effect is fitted to the squared residuals. Its
predictor is considered as an estimator of the disper-
sion component. Because of the positivity constraint
on any variance estimator, a constant trend is chosen
(f0(x) = β0). A MDE correlation function is used for
the same reasons as for Gpm,1. Note that the exponen-
tial of a first-degree polynomial could also be used for the
trend.

– Step 3: Gp modeling of the mean component with het-
eroscedastic nugget effect, denoted Gpm,2. The predic-
tor of Gpv,1 provides an estimation of dispersion at each
point. It is thus considered as the value of the hetero-

scedastic nugget effect: the homoscedastic hypothesis is
removed. A new Gp, Gpm,2, is fitted on data, with the
estimated heteroscedastic nugget. The trend and correla-
tion function of Gpm,2 are similar to the ones of Gpm,1
and the hyperparameters are still estimated by maximum
likelihood.

– Step 4: Gp modeling of the dispersion component with
homoscedastic nugget effect, denoted Gpv,2. The Gp on
the dispersion component is updated from Gpm,2 fol-
lowing the same methodology as the one described in
step 2.

Predictors of Gpm,2 and Gpv,2 provide respectively an esti-
mator for the mean and dispersion components. This algo-
rithm allows to start from an homoscedastic hypothesis in
order to arrive to an heteroscedastic hypothesis, while min-
imizing the effort of optimization. It is possible to write a
full Bayesian model involving two Gps. However, in prac-
tice, this theoretical formulation is not tractable, particularly
in moderate to high dimension cases. Consequently, we pro-
pose an alternative based on a sequential algorithm. Note
that the usual solution to deal with heteroscedastic cases is
to use a sequential algorithm, like in Zabalza et al. (2001)
and Boukouvalas and Cornford (2009). An appealing idea
would be to repeat steps 3 and 4 to improve our estimation
of the heteroscedastic effect. However, it is not guaranteed
that such an iterative procedure converges. From our experi-
ence, a single update of Gpm,1 and Gpv,1, as proposed in the
methodology above, is enough to remove the homoscedastic
hypothesis.

3 Global sensitivity analysis

This section first considers deterministic, then stochastic
simulation. Global SA methods have already been applied
to deterministic computer codes. It amounts to considering
the following model:

f : R
p → R,

X �→ Y = f (X)
(9)

where f (·) is the model function (possibly analytically un-
known), X = (X1, . . . ,Xp) are p independent input random
variables with known distribution and Y is the output ran-
dom variable.

Among quantitative methods, variance-based methods
are the most often used (Saltelli et al. 2000). The main idea
of these methods is to evaluate how the variance of an in-
put or a group of inputs contributes to the output variance.
To define the sensitivity indices, we use the unique func-
tional ANOVA decomposition of any integrable function on
[0,1]p into a sum of elementary functions (see for example
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Sobol 1993):

f (X1, . . . ,Xp) = f0 +
p∑

i=1

fi(Xi) +
p∑

i<j

fij (Xi,Xj )

+ · · · + f1,2,...,p(X1, . . . ,Xp), (10)

where f0 is a constant and each function of the decomposi-
tion respects the following condition:

E[fJ (XJ )] = 0. (11)

In the equations above, we have used the usual index set
notation. For instance with J = {1,2}, XJ means (X1,X2),
and fJ means f12. Functions fJ are actually related to con-
ditional expectations. We have:

fJ (XJ ) =
∑
J ′⊂J

(−1)|J |−|J ′|
E [Y |XJ ′ ] . (12)

The independence of all the Xi (i = 1, . . . , p) ensures that
decomposition (10) is unique and we can write the model
output variance as Sobol (1993):

Var[Y ] =
p∑

i=1

∑
|J |=i

VJ (Y ), (13)

where Vi(Y ) = Var[E(Y |Xi)], Vij (Y ) = Var[E(Y |XiXj )]−
Vi(Y ) − Vj (Y ), . . . . Variance-based sensitivity indices, also
called Sobol indices, are then defined by:

SJ = VJ (Y )

Var(Y )
. (14)

The second order index Sij expresses the sensitivity of the
model to the interaction between variables Xi and Xj and so
on for higher orders effects. Interpretation of these indices
is straightforward as their sum is equal to one (from (13)):
the larger an index value, the greater the importance of the
variable or the group of variables linked to this index.

For a model with p inputs, the number of Sobol indices
is 2p − 1. Clearly, the number of indices gets intractable as
p increases. Thus, to express the overall sensitivity of the
output to an input Xi , Homma and Saltelli (1996) introduce
the total sensitivity index:

STi
=

∑
J⊇i

SJ . (15)

For example, for a model with three input variables, ST1 =
S1 + S12 + S13 + S123.

Estimation of these indices can be done using Monte
Carlo simulations or alternative methods (FAST, quasi-
Monte Carlo, etc. see Saltelli et al. 2000). Algorithms were
also recently introduced to reduce significantly the num-
ber of model evaluations (Saltelli et al. 2010). As explained

in the introduction, a powerful method consists in replac-
ing complex computer models by metamodels with neg-
ligible calculation time (e.g. Volkova et al. 2008, Storlie
et al. 2009). Estimation of Sobol indices by Monte Carlo
techniques (requiring thousands of simulations) can then be
done using these metamodels.

In this work, we do not consider deterministic codes (9),
but stochastic ones. Then, we introduce a new input variable
Xε , in addition to inputs X = (X1, . . . ,Xp). This additional
input, independent of X, is the seed variable discussed in the
introduction, and which makes the code stochastic. Thus,
our definition of a stochastic model is the following:

f : R
p × N → R,

(X,Xε) �→ Y = f (X,Xε).
(16)

In practice, except for particular cases, an initial seed vari-
able is selected by the user. The rest of the random num-
ber stream is “uncontrollable” because it is managed by the
computer code itself (Kelton et al. 2007). Therefore, clas-
sical sensitivity analysis techniques, like Monte Carlo algo-
rithms or metamodels, cannot be used.

However, for a stochastic model as defined by (16), joint
metamodels (Sect. 2) yield two GLMs, two GAMs or two
Gps, one for the mean and another for the dispersion com-
ponent:

Ym(X) = E(Y |X), (17)

Yd(X) = Var(Y |X) = E

[
(Y − Ym(X))2|X

]
. (18)

Referring to the total variance formula, the variance of the
output variable Y can be rewritten as:

Var(Y ) = Var [E (Y |X)] + E [Var (Y |X)]

= Var [Ym(X)] + E [Yd(X)] . (19)

Furthermore, the variance of Y is the sum of the contribu-
tions of all the input variables X = (X1, . . . ,Xp) and Xε:

Var(Y ) = Vε(Y ) +
p∑

i=1

∑
|J |=i

[VJ (Y ) + VJε(Y )] (20)

where we use the same notations as in (13) and
Vε(Y ) = Var[E(Y |Xε)], Viε(Y ) = Var[E(Y |XiXε)] −
Vi(Y ) − Vε(Y ), . . . .

Variance of the mean component Ym(X) denoted here-
after Ym can be also decomposed:

Var(Ym) =
p∑

i=1

∑
|J |=i

VJ (Ym). (21)
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Note that

Vi(Ym) = Var[E(Ym|Xi)]
= Var{E[E(Y |X)|Xi]}
= Var[E(Y |Xi)] = Vi(Y ). (22)

Moreover, sensitivity indices for variable Y according to in-
put variables X = (Xi)i=1,...,p can be derived from (14):

SJ = VJ (Ym)

Var(Y )
. (23)

These Sobol indices can be computed using the same classi-
cal Monte Carlo techniques as for the deterministic model.
These algorithms are applied to the metamodel defined by
the mean component Ym of the joint model.

Thus, all terms contained in Var[Ym(X)] of (19) have
been considered. Then, E[Yd(X)] can be estimated by a sim-
ple numerical integration of Yd(X) following the distribu-
tion of X. Yd(X) is evaluated with a metamodel, for example
the dispersion component of the joint model. Therefore, the
total sensitivity index of Xε is given by:

STε = Vε(Y ) + ∑p

i=1

∑
|J |=i VJε(Y )

Var(Y )
= E[Yd(X)]

Var(Y )
. (24)

As Yd(X) is a positive random variable, positivity of STε

is guaranteed. In practice, Var(Y ) can be estimated from the
data or from simulations of the fitted joint model, using (19).
If Var(Y ) is computed from the data, it may be better to esti-
mate E[Yd(X)] with Var(Y )−Var[Ym(X)] to satisfy (19). In
our applications, the total variance will be estimated using
the fitted joint model.

In the case of a stochastic computer code whose random
nature is due to intrinsic noise, STε has no physical mean-
ing, but can be used as a measure of the stochastic nature
of the model. If the seed variable Xε manages one (or sev-
eral) stochastic process with a physical significance, STε is
interpreted as the total sensitivity index of this stochastic
process.

Finally, let us note that we cannot quantitatively distin-
guish the various contributions in STε (Sε , Siε , Sijε , . . . ).
Indeed, it is not possible to combine the functional ANOVA
decomposition of Ym(X) with the functional ANOVA de-
composition of Yd(X) in order to deduce the unknown sen-
sitivity indices. Forming composite indices still remains an
open problem which needs further research. However, Iooss
and Ribatet (2009) show that the analysis of the terms in a
regression model fitted to Yd and their t-values gives use-
ful qualitative information. For example, if an input variable
Xi is not present in Yd , we can deduce the following cor-
rect information: Siε = 0. Moreover, if the t-values analysis
and the deviance analysis show that an input variable Xi has

a smaller influence than another input variable Xj , we can
suppose that the interaction between Xi and Xε is less influ-
ential than the interaction between Xj and Xε . For a joint
model which does not yield an explicit regression model
for Yd (like Gp), the same deductions can be made based
upon the sensitivity analysis of Yd . If an input variable Xi

is not influential on Yd , we can deduce that Siε is equal to
zero.

4 Application and numerical studies on a toy example

The proposed method is first illustrated on an artificial ana-
lytical model with three input variables, called the Ishigami
function (Homma and Saltelli 1996, Saltelli at al. 2000):

Y(X1,X2,X3) = sin(X1) + 7 sin(X2)
2 + 0.1X4

3 sin(X1)

(25)

where Xi ∼ U [−π;π] for i = 1,2,3. For this function, all
the Sobol sensitivity indices (S1, S2, S3, S12, S13, S23, S123,
ST1 , ST2 , ST3 ) are known. This function is used in most
benchmarks of global sensitivity analysis algorithms. In our
study, the classical problem is altered by considering X1 and
X2 as the input random variables, and X3 as the input gen-
erated by the seed variable. It means that the X3 random
values are not used in the modeling procedure; this variable
is generated by the seed variable which is considered to be
uncontrollable.

However, sensitivity indices have the same theoretical
values as in the standard case. For this analytical func-
tion case, the analytical expressions of the mean component
Ym(X1,X2) and dispersion component Yd(X1,X2) can be
directly computed:

Ym(X1,X2) = E(Y |X1,X2)

=
(

1 + π4

50

)
sin(X1) + 7[sin(X2)]2,

Yd(X1,X2) = Var(Y |X1,X2)

= π8
(

1

900
− 1

2500

)
[sin(X1)]2.

(26)

Note that the dispersion only depends on the input variable
X1. In this analytical example, only one input variable (X1)
interacts with the uncontrollable one (X3); see (25). As a re-
sult, the effect of X1 on the output is affected by the seed. On
the contrary, the effect of the other input (X2) is not. Such an
example, where only one part of the inputs interacts with the
uncontrollable parameter, is of particular interest. Indeed, in
practice, as illustrated by PUNQ application in Sect. 5, one
objective can be to discriminate the input variables between
the ones which interact with the uncontrollable and the ones
which do not interact.
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Table 1 Results for the fitting
of different metamodels for the
Ishigami function. Both Q2 for
the mean and the dispersion
components are given. In the
formulas for GAM, s1(·), s2(·)
and sd1(·) are three spline terms

Q2(Ym) Q2(Yd) Formula

Joint GLM 0.80 −0.61 Ym = 2.17 + 2.56X1 + 1.93X2
2 − 0.28X3

1 − 0.25X4
2

log(Yd) = 1.78 − 0.04X2
1

Joint GAM 0.99 0.92 Ym = 3.52 − 2.43X1 + s1(X1) + s2(X2)

log(Yd) = 0.59 + sd1(X1)

Joint Gp 0.98 0.91 –

4.1 Joint metamodeling

To build the learning sample, a Monte Carlo random sam-
pling is used: 500 samples of (X1,X2,X3) are simulated
yielding 500 observations for Y . There is no replication in
the (X1,X2) plane because it has been shown that repeat-
ing calculations with the same set of controllable variables
is inefficient in the joint modeling approach (Zabalza et al.
1998, Lee and Nelder 2003). Therefore, we argue that it is
better to keep all the possible experiments to optimally cover
the input variable space (which can be highly dimensional in
real problems). To illustrate this phenomenon, we also con-
sider in Sect. 4.2 a joint Gp metamodel built on a design
with replications, following the methodology recently pro-
posed by Ankenman et al. (2010). In practice, to generate
the set of controllable variables especially in the case of a
high number of variables, Latin hypercubes or quasi-Monte
Carlo sequences are preferred to pure Monte Carlo samples
(Fang et al. 2006).

In this section, joint GLM, GAM and Gp models are
compared. To evaluate the accuracy of the metamodels for
both Ym and Yd , we use the predictivity coefficient Q2. It
is the determination coefficient R2 computed from a test
sample (composed here by ntest = 10000 randomly chosen
points):

Q2(Y, Ŷ ) = 1 −
∑ntest

i=1(Yi − Ŷi )
2∑ntest

i=1(Ȳ − Yi)2
,

where Y denotes the ntest true observations (or exact values)
of the test set, Ȳ their empirical mean and Ŷ the metamodel
predicted values. For each joint model, two predictivity co-
efficients are computed using (26) to have the exact val-
ues: one for Ym and one for Yd . The results are given by
Table 1.

The GLM for Ym is a fourth order polynomial. Only the
explanatory terms are selected in our regression model us-
ing analysis of deviance and the Fisher statistics (McCul-
lagh and Nelder 1989). For Yd , using analysis of deviance
techniques, only X2

1 is found as explanatory variable. For
the joint GAM estimation, we keep some parametric terms
by applying a term selection procedure. The Q2 results for

the mean component show the relevance of GAM and Gp
while the GLM is less efficient. The nonparametric models
are more accurate and adapted to fit the Ishigami function
which is strongly non linear. For the dispersion component,
the Q2 results illustrate the efficiency, even when there is no
replication, of joint Gp and GAM models (resp. Q2 = 0.91
and Q2 = 0.92) and the inadequacy of GLM (Q2 < 0).

Remark 1 Note that Q2 can be negative even though Q2 is
similar to the determination coefficient R2. Q2 is computed
from a test sample or by cross validation instead of a train-
ing sample. R2 value measures the quality of the model’s fit
whereas Q2 measures its prediction quality. Thus, Q2 can
be negative (unlike R2). Negative Q2 values indicate that
the mean of the observations is a better predictor than the
metamodel predictions.

For the GAMs, the explanatory variable X1 is identified
to model Yd ; the interaction between X1 and X3, the input
generated by the seed variable, is therefore retrieved. For
the Gps where no explicit expression is available, we com-
pute the Sobol sensitivity indices of the dispersion compo-
nent in order to understand which inputs are involved in the
dispersion component. We use a Monte Carlo algorithm to
obtain ST1(Yd) = 0.999 and ST2(Yd) = 0.008. These results
draw the same correct conclusion as joint GAM: X2 is not an
explanatory factor for the dispersion and only X1 interacts
with X3 in the Ishigami function (25).

In order to make a finer comparison between GLM, GAM
and Gp models, we examine how well they predict the mean
Ym(X1,X2) at inputs for which we have no data. We can
also compare the different dispersion models Yd(X1). The
exact analytical expressions of Ym and Yd are given in (26).
Let us remark that we visualize Yd versus X1 only because,
for GLM and GAM dispersion models, there is no depen-
dence in X2 and, for the Gp dispersion model, there is
an extremely small X2-dependence (we then take X2 = 0).
Figure 1 plots the theoretical Ym and Yd surfaces (left pan-
els) and their estimates derived from the fitted joint GLM,
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Fig. 1 Mean component (up) and dispersion component (down) for the exact analytical model, Joint GLM, Joint GAM and Joint Gp (Ishigami
application)

joint GAM and joint Gp models. As shown before, the joint
GLM is inadequate for both Ym and Yd . The joint GAM
and Gp fully reproduce Ym. Spline terms of GAM are per-
fect smoothers and the MDE correlation function used for
the Gp offers good smoothing properties combined with the
flexibility of Gp model. It prevents Gp from being impacted
by residual noise on the observations. Besides, as it could
be expected from its good properties, the MDE correlation
function yields the best results in comparison with expo-
nential and Gaussian ones which are not displayed. For Yd ,
joint GP results are superior to joint GAM ones. The joint
Gp model finely reproduces the behaviour of the dispersion
component.

Note that for the two dispersion models in GAMs and
Gps, fitted observations have been taken from the mean
component residuals on the learning sample. An appealing
idea would be to use another solution by taking predicted
residuals, for example by applying a cross validation pro-
cedure. We tested this approach for the joint Gp and, from
our experience, it does not improve the accuracy of the joint
models (even for smaller size of learning sample). Worse, it
can make the model estimation less robust.

4.2 Sobol indices

Table 2 depicts Sobol sensitivity indices for the joint GLM,
joint GAM and joint Gp based upon (23) and (24) and us-
ing Monte Carlo estimation procedure. Tens of thousands of
joint model computations are made for one index estimation
in order to ensure convergence of Monte Carlo estimation.
The joint GLM gives only a good estimation of S1 and S12,
while S2 and ST3 are badly estimated (relative error greater
than 50% for ST3 ). The joint GAM and GLM give very ac-
curate estimations of all the Sobol indices: negligible error
for S1, S1, S12 and less than 5% of relative error for ST3 .
The three joint models correctly show a negligible interac-
tion between X1 and X2. These results stress the efficiency
of nonparametric models and, for Gp, the interest of devel-
oping a robust methodology to use it as a joint model. In
conclusion, joint GAM and Gp provide precise estimations
of both sensitivity indices of the input variables and total
sensitivity index of the seed variable.

As explained at the end of Sect. 3, some conclusions on
the various contributions in ST3 can be drawn from the anal-
ysis of the dispersion component. For the joint GLM and
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Table 2 Sobol sensitivity
indices for the Ishigami
function: exact and estimated
values from joint GLM, joint
GAM and joint Gp

Indices Theoretical value Joint GLM Joint GAM Joint Gp

S1 0.314 0.319 0.310 0.312

S2 0.442 0.296 0.454 0.450

S12 0 2.10−4 2.10−4 0.004

ST3 0.244 0.385 0.236 0.233

Table 3 Sobol sensitivity
indices deduced from Yd

analysis for the Ishigami
function: exact and estimated
values or variation intervals
from joint GLM, joint GAM
and joint Gp

Indices Theoretical value Joint GLM Joint GAM Joint Gp

S13 0.244 ]0,0.385] ]0,0.236] ]0,0.233]
S23 0 0 0 0

S123 0 0 0 0

ST1 0.557 ]0.319,0.704] ]0.310,0.546] ]0.312,0.545]
ST2 0.443 0.296 0.454 0.454

S3 0 [0,0.385] [0,0.236] [0,0.233]

joint GAM, only X1 is involved in Yd (see Table 1). The
deduced zero interaction indices are: S23 = S123 = 0. More-
over, it ensures that S13 > 0. Variation intervals can be de-
duced from the elementary relations between sensitivity in-
dices (e.g. S1 ≤ ST1 , S13 ≤ ST3 , etc). For the joint Gp, a sen-
sitivity analysis of Yd shows an influence of X1 higher than
99.9% and yields the qualitative conclusion that X2 is not in-
fluential in Yd . The same deduced interaction indices as for
GLMs and GAMs are made. All the obtained interactions
and variation intervals are compiled in Table 3. Even if the
interaction indices remain unknown, the deductions drawn
by these analyses are correct and informative. This is due to
the non separability of the dispersion component effects.

Remark 2 To illustrate that Ym and Yd do not bring enough
information to quantitatively estimate all the Sobol indices,
we can consider the two following trivial analytical models
of two inputs:

Y1(X1,X2) = X2X1,

Y2(X1,X2) = X2|X1|
(27)

where X1 and X2 are independent random variables with
zero mean and unit variance. Under these hypothesis, Y1

and Y2 have different variance decompositions. Indeed, the
Sobol indices for Y1 are: S1 = S2 = 0 and S1,2 = 1, while for
Y2: S1 = 0, S2 = E(|X1|)2 �= 0 and S12 �= 1. If X1 is consid-
ered as the input random variable and X2 as the seed input
variable, it can be easily shown that Y1 and Y2 have the same
mean and dispersion components: Ym = 0 and Yd = X1

2.
This example illustrates that Ym and Yd do not bring enough
information to quantitatively estimate the different contribu-
tions in the total effect of the seed variable. However, the
sensitivity analysis of Yd can yield interval variations for
sensitivity indices and also useful information concerning
the potential influence of the interactions.

In order to have stronger evidence for the performance
differences between joint GLM, joint GAM and joint Gp, we
perform 100 repetitions of the joint models fitting process
with different Monte Carlo samples (keeping the learning
sample size n = 500). In an attempt to illustrate that repeat-
ing calculations with the same set of controllable variables
is less efficient in the joint modeling approach, we also in-
clude a comparison with the joint Gp built on a design with
replications. To do this, we keep the same analytical form
for the Gps on mean and dispersion components as in our
joint Gp methodology, but to estimate them we follow the
methodology recently proposed by Ankenman et al. (2010).
The same set of controllable variables is repeated nrep times,
each replication corresponding to a different value of the un-
controllable parameter. A first Gp is estimated on the empir-
ical mean of the set of controllable variable. Then, a sec-
ond Gp is adjusted on the empirical variance. An estima-
tion of the nugget effect at each point is deduced from the
predictor of this second Gp divided by the number of repli-
cations. The Gp on the mean is then updated using these
nugget effect estimates. Here, we consider different number
of replications nrep = 10 and nrep = 20 and different sizes
of the learning sample in the (X1,X2) plane (respectively
50 and 25) in order to have the same total number of sim-
ulations (n = 500). Table 4 shows the results of these com-
putations. As previously, joint GLM results show that this
model is inadequate for the Ishigami function. Q2 of the
joint Gp dispersion component is 10% larger than Q2 of the
joint GAM dispersion component. The Sobol indices esti-
mates for the joint GAM and joint Gp are both satisfactory.
Concerning the approach with replications, a balance has to
be found between the accuracy of the empirical moments
(the higher number of replications, the better) and the explo-
ration of the controllable input space (the lower number of
replications, the better). We can observe that the mean com-
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Table 4 For the Ishigami function, from 100 repetitions of the joint
GLM, joint GAM, joint Gp following our methodology and joint
Gp with replications following Ankenman’s method (sample size of

n = 500 Monte Carlo simulations): exact and mean estimated values
of Q2 and Sobol indices (with standard deviations sd)

Exact Joint GLM Joint GAM Joint Gp Joint Gp with replications Ankenman’s method

values mean sd mean sd mean sd with nrep = 10 with nrep = 20

mean sd mean sd

Q2(Ym) 1 0.801 0.003 0.995 0.002 0.981 0.005 0.938 0.035 0.786 0.107

Q2(Yd) 1 −0.780 0.331 0.725 0.148 0.823 0.100 0.137 0.803 0.516 0.568

S1 0.314 0.309 0.023 0.295 0.020 0.295 0.029 0.286 0.084 0.265 0.094

S2 0.442 0.302 0.028 0.448 0.023 0.440 0.036 0.440 0.136 0.419 0.132

ST3 0.244 0.388 0.022 0.258 0.014 0.222 0.019 0.221 0.075 0.300 0.083

Fig. 2 For the Ishigami function and the joint Gp model, boxplot of Q2(Ym) (left), Q2(Yd) (center) and estimated ST3 in function of the learning
sample size n

ponent and the Sobol indices are correctly estimated with
nrep = 10 but this number of replications is not sufficient to
estimate the variance component. If we increase the number
of replications, the accuracy of the variance component esti-
mate is improved, but the accuracy of the mean component
and Sobol indices estimates decreases. In all cases, better
results (in terms of accuracy for mean and dispersion com-
ponents) are obtained by building the joint Gp metamodel
on a design without replications which maximizes the ex-
ploration of the controllable input space.

In conclusion, the Ishigami example shows that the joint
nonparametric models, and specially our proposed joint Gp
model, can fit complex heteroscedastic cases for which clas-
sical metamodels are inadequate. Moreover, joint models of-
fer a theoretical basis to compute efficiently global sensitiv-
ity indices of stochastic models. An analytical model with
strong and high order interactions will probably strengthen
the superiority of the Gp joint model (because spline high or-
der interaction terms are difficult to include inside a GAM).

Besides, in the industrial application of Sect. 5, we only use
the joint Gp model.

4.3 Convergence studies

In order to provide some practical guidance for the sampling
size issue, we perform a convergence study for the joint Gp
modeling and the estimated sensitivity indices. We consider
different learning sample size n varying from 50 to 500. The
learning points are sampled by simple Monte Carlo and 100
replications are made for each n. The different sets of points
are all sampled independently and there is no adaptive ap-
proach here. The objective is only to illustrate the conver-
gence speed of the joint Gp predictivity and to give an idea
of the number of simulations required in this analytical case
with only 2 inputs.

Figure 2 shows some convergence results for the accu-
racy on mean and dispersion components and the estimation
of total sensitivity index ST3 of the input X3 generated by the
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seed variable. The predictivity coefficients Q2 on both Ym

and Yd are obtained from a test sample composed of 1000
randomly chosen points.

We can notice the rapid convergence of the predictivity
coefficient Q2(Ym) and the estimation of ST3 . The speed
of convergence for S1, S2 and S12 computed from Ym are
not shown here but are similar to the one of Q2(Ym). Ac-
curate modeling of Ym and estimations of Sobol indices are
obtained as soon as n = 100. Convergence of the predictiv-
ity coefficient Q2(Yd) is also observed but is slower than
for Ym. Several hundreds of simulations are required to cor-
rectly fit the dispersion component. Thus, in the case of
strong and complex heteroscedasticity and when no repli-
cation exists, the fitting of the dispersion can be relatively
difficult. In practice, convergence of estimated sensitivity in-
dices and their confidence interval (by a bootstrap technique
for example) can be plotted and examined visually. It can
be a good indicator of the accuracy in fitting Ym. It can also
point out the need of additional simulations. Nevertheless,
it does not totally ensure accuracy in fitting the dispersion
component.

5 An application case: the PUNQ model

The joint Gp metamodeling methodology is now applied
to PUNQ (Production forecasting with UNcertainty Quan-
tification) test case which is an oil reservoir model derived
from real field data (Manceau et al. 2001). The considered
reservoir is surrounded by an aquifer in the north and the
west, and delimited by a fault in the south and the east. The
geological model is composed of five independent layers,
three of good quality (layers 1, 3 and 5) and two of poorer
quality. A multiphasis fluid flow simulator is used to fore-
cast the oil production during 12 years. 8 scalars variables
characteristic of media, rocks, fluids or aquifer activity are
considered as uncertain: the coefficient of aquifer strength
(AQUI1), horizontal and vertical permeability multipliers in
good layers (resp. MPV1 and MPH1), horizontal and verti-
cal permeability multipliers in poor layers (resp. MPV2 and
MPH2), coordinate of production well location (P1Y), resid-
ual oil saturation after waterflood and after gas flood (resp.
SORW and SORG). Additionally to these 8 uncertain input
variables, the porosity map of the first layer is considered
as unknown. Geostatistical simulation can be performed to
obtain realizations of the porosity map. The resulting spatial
random field cannot be summarized by a few scalar values.
Therefore, as explained in our introduction, this geostatisti-
cal porosity map has to be considered as generated by a seed
variable of the computer model.

Among the simulator outputs, we focus here on the pro-
duced oil rate after 12 years of exploitation. The objective is
to study the impact of both controllable input variables and

Table 5 Sobol sensitivity indices for the PUNQ Case estimated by
joint Gp modeling

Input variable 1st order index “Quasi” total effect

AQUI1 0.138 0.154

MPH1 0.101 0.114

MPH2 0.024 0.033

MPV1 0 0

MPV2 0 0

P1Y 0.058 0.069

SORG 0 0

SORW 0.179 0.200

seed variable on the forecast of produced oil rate. A sen-
sitivity analysis is carried out to identify the most influen-
tial inputs among the controllable variables, to quantify the
total part of uncertainty related to the porosity map and to
point out the potential interaction between the map and the
controllable variables. This sensitivity analysis would con-
stitute, for example, a preliminary step before an optimiza-
tion (robust or not) of tunable parameters like well locations.
In this case, the negligible variables identified in the sensi-
tivity analysis would be fixed and tunable parameters would
be jointly optimized if there are strong interactions, or sepa-
rately otherwise. Moreover, this optimization could be done
independently from the uncertain porosity map or, if a strong
influence of the map with potential interactions is identified,
a more refined modeling of interactions between tunable pa-
rameters and uncontrollable ones should be used for the ro-
bust optimization. Thus, the results of sensitivity analysis
can yield a guidance for a later optimization.

To build the joint Gp model and to make the sensitiv-
ity analysis, a learning sample is simulated. The Latin hy-
percube sampling method is used to obtain a sample of
N = 1000 random vectors (each one of dimension 8) for the
controllable inputs. In addition, for each simulation, an inde-
pendent realization of the porosity map (denoted Xε ) is ran-
domly chosen among a basis of available porosity map real-
izations. The N = 1000 simulations are computed with the
fluid flow simulator. Then, a joint Gp model is fitted on sim-
ulations, following the proposed methodology in Sect. 2.3.
Sensitivity indices of controllable variables are estimated
from the model of the mean component. Table 5 gives their
first order indices and “quasi” total effects. “Quasi” refers
here to the total effect including only the interactions with
the other controllable variables and not with Xε . The differ-
ence between first order and “quasi” total indices is a good
indicator of possible interactions.

Independently from Xε , the controllable variables have
mainly first order effects: there are few interactions between
the controllable variables. Their first order effects represent
50% of the output variability. The most influential control-
lable input is SORW followed by AQUI, MPH1 and P1Y.
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Fig. 3 Proportion Δ of observations that lie within the α theoretical confidence interval in function of the confidence level α for PUNQ data. Joint
Gp model, simple Gp model

Only these 4 controllable variables are influential on the
mean component, all the others are negligible.

Then, the total effect of Xε can be computed using the
estimated dispersion model: STε = 0.412. The porosity map
has a high total effect of 41% and, consequently, the control-
lable variables explain alone 59% of the output variability.
Sensitivity analysis of the dispersion model shows that the
four variables (MPH2, MPV1, MPV2 and SORG) do not in-
teract with Xε . Thus, these four variables, previously iden-
tified as non influential on the mean component, are both
non influential independently or not from the porosity map.
Concerning the others variables, the one which potentially
has the higher interaction with Xε is SORW, followed by
MPH1, P1Y and AQUI. These results are coherent with the
physics. Indeed, the potential quantity of oil in a layer is
linked to the porosity (the higher the porosity, the higher the
potential quantity of oil). Moreover, referring to the pressure
of the aquifer, the lower SORW, the higher the percentage of
oil that can be extracted from the layer. As the produced oil
rate is linked to the potential quantity in the layer and the po-
tential extracted percentage, it is coherent to detect potential
interaction between the porosity map and SORW. As a con-
clusion, variables MPH2, MPV1, MPV2 and SORG explain
59% of the output variance and potentially interact with the
porosity map to explain a part of the 41% remaining.

To illustrate the usefulness of a joint model in this appli-
cation, we propose to use a graphical tool. It consists of eval-
uating the proportions Δ of observations that lie within the
α-theoretical confidence intervals which are built from the
mean and dispersion models and with an additional Gaus-
sian hypothesis. Under this hypothesis, the α-theoretical

confidence interval CIα is given by:

CIα =
[
Ym(X) − tα

√
Yd(X);Ym(X) + tα

√
Yd(X)

]
(28)

where tα is the (1 − α
2 ) quantile of the standard normal dis-

tribution. Here, we estimate CIα by replacing Ym(X) and
Yd(X) with the predictor of Gpm,2 and Gpv,2, respectively
(cf. Sect. 2.3).

We can visualize the proportions Δ (i.e. the observed
confidence intervals) against the α-theoretical confidence
interval. By definition, if a model is suited for both mean and
dispersion modeling, the points should be located around the
y = x line. As a consequence, this plot is useful to compare
the goodness of fit for the different models. Figure 3 gives
the results obtained with the joint and simple Gp modeling.
For the simple modeling, only the mean component is fitted
and a constant nugget effect is used. It can be seen that the
joint Gp is clearly the most accurate model. Indeed, all its
points are close to the theoretical y = x line, while the sim-
ple Gp tends to give too large confidence intervals. Thus, the
heteroscedasticity hypothesis is justified and, in this case,
a joint Gp model is clearly more competitive than the sim-
ple Gp.

6 Conclusion

In this paper, we have used, in the context of stochastic com-
puter codes, the sensitivity analysis approach based on joint
metamodels, first proposed by Iooss and Ribatet (2009).
This method can be useful if the following conditions hold:
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– the computer model contains some seed variables which
are uncontrollable (the model is no more deterministic but
stochastic);

– a metamodel is needed due to CPU time expensive com-
puter model;

– some of the seed variables interact with some controllable
inputs;

– some information about the influence of the interactions
between the seed variables and the other input variables
is of interest.

The solution consists of modeling the mean and the dis-
persion of the code outputs by two explanatory models. The
classical way is to separately build these models. In this pa-
per, the use of the joint modeling is preferred. Zabalza et al.
(1998) applied the joint GLM approach to model stochastic
computer codes. However, the behavior of some numerical
models can be complex and Iooss and Ribatet (2009) in-
troduced the joint GAM which has proven its flexibility in
harsh situations.

In this paper, we have introduced a new joint Gp model,
based on MDE correlation function. This latter model is
shown to be more efficient than the former to model disper-
sion component on a test function. More work is needed in
order to study this promising model on stochastic computer
codes involving many input variables and strong interactions
between model inputs. Moreover, this paper has shown that
joint models offer a theoretical basis to compute Sobol sen-
sitivity indices in an efficient way. The analytical formula
(for joint GAM) and the sensitivity indices (for joint Gp) of
the dispersion component are useful to complete the sensi-
tivity analysis results of the computer code.

The performance of our joint Gp model approach was as-
sessed on an industrial application. Compared to other meth-
ods, the modeling of the dispersion component allows to
obtain a robust estimation of the total sensitivity index of
the seed variable. This yields correct estimations of the first
order indices of the input variables. In addition, it reveals
the influential interactions between the seed variable and the
other input variables. Obtaining quantitative values for these
interaction effects is still a challenging problem.

In future work, it would be convenient to test the new
approach recently proposed by Gijbels et al. (2010). These
authors propose to handle nonparametrically the joint esti-
mation of mean and dispersion functions in extended GLM.
The starting point for modeling are GLM in which we no
longer admit a linear form for the mean regression function,
but allow it to be any smooth function of the covariate(s).
The mean regression function and the dispersion function
are then estimated using P-splines with difference type of
penalty to prevent from overfitting.
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