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ABSTRACT

Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohy-
drodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has
been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale
magnetic field.
Aims. The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global
simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which
was previously demonstrated only in non-stratified models.
Methods. We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynam-
ically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and
cooling due to non-thermal radiation is also taken into account in the disk atmosphere.
Results. We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal
winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these
winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average
ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with
accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric
rings of density and associated pressure “bumps”. The underlying mechanism and its impact on observable structures are discussed.
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1. Introduction

Protoplanetary disks are commonly observed around young stel-
lar objects, linking the young star to its protostellar envelope.
Optical and near-infrared images show disks with strong extinc-
tions near the midplane (Padgett et al. 1999). They also reveal
bipolar outflows, normal to the disk plane, with inner jets col-
limated on large scales (Burrows et al. 1996). The structure of
these disks can be probed by infrared and radio wavelengths.
These images have unveiled a number of features, such as spi-
ral arms (Muto et al. 2012; Benisty et al. 2015), asymmetric
dust concentrations (van der Marel et al. 2013; Fukagawa et al.
2013), or axisymmetric rings (Brogan et al. 2015; Nomura et al.
2016).

The diversity of processes occurring in protoplanetary disks
is ultimately constrained by the disk lifetime (Haisch et al. 2001;
Cieza et al. 2007). On the one hand, any viable planetary for-
mation scenario must be able to build planetesimals out of
submicron-sized dust grains in a few million years. On the other
hand, the rapid disk dispersal calls for efficient transport mecha-
nisms. Part of the gas is accreted onto the central star, as deduced
from their excess continuum emission and redshifted absorption
lines (Edwards et al. 1994; Hartigan et al. 1995). The rest of it
must be evacuated in the form of an outflow. What drives accre-
tion and ejection remains a central research topic.

Hydrodynamic models fail to account for the observed jets’
collimation and ejection efficiency (Cabrit 2007). Including
magnetic fields opens a number of promising perspectives. Mag-
netized Keplerian disks are prone to the magnetorotational in-
stability (MRI, Balbus & Hawley 1991), which could drive ac-
cretion by turbulent angular momentum transport (Hawley et al.
1995). Large-scale magnetic fields could also extract angular
momentum by the launching of a magnetohydrodynamic (MHD)
wind (Blandford & Payne 1982; Ferreira & Pelletier 1995). In
this ideal MHD picture, accretion and ejection are co-dependent
aspects of one global process (Pudritz 1985). Thermodynami-
cal effects, and in particular heating, are also important in order
to characterize outflow properties. Heating at the disk surface
has been shown to increase the outflow mass (Casse & Ferreira
2000), a result recently recovered by Bai et al. (2016), albeit with
a prescribed magnetic topology and without solving the disk
dynamics.

This ideal MHD picture is compromised when realizing that,
due to their optical thickness and low temperatures, protoplane-
tary disks should be weakly ionized beyond 0.1–1 au (Gammie
1996). The concept of a magnetic dead zone emerged, wherein
the gas would be weakly coupled to the magnetic field. In prin-
ciple, such a plasma should be described using a multi-fluid ap-
proach (e.g., O’Sullivan & Downes 2006). However, the recom-
bination time in protoplanetary disks is in general much shorter
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than the orbital time (Bai 2011; Rodgers-Lee et al. 2016, but see
Ilgner & Nelson 2008), making the single-fluid approximation
perfectly valid and actually preferable to reduce computational
costs. In the single-fluid approximation, the reduced ionization
fraction is taken into account by incorporating three non-ideal
MHD effects: ohmic diffusion, ambipolar diffusion, and the Hall
drift (Nakano & Umebayashi 1986; Wardle & Ng 1999). Both
diffusive effects can damp magnetic structures, and potentially
quench the MRI (Jin 1996; Kunz & Balbus 2004), as supported
by numerous non-linear simulations (e.g., Hawley & Stone
1998; Fleming et al. 2000; Bai & Stone 2011).

The Hall drift leads to qualitatively new behavior, due to its
dispersive nature. In particular, it induces new branches of in-
stability, and a polarity dependence on the large-scale magnetic
field (Wardle 1999; Balbus & Terquem 2001; Sano & Stone
2002; O’Keeffe & Downes 2014). Local simulations, using the
shearing-sheet approximation (Goldreich & Lynden-Bell 1965),
found the emergence of organized structures from Hall-MHD
turbulence. In non-stratified simulations, produces zonal flows
(Kunz & Lesur 2013) and magnetized vortices (Béthune et al.
2016). These structures were not observed in the vertically strat-
ified simulations of Lesur et al. (2014) and Bai (2015). Instead,
the magnetic field was laminar and filled the disk midplane. As
these authors point out, the results were influenced by their ver-
tical boundary conditions.

The only way to ascertain whether these features are caused
by boundary effects is to perform global models. Most of the
properties of global, stratified and magnetized disks has been
studied in the framework of ideal MHD (Fromang & Nelson
2006; Flock et al. 2011), albeit without any global poloidal field,
preventing magnetized outflows. The inclusion of an global
poloidal field in numerical simulations is notoriously difficult.
Inner boundary conditions easily produce numerical artifacts,
and high Alfvén speeds in the atmosphere can lead to dramat-
ically small numerical time steps. For these reasons, relativis-
tic simulations of disks around black holes (e.g., Beckwith et al.
2008) are technically easier to achieve. In the context of proto-
planetary disks, initial attempts were either severely limited in
computational time (Steinacker & Henning 2001) or did not re-
solve the small-scale dynamics of the disk (Murphy et al. 2010).
The more recent models of Suzuki & Inutsuka (2014) improved
the situation, but they could not access the outflow accelera-
tion and collimation regimes due to their limited vertical extent.
Global simulations including both ohmic and ambipolar diffu-
sion were carried out by Gressel et al. (2015), using realistic es-
timates for the ionization state of the disk. However, the vertical
extent of these simulations was again somewhat limited, casting
doubts on the asymptotic properties of the wind. Moreover, they
left open the question of Hall-driven self-organization, as this
effect was not included in their simulations.

This paper presents a series of global simulations of proto-
planetary disks, including all three non-ideal MHD effects in a
domain suitable to study disk winds and integrated over many
orbital periods. Our primary objective is the characterization of
accretion and ejection in a weakly magnetized disk, freed from
the limitations of local simulations, and resolving the internal
dynamics of the disk. A second goal is to ascertain the role of
the Hall drift in producing large-scale, organized structures. The
physical framework, including our assumptions, conventions and
definitions, are given in Sect. 2. The specific method of reso-
lution is described in Sect. 3, and our results are presented in
Sect. 4. A discussion of our results is made in Sect. 5 before
summarizing of our main findings in Sect. 6.

2. Framework

2.1. Physical model

We wish to model the dynamics of a protoplanetary disk orbiting
a young stellar object. We do not include the star in our model,
but rather look at the outer regions of the disk, down to one as-
tronomical unit (au). We will consider the portion of a disk con-
tained in a spherical shell, with an inner radius r0, and covering
the largest possible polar extent. We enumerate the main features
of our disk model:

1. the disk is geometrically thin;
2. the disk is made of weakly ionized gas;
3. the disk is threaded by a weak magnetic field;
4. the disk is embedded in a warm corona.

We use the non-ideal MHD framework, and thus describe neu-
tral and charged particles as one fluid with internal currents
(cf. Sect. 2.3). The disk chemistry is evolved in a very simplified
way, always assuming chemical equilibrium (cf. Sect. 2.4). This
is made possible by the short time scale of chemical processes
in comparison with the local orbital period (Bai 2011). The sur-
rounding radiation field is not solved for; instead, we prescribe
the temperature distribution via a cooling/heating function (see
Appendix C). We use two coordinate systems:

– a cylindrical system (r, ϕ, z), with the vertical coordinate z
along the cylindrical axis of the disk;

– a spherical system (R, θ, ϕ), with the polar angle θ ∈ [0, π]
increasing from the northern to the southern hemisphere.

The disk will be denoted by the letter D, while the symbols C+
and C− will stand for the northern and southern coronal regions
respectively.

2.1.1. Disk

Let cs be the midplane sound speed and Ω the local orbital
frequency. Under the influence of gravity and thermal pres-
sure alone, a disk in hydrostatic equilibrium must be vertically
stratified, its density varying on a characteristic vertical scale
h ≡ cs/Ω. Protoplanetary disks are geometrically thin in the
sense that the ratio h/r is typically within 0.03 to 0.2, increasing
with cylindrical radius r (Bitsch et al. 2013). We set a constant
ratio h/r = 5% at all radii by imposing a constant ratio of sound
over Keplerian velocity cs/vK = 5% within the disk.

We only consider disks with a radial profile of surface den-
sity Σ(r) ∝ 1/r. This is flatter than the r−3/2 often found in the
literature since Hayashi (1981), but seems to better fit recent ob-
servations (D’Alessio et al. 2001; Williams & Cieza 2011).

The ionization fraction controls the coupling of the magnetic
field with the gas. We are not interested in the detailed chemical
composition of the medium: the computation of non-ideal MHD
effects already comes with computational overhead, and the self-
consistent resolution of a full chemical network is prohibitively
demanding in CPU hours1. We reduce the disk chemistry to a
local ionization fraction, computed dynamically with the evolu-
tion of the density distribution, and following the prescriptions
of previous dedicated studies (cf. Sect. 2.4).

Large-scale magnetic fields are observed in the vicinity of
protoplanetary disks, hosted by the parent molecular cloud and

1 Reduced chemical models can nonetheless be computationally af-
fordable, see for example Turner et al. (2007), Ilgner & Nelson (2008).
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presumably concentrated near the young stellar object (Rao et al.
2014; Segura-Cox et al. 2015; Yang et al. 2016). Their global
topology is still not well constrained, but their intensity is al-
ways weak in the sense that the midplane ratio of thermal over
magnetic pressure β ≡ 2P/B2 >∼ 1 (Donati et al. 2005). Assum-
ing that the global magnetic field has a non-zero vertical com-
ponent, we will consider disks with initial average (midplane)
β ≫ 1, constant with radius. Given our radial density profile,
a constant β means that the average (midplane) Alfvén velocity
uA ≡ B /

√
ρ is a constant fraction of the local Keplerian velocity.

2.1.2. Corona

To study the global dynamics of protoplanetary disks via
direct numerical simulations, previous studies used locally
isothermal disk models, where the temperature decreases as
a function of the cylindrical radius (Fromang & Nelson 2006;
Suzuki & Inutsuka 2014; Gressel et al. 2015). These solutions
have their density decreasing exponentially fast with height,

ρ/ρ0 ∼ exp
(

−z2/2h2
)

. The Alfvén velocity increases exponen-

tially with height; this is particularly appreciable in our case for
we want a midplane β <∼ 106 and over ten scale heights of ver-
tical extent. Resolving the dynamics of these Alfvén waves over
Keplerian time scales is numerically impractical, so we cannot
rely on such cold disk equilibria alone2.

It is known that protoplanetary disks are surrounded by
a warm environment of optically thin and well ionized gas
(Aresu et al. 2011; Bitsch et al. 2013; Woitke et al. 2016). As-
suming hydrostatic equilibrium, the predicted coronal tempera-
tures can go as high as ten thousand degrees at 1 au, above a disk
at about 300 K. The corresponding ratios of corona to midplane
sound speed range typically from 3 to 6.

To mimic this structure, we make the gas warmer above
a certain height H(r). We take a constant corona to midplane
temperature ratio at all radii for the sake of self-similarity
(Contopoulos & Lovelace 1994; Casse & Ferreira 2000). This
ratio is set to 6 in most simulations in order to avoid excessively
low densities, so that the maximal Alfvén velocity remains com-
parable to the maximal Keplerian velocity (see Appendix C).

We set the transition height H based on the expected chem-
istry at the disk surface. Our ionization model, essentially the
same as in Lesur et al. (2014), predicts a high ionization de-
gree for z & 3.6h (cf. their Fig. 1). More complete radiative
transfer models also find a disk-corona transition at z ≈ 3h for
r ∈ [1, 10] au (Aresu et al. 2011). For these reasons, we heat the
gas smoothly from H ≡ 3.7h to 4.7h (cf. Fig. 2 and Appendix A).
The ratio H/h is held constant for simplicity. A self-consistent
treatment of the thermodynamics and radiative transfer in the
corona is beyond the scope of the present paper.

2.2. Units and conventions

Unless otherwise stated, all quantities will be evaluated in our
code unit system. We use the inner radius r0 and the Keplerian
velocity v0 at the inner radius as our distance and velocity units.
We use both the orbital frequency Ω0 ≡ v0/r0 and period T0 ≡
2π/Ω0 to measure time. Densities are measured in comparison to
the initial density ρ0 in the midplane and at the inner radius. The
intensity of the magnetic field is measured by the corresponding
Alfvén velocity B/

√
ρ0.

2 Unless limiting the Alfvén velocity by some artificial procedure; see
for example the appendix of Miller & Stone (2000).

The estimation of the ionization fraction introduces dimen-
sional constants in the problem. We give in Table 1 the con-
version from code to physical units in the fiducial case of a
disk around a 1 M⊙ star, with a surface density of Σ(r) =
500 (r/1 au)−1 g cm−2, and for the two considered simulation in-
ner radii r0 = 1 au and r0 = 10 au.

We use the pressure scale height h(r) = 0.05r to normalize
curvilinear abscissa in most figures; if the cylindrical radius r
varies along the profile (for example along a streamline), then
h(r) varies as well.

2.3. Dynamical equations

We consider the equations of inviscid, non-ideal MHD. We de-
note by ρ the bulk mass density, P the gas pressure, u the bulk
velocity, B = |B| eb the magnetic field, J ≡ ∇ × B the electric
current, Φ the gravitational potential. The three non-ideal MHD
effects, namely ohmic diffusion, ambipolar diffusion and the Hall
effet, can be characterized by their effective diffusivities ηO, ηA

and ηH respectively (Wardle 2007). It will be useful to rewrite
the last two as

ηH = ℓH |vA|, (1)

ηA = τin v
2
A, (2)

where the Hall length ℓH and the ion-neutral coupling time τin

primarily depend on the ionization fraction and the nature of the
charge carriers, but not on the magnetic field amplitude. In a
singly charged ion-electron plasma, these coefficients read:

ηO =
c2me

4πe2

n

ne

〈σv〉e

ℓH =

(

c2ρ

4πe2n2
e

)1/2

τin =
mn + mi

〈σv〉iρi

where 〈σv〉e,i are respectively the electron-neutral and ion-
neutral collision rates, ρi is the ion mass density, n is the neutral
number density, ne is the electron neutral density, mn,i,e are the
neutral, ion and electron masses and e is the elementary charge.

The evolution of mass density, momentum and magnetic
field are governed by the following equations:

∂t ρ = −∇ ·
[

ρu
]

, (3)

∂t

[

ρu
]

= −∇ · [ρu ⊗ u] − ∇P + J × B − ρ∇Φ, (4)

∂t B = ∇ ×
[

u × B − ηO J − ηH J × eb + ηA J × eb × eb

]

. (5)

The pressure distribution is locally isothermal, i.e., the isother-

mal sound speed cs(r, z) ≡
√

P/ρ is prescribed beforehand. The
detailed treatment of the gas energetics is given in Appendix C.

2.4. Ionization fraction

The intensity of the non-ideal MHD effects involves the lo-
cal ionization fraction. We compute it via the same model
as Lesur et al. (2014). This model includes stellar X-rays and
far ultraviolet (FUV) photons, cosmic rays and radio-active
decay. The ionization rates and penetration depths are taken
from previous studies (Umebayashi & Nakano 1981, 2009;
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Table 1. Convertion from code to physical units.

Quantity Code unit Physical unit for r0 = 1 au Physical unit for r0 = 10 au

distance r0 1 au 10 au

time Ω−1
0
≡ T0/2π 0.159 yr 5.03 yr

velocity v0 ≡ Ω0r0 29.8 km s−1 9.42 km s−1

surface density Σ0 500 g cm−2 50 g cm−2

volume density ρ0 ≡ Σ0/
√

2π (h/r)r0 2.67 × 10−10 g cm−3 2.67 × 10−12 g cm−3

mass m0 ≡ ρ0r3
0

4.49 × 10−4 M⊙ 4.49 × 10−3 M⊙
magnetic field B0 ≡ v0

√
ρ0 48.6 G 1.54 G

Notes. Correspondence between code and physical units for a disk around a 1 M⊙ star, with a surface density of Σ = 500 (r/1 au)−1 g cm−2 for a
simulation inner radius at r0 = 1 au (third column) and at r0 = 10 au (fourth column).

Bai & Goodman 2009; Perez-Becker & Chiang 2011). The ion-
ization rates from cosmic rays and radioactive decay are respec-
tively ζCR = 10−17 s−1 and ζRAD = 10−19 s−1. The X-ray ioniza-
tion rate is given by Eq. (21) of Bai & Goodman (2009), with a
luminosity LX = 1030 erg s−1. The total ionization rate is bal-
anced by dissociative recombination, without dust grains nor
metals (Fromang et al. 2002).

By soaking up electrons, dust grains can become one of the
main charge carriers of the gas. Numerical simulations have
not shown a drastic qualitative change when including “large”
(micron-sized) grains (Lesur et al. 2014; Gressel et al. 2015).
However, submicron-sized grains can increase the diffusivities
by several orders of magnitude when they are sufficiently abun-
dant (Salmeron & Wardle 2008; Xu & Bai 2016). The impact of
small grains on the dynamics is therefore controlled by the dust
size distribution, which is largely unconstrained. For this reason,
our reaction network does not include grains.

Unlike in the local simulations of Lesur et al. (2014), we
compute the ionization fraction every 1/8 inner orbit, consis-
tently with the global evolution of the density distribution. Be-
cause we do not track the propagation of ionizing radiation, we
simply use the gas column density integrated along the density
gradient. The integration is thus performed in the polar direction
instead of the vertical one. Both yield similar ionization profiles,
because the regions of interest are located near the midplane.

Regarding the X and FUV radiations, they should originate
from the central star before being scattered and absorbed in the
disk’s upper layers. However, with h/r constant and ρ ∼ R−2, the
integration of density along spherical radius strongly depends
on the lower integration bound. In addition, shadowing effects
of the disk by the inner regions, which are excluded from the
computational domain, could have an important dynamical im-
pact (Bans & Königl 2012). We however ignore this additional
degree of complexity in our model. We therefore use the polar
column density to compute the X and FUV ionizing rates, affect-
ing only the surface layers of the disk and mimicking a global
flaring (Woitke et al. 2016; Aresu et al. 2011).

It is important to note that our ionization model is unable to
model thermal ionization in the hot corona. For this reason, we
assume the gas is fully ionized in the hot corona region by setting
the diffusion coefficients to zero (see Sect. 3.3).

2.5. Main diagnostics and definitions

The averaging of a quantity X over the azimuthal angle is:

〈X〉ϕ (r, z, t) ≡ 1

∆ϕ

∫ ∆ϕ

ϕ=0

X(r, ϕ, z, t) dϕ, (6)

where ∆ϕ is the total azimuthal extent of the considered disk.
Multiple indices denote consecutive averagings. Radial profiles
are produced by integration in the disk region only:

〈X〉ϕ,z (r, t) ≡ 1

2H(r)

∫ H(r)

z=−H(r)

〈X〉ϕ (r, z, t) dz. (7)

The brackets and indices will be omitted when obvious from the
context. Let 〈X〉ρ ≡ 〈ρX〉ϕ,z / 〈ρ〉ϕ,z be the density weighted av-
erage of X. We define the fluctuating Reynolds stress tensor by
R ≡ ρ ũ ⊗ ũ, where ũ = u − 〈u〉ρ. The Maxwell stress tensor is
defined asM ≡ −B ⊗ B, and we define the sum T ≡ R +M.
We normalize these quantities by the local, vertically averaged
pressure; although the flow might not be turbulent, we use the
same notation as Shakura & Sunyaev (1973):

αR(r, z, t) ≡ 〈R〉ϕ / 〈P〉ϕ,z , (8)

and similarly for αM and αT separately. The average radial mass
flux can be deduced from the conservation of angular momentum
(Balbus & Papaloizou 1999):

Σ 〈vr〉ρ ≃ −
1

∂r

[

r
〈

vϕ
〉

ϕ,z

]

(

1

r
∂r

[

2r2H(r)
〈

Trϕ

〉

ϕ,z

]

− r

[〈

Tzϕ

〉

ϕ

]+H

−H

)

≡ τr + τz, (9)

where Σ(r) ≡ 2H(r) 〈ρ〉ϕ,z is the mass surface density, τr is the
mass accretion rate due to to the radial transport of angular mo-
mentum, and τz the mass accretion rate due to angular momen-
tum extracted by a wind through the surfaces z = ±H(r). We
compute the wind mass loss rates through spherical shells at the
outer simulation radius Rout in both hemispheres separately:

ṁ±w ≡
"

ρvR R2
out sin(θ) dθ dϕ, (θ, ϕ) ∈ C± (10)

and the total mass lost in the wind per unit time is ṁW = ṁ−w+ṁ+w.
We quantify the net toroidal magnetic flux through the disk with

ιϕ ≡

∫

D sign

(〈

Bϕ
〉

ϕ

)

dr dθ
∫

D dr dθ
, (11)

so that ιϕ = ±1 when a poloidal section of the disk is threaded
by positive/negative toroidal field only, and zero when both po-
larities occupy the same area over this plane. We define

σϕ ≡

∫

D sign

(〈

Mzϕ

〉

ϕ

)

× sign(z) dr dθ
∫

D dr dθ
, (12)
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Fig. 1. Northern half of the computational grid; from the midplane to
the pole: deep disk region (dark blue), disk surface region (cyan), disk-
corona transition layer (yellow) and corona (red).

such that σϕ > 0 when the angular momentum flux is directed
from the disk to the corona in both hemispheres. The sym-
metry coefficients ιϕ and σϕ are analogous to the zeroth and
first Fourier coefficients of Bϕ(z), respectively related to the net

flux
∫

D Bϕ, and to the phase of the large-scale fluctuations of
Bϕ(z).

3. Method

3.1. Numerical scheme

We use the finite-volume code PLUTO (Mignone et al. 2007)
to integrate Eqs. (3) to (5) in time. The simulations are ei-
ther three-dimensional or axisymmetric two-dimensional. The
conservative variables are evolved via an explicit second or-
der Runge-Kutta scheme. Parabolic terms are also included
explicitly; this and the dispersive Hall whistler waves intro-
duce strong constraints on the admissible timesteps satisfying
the Courant–Friedrichs–Lewy (CFL) criterion. The CFL con-
straint due to the Keplerian velocity field is weak in compari-
son, so we do not activate the FARGO orbital advection scheme
(Mignone et al. 2012). Inter-cell fluxes are computed with a
modified HLL Riemann solver, including the Hall drift in a con-
servative manner (Lesur et al. 2014). We use a piecewise linear
space reconstruction to estimate the Godunov fluxes at cell in-
terfaces, with the Van Leer slope limiter. The solenoidal condi-
tion ∇ · B = 0 for the magnetic field is maintained to machine
precision by the constrained transport method (Evans & Hawley
1988).

3.2. Computational domain and grid

The computational domain is defined in spherical geometry by
(R, θ) ∈ [1, 10] × [π/2 − θ0, π/2 + θ0], with the extremal polar
angle θ0 ≡ 20 (h/r) ≈ π/3. We found no significant benefit from
increasing this polar range toward the poles but additional nu-
merical difficulties. The hydrostatic equilibrium has an exces-
sively low density in this region, and is numerically unstable.
The equilibrium velocity field is also very slow; with very little
inertia, spurious radial in-/out-flows develop, with high veloci-
ties and associated shear ∂θvR, disturbing the rest of the corona.
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Fig. 2. Vertical profiles in runs R1–P4 (from 1 au to 10 au, with weak
Bz > 0) at r = 5r0 = 5 au: initial (solid blue) and final (dashed green

at 300T0) ionization fractions xi
e and x

f
e , and final sound speed c

f
s (red

dots) in units of the midplane orbital velocity.

The polar interval is split into several ranges, as illustrated
in Fig. 1. The deepest 4h are meshed with 64 uniform grid
cells (dark blue region). The remaining range, from two to
twenty scale heights (cyan + yellow + red), is meshed with
64 “stretched” cells, increasingly larger as we go to the polar
boundary. This separation allows us to properly resolve the
small-scale dynamics of the disk while not over-resolving the
large volume of the corona.

The radial interval is meshed with a logarithmic grid of
512 cells, i.e., the increment δr is proportional to the local ra-
dius r. This grid gets coarser as we go from the inner to the outer
radial boundary, keeping a constant aspect ratio of grid cells at a
given polar angle, and thus a constant numerical resolution per
scale height. With this radial range, the initial mass in the disk

region is always md ≡
∫

D ρ ≈ 7.10m0 in code units.

Three-dimensional runs have an azimuthal extension ϕ ∈
[0, π/2] to reduce computational cost compared to a full 2π disk.
They are meshed with 128 uniformly distributed azimuthal cells.

3.3. Initial, boundary and internal conditions

We present here only the qualitative features of our numerical
setup, and refer the reader to Appendices A to D for the details.

We initialize a cold disk plus warm corona hydrodynamic
equilibrium. This thermodynamical configuration is held fixed
during the simulation. A proper treatment of the thermodynam-
ics would imply coupling the dynamics to radiative heating due
to non-thermal radiation (typically X-rays and extreme UV)
which is beyond the scope of this paper. We however motivate
our temperature structure from full-blown radiative transfer cal-
culations (e.g. Aresu et al. 2011). The temperature transition is
smoothed at the disk surface (yellow transition layer in Fig. 1).
The vertical profiles of temperature and ionization fraction at
r = 5 au in a typical run are shown in Fig. 2. The overall ioniza-
tion fraction does not evolve considerably over the duration of
a simulation, but it is generally reduced at the disk surface due
to the screening by the outflow. The transition from xe < 10−9

to xe > 10−5 is steep, but as desired, it is properly matched by
our prescribed temperature increase. The initial magnetic field is
vertical everywhere; its intensity decreases with cylindrical ra-
dius, so that the midplane β is constant with radius. The sign
of the initial magnetic field is given with respect to the rotation
axis; it can be either positive (Ω · B > 0) or negative (Ω · B < 0).
We take Ω along +ez.

We impose a minimal outflow velocity through the polar and
outer radial boundaries. Because the global wind tends to flow
radially outward, outflow conditions at the inner radial boundary
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103 for visibility, both at 5 and 50 au), and ratio of the Hall length to the
local pressure scale height ℓH/h (green dots).

are inappropriate; we thus allow matter to flow into the com-
putational domain from this side. Buffer zones are added in the
vicinity of the radial boundaries to avoid spurious wave reflec-
tions and reduce the influence of the boundaries on the flow.

We limit the Alfvén velocity to the Keplerian velocity at the
inner disk radius, vA ≤ v0 by artificially increasing the density in
the concerned cells. This cap occasionally affects a few percent
of the corona region. We relax the temperature toward its initial
distribution over a characteristic time of 1/10Ω, so that the flow
is locally isothermal to a good approximation.

We draw in Fig. 3 the initial profiles of dimensionless num-
bers characterizing non-ideal effects. The ambipolar Elsasser
number ΛA and ohmic Reynolds number RO are defined by

Λ−1
A ≡

ηAΩ

v2
A

= Ωτin; R−1
O ≡

ηO

Ωh2
· (13)

These numbers do not depend on the magnetic field. Their ra-
dial distribution are comparable to those derived by Simon et al.
(2015; see their Fig. 1). Two procedures are applied to non-ideal
coefficients deduced from the ionization fraction, as described in
Appendix D:

1. We reduce diffusivity coefficients in the corona, progres-
sively from z >∼ 3h to z <∼ 8h to account for the fact that
the gas should become fully ionized in the corona.

2. We restrict the intensity of ohmic diffusion, the Hall effect
and ambipolar diffusion to avoid extremely small time steps.
This restriction effectively affects the Hall effect below 2.3r0,
and ambipolar diffusion only in runs with the highest mag-
netization β = 5 × 102.

4. Results

We list in Table 2 the parameters of the runs presented in this
paper. Runs are labeled according to their inner radius (R1 at
r0 = 1 au, R10 at r0 = 10 au) and initial magnetic field (P for
Ω · B > 0, M in the opposite case, followed by the magnitude of
the midplane beta). Three dimensional runs are listed at the bot-
tom, the rest being two-dimensional axisymmetric simulations.
All axisymmetric runs are integrated over 1000T0, correspond-
ing to approximately 32 orbits at the outer radius. Run 3D-R1-P4
is evolved for 300T0, and the two other 3D runs for 200T0 only.

Table 2. Global parameters for the runs presented in this paper.

Label dim r0 β/5 k Σ0 Sect.

R1-P4 2 1 104 6 500 4.4.4

R1-P4-C4 2 1 104 4 500 4.4

R1-P3 2 1 103 6 500 4.2, 4.6.1

R1-P2 2 1 102 6 500 4.5.3, 4.6.3

R1-M3 2 1 −103 6 500 4.5

R10-P3 2 10 103 6 500 4.2

R10-P2 2 10 102 6 500 4.6

R10-M3 2 10 −103 6 500 4.3

R10-M3-C2 2 10 −103 2 500 4.1 (fiducial)

3D-R1-P4 3 1 104 6 500 4.2

3D-R1-P3 3 1 103 6 500 4.6.1

3D-R1-M4 3 1 −104 6 500 4.2

3D-R10-P3 3 10 103 6 500 4.6.4

Notes. The table lists: name and dimension of the run, inner radius in
astronomical units, initial plasma beta in the midplane (a minus sign
corresponds to Ω · B < 0), ratio of corona over disk sound speed k (see
Eq. (A.6)), mass surface density at 1 au in g cm−2, section where the run
is discussed.

It should be pointed out that each simulation shows a long-term
(secular) evolution, where the large-scale configuration evolves
over hundreds of local orbits.

The main scalar diagnostics are gathered in Table 3, averaged
over representative time intervals. We describe the properties of
our reference simulation in Sect. 4.1. This run is not generic in
every aspect, so we characterize a variety of other processes in
the following sections. In Sect. 4.2, we examine the magnetic
polarity dependence introduced by the Hall drift. The proper-
ties of the wind in a warm corona are described in Sect. 4.3. In
Sect. 4.4, we presents disks in which the vertical flux of angu-
lar momentum causes a large-scale meridional circulation, with
no net mass accretion. Section 4.5 describes a vertical symmetry
breaking, leading to a one-sided magnetic ejection. Section 4.6
is dedicated to a self-organization process leading to the forma-
tion of zonal flows. Finally, our set of simulations is considered
as a whole for discussion in Sect. 5.

4.1. Fiducial case

4.1.1. Overview of the disk dynamics

We show in Fig. 4 the instantaneous state of run R10-M3-C2
after 200 inner orbits of integration time (6 outer orbits). The
toroidal magnetic field Bϕ changes sign at the midplane, and
decreases smoothly with height in the corona. It also changes
sign with radius near r ≈ 2.5r0. This change of sign occurs near
the inner radial boundary, where the magnetic field follows an
inward-pointing wind. This inward orientation of the wind is
likely influenced by our outflow polar boundary conditions.

To this magnetic field is associated a flux of angular momen-
tum M · eϕ = −BϕB (purple arrows in the disk of Fig. 4). In
the outer half of the disk, this flux is oriented from the midplane
toward the corona. The velocity field is organized, with mag-
nitudes reaching four times the local sound speed. In the inner
half of the disk, the flux of angular momentum is directed from
the disk surface toward its midplane. In this half, the corona is
turbulent, with no signature of organized ejection.

The length scale of magnetic field variations is comparable
to the disk extent, both in the vertical and radial direction. Its
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Table 3. Results for the runs presented in this paper.

Label 103 × αTrϕ 103 × αTzϕ 107 × τz 106 × ṁ−w/md 106 × ṁ+w/md ιϕ σϕ nzf

R1-P4 3.94 ± 0.08 0.10 ± 0.2 2.0 ± 2 1.4 ± 0.2 1.5 ± 0.3 6% −55% 0
R1-P4-C4 3.80 ± 0.10 −1.10 ± 0.4 5.0 ± 2 0.7 ± 0.4 0.8 ± 0.3 3% −81% 0
R1-P3 14.30 ± 0.8 −8.00 ± 1 23.0 ± 2 2.8 ± 0.5 3.0 ± 0.6 −13% −51% 7
R1-P2 75.00 ± 0.8 27.40 ± 0.6 −22.0 ± 2 22.0 ± 8 4.0 ± 2 97% 0% 5
R1-M3 6.50 ± 0.5 2.00 ± 1 −4.0 ± 5 10.0 ± 2 3.1 ± 0.7 −99% 6% 0

R10-P3 24.00 ± 2 8.00 ± 2 −18.0 ± 4 40.0 ± 8 21.0 ± 4 96% 6% 9
R10-P2 131.00 ± 6 47.00 ± 6 −88.0 ± 35 117.0 ± 44 24.0 ± 9 91% 5% 9
R10-M3 10.50 ± 0.8 8.90 ± 0.7 −24.0 ± 3 14.0 ± 3 13.0 ± 3 −7% 12% 0
R10-M3-C2 23.00 ± 2 17.00 ± 2 −43.0 ± 11 18.0 ± 4 19.0 ± 4 12% 73% 0

3D-R1-P4 4.00 ± 0.05 0.74 ± 0.08 −2.8 ± 0.4 1.2 ± 0.2 1.2 ± 0.2 4% −45% 0
3D-R1-P3 18.90 ± 0.3 −2.40 ± 0.3 18.7 ± 0.2 2.4 ± 0.8 2.4 ± 0.8 0% −59% 2
3D-R1-M4 1.09 ± 0.04 0.32 ± 0.06 0.0 ± 0.1 1.3 ± 0.2 1.3 ± 0.2 −7% 20% 0
3D-R10-P3 16.00 ± 1 8.10 ± 0.5 −16.0 ± 5 12.0 ± 2 11.0 ± 2 0% −24% 2

Notes. The table lists: label of the run; normalized horizontal and vertical stresses, αTrϕ and αTzϕ as defined by Eq. (8), volume-averaged from 3r0

to 8r0; accretion rate due to the vertical stress only τz, as defined in Eq. (9); wind mass loss rates in the southern and northern corona, ṁ−w and
ṁ+w, defined by Eq. (10), normalized to the disk mass; symmetry coefficients ιϕ and σϕ, as defined by Eqs. (11) and (12); number of zonal flows
identified at the end of the simulation nzf . Except for nzf , all quantities are time-averaged, and the uncertainties are standard deviations over time.

Fig. 4. Snapshot of run R10-M3-C2 (fiducial) at t = 200T0, showing the
toroidal magnetic field in color background (blue to red), the poloidal
velocity field in units of local sound speed (green arrows in the corona),
and the orientation of the angular momentum flux caused by magnetic
stress (purple arrows in the disk); 〈Bz〉 < 0 in this case.

characteristic dynamical time is counted in hundreds of local or-
bits, while the fluid may be streaming at near sonic velocities.
The evolution of the magnetic field in the disk may therefore
be considered as secular with respect to accretion and ejection.

Given a time window, we can decompose the magnetic field in a
time and azimuthally averaged component 〈B〉ϕ,t plus a fluctuat-

ing component B̃. Under this decomposition, the average mag-
netic stress is split into two terms:

〈M〉ϕ,t = − 〈B〉 ⊗ 〈B〉 −
〈

B̃ ⊗ B̃
〉

≡ Mlaminar +Mfluctuating, (14)

representing a laminar plus a fluctuating contribution toM. We
compute the ratio of laminar to total magnetic stress over 30T0

(≈one outer orbit), average it over the poloidal surface of the
disk, and find that it exceedsMlaminar/〈M〉 > 90% for every run.
Therefore, the magnetic stress in the disk is not due to a turbu-
lent component, but is rather a quasi-steady (laminar) stress. The
variability near the inner radius is likely caused by the outflow
polar boundary conditions.

4.1.2. Disk vertical structure

We show in Fig. 5 a series of vertical profiles in the outer region
of the fiducial run R10-M3-C2. In the top panel, we see that
the deviations from Keplerian velocity become significant above
z & 2h. The radial velocity is the dominant component, with
vR/vK ≈ 10%, corresponding to vR/cs ≈ 1 at z = 5h. The polar
velocity vθ is second in magnitude, reaching vθ/vK ≈ 5%. The
azimuthal velocity decreases by 5% in the corona, compared to
the disk midplane value at the same radius. This last trend could
be due to the outflow itself, or to the thermal pressure support
against gravity in the corona.

The second panel shows that the horizontal magnetic field
has an odd symmetry about the midplane. The initial vertical
component is negative in this case, and it is the weakest compo-
nent during the evolution of the simulation. The toroidal com-
ponent is anti-correlated to the radial one, with a magnitude
twenty to a hundred times higher in the disk. The location where
Bϕ = Br = 0 corresponds to a thin current sheet.

The third panel shows the horizontal and vertical magnetic
stresses. The horizontal magnetic stress Mrϕ is positive every-

where. It is maximal at the disk surface, where αMrϕ ≈ 0.08 is
ten times higher than in the midplane. The vertical stress Mzϕ

changes sign at the midplane, transporting angular momentum
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Fig. 5. Vertical profiles in run R10-M3-C2 (fiducial), averaged in time
from 200T0 to 600T0, and in spherical radius from 5r0 to 8r0. First
panel: fluid velocity, normalized by the local Keplerian value vK; the
disk mean value has been subtracted from the azimuthal component.
Second panel: magnetic field, normalized by the vertically averaged
value of the vertical field Bz. Third panel: horizontal (solid blue) and
vertical (dashed red) magnetic stressesMrϕ andMzϕ, normalized by the
vertically averaged pressure (cf. Eq. (8)). Fourth panel: radial mass flux
(solid blue), and ion minus electron radial velocity, normalized by the
local Keplerian velocity and the vertically averaged density. Fifth panel:
ambipolar diffusivity ηA (solid blue), ohmic diffusivity ηO (dashed blue,
increased by a factor 104 for visibility), and Hall length ℓH (green dots).

downward in the southern hemisphere and upward in the north-
ern one. The large-scale magnetic field thus extracts angular mo-
mentum from the disk, and transports it toward the corona.

In the fourth panel of Fig. 5, the radial mass flux displays a
negative peak at the current sheet (i.e., the midplane is accret-
ing), and becomes positive at the base of the wind z & 2h. The
accretion stream is very narrow, and accurately fits the profile of
radial electric current. We show instead the relative ion-electron
radial velocity, ui − ue ≡ J/ne, which drives the Hall drift. Be-
cause this disk sees a net vertical magnetic field Bz < 0, the
Lorentz force Fϕ ≃ −JrBz < 0 is extremal at the current sheet,
thereby slowing matter and causing it to fall inward.

The profile of radial electric current 〈Jr〉ϕ = −∂z

〈

Bϕ
〉

can be

linked to the ambipolar diffusivity ηA, drawn in the bottom panel
of Fig. 5. The magnetic energy dissipation rate due to ambipo-

lar diffusion is
∫

ηAJ2
⊥, where J⊥ is the electric current perpen-

dicular to the local magnetic field. To minimize energy dissipa-
tion, this current must flow along the circuit with the smallest
resistivity. Low density and strong field regions are poorly con-
ducting due to ambipolar diffusion (cf. Eq. (2)). This enforces
the current layer to be localized near the midplane and near the
current sheet, where ηA takes its smallest value. Ohmic resistiv-
ity is unimportant in this region, making ambipolar diffusion the
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Fig. 6. Radial profiles of normalized stress in R10-M3-C2 (fiducial),
averaged in time between 200T0 and 600T0. The radial components of
Maxwell (red dots) and Reynolds (dashed blue) are averaged over the
disk height, whereas the vertical Maxwell stress (solid green) is mea-
sured at the disk surface z = ±H.

dominant dissipation process. The presence of dust grains should
not alter this ordering in the outer regions of protoplanetary disks
(see Fig. 1 of Simon et al. 2015). With the present values of ℓH
and B0, the region below z . 2h is stable with respect to the Hall-
Shear instability (HSI, Balbus & Terquem 2001; Kunz 2008).

4.1.3. Mass and momentum fluxes

We draw in Fig. 6 the radial profiles of stress in our fiducial run
R10-M3-C2. The horizontal Maxwell stressMrϕ is positive at all

radii, transporting angular momentum radially outward, with αMrϕ
increasing from 10−2 to 10−1 from 10 au to 100 au. The vertical
component Mzϕ is positive beyond 2.5r0, transporting angular
momentum from the disk to the corona. The fact thatMϕz < 0 in
the inner region is possibly related to our polar outflow boundary
conditions. The Reynolds stress αRrϕ is negative for r & 4.6r0.
This is because above z > 1h, the velocity fluctuations ũ ≡ u −
〈u〉ρ display ṽr > 0 and ṽϕ < 0. Because |Mrϕ| > 10 |Rrϕ|, we will
focus on the Maxwell stress for transport-related processes.

The absence of correlation 〈R〉 6∝ 〈M〉, so as the fact that
〈R〉ϕ,z < 0, are discrepant with a state of MRI turbulence
(Pessah et al. 2006). It was mentioned in Sect. 4.1.1 that the flow
cannot be considered as turbulent, and that there is no clear spa-
tial scale separation between the magnetic structures and the en-
tire disk. For these reasons, the α viscosity prescription should
not be applied in this context (Balbus & Papaloizou 1999). How-
ever, conservation of angular momentum still applies and we can
use Eq. (9) to compute the accretion rate separately caused by ra-
dial and vertical angular momentum fluxes; this decomposition
is represented in Fig. 7. We find that the vertical transport of an-
gular momentum τz is the main driver of accretion. Conversely,
the radial contribution τr oscillates about zero and causes no ac-
cretion on average. We recall that it does not contradict the pres-
ence of a significant radial stress (cf. Fig. 6) since accretion is
controlled by the stress divergence. Finally, we find the aver-
age mass flux in this box is Σ 〈vr〉ρ ≈ −4 × 10−6 in code units,
corresponding to an average accretion rate ṁr ≡ |2πrΣ 〈vr〉ρ | ≈
1.1 × 10−7 M⊙ yr−1 at 50 au around a solar-mass star.

We find that τr ≈ 0 in all our simulations, meaning that
the radial flux of angular momentum is divergence-free. This is
a fortuitous consequence of our initial Σ(r), β(r), etc. We will
therefore focus on the vertical transport of angular momentum.
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Fig. 7. Accretion in the disk region of run R10-M3-C2 (fiducial), be-
tween r ∈ [3, 8] r0; the actual mass flux (solid black) is decomposed
into radial (dashed blue) and vertical (red dots) torques as explicited in
Eq. (9); the sum is drawn (dashed cyan) to validate this decomposition.

4.1.4. Cold, magnetized wind

We have shown that a wind is launched by the outer half of the
disk, where the Maxwell stress transports angular momentum
from the disk to the corona. We qualify these winds as “cold”
since the ratio of sound speeds between the disk and the corona
is set to k = 2 (which corresponds to a factor 4 in temperature).

To characterize these winds, we first look at the dynamics of
a fluid element. We average every quantity in azimuth and time,
and compute the characteristic velocities along a streamline in
the poloidal plane. We recall the definition of the slow (minus
sign) and fast (plus sign) magnetosonic waves velocity:

v2± ≡
1

2

(

v2A + c2
s ±

√

(v2
A
+ c2

s )2 − 4c2
s v

2
Ap

)

, (15)

where the index p stands for the poloidal component of a vector.
These velocities are relevant only in the ideal MHD regime.

As apparent in Fig. 8, the fluid poloidal velocity monoton-
ically increases, and crosses all characteristic MHD velocities.
Surprisingly, the fast-magnetosonic point is located right before
the domain boundary. The same is true in several, but not all
runs (see for example Fig. 13). This fact was already observed
in stratified, shearing-box simulations (Fromang et al. 2013). It
indicates that our boundary conditions are still, somehow, con-
straining the flow structure down to the disk in this run.

The mass transported by the wind is computed via Eq. (10).
We estimate its average value ṁW ≈ 2.6 × 10−4 in code units,
corresponding to approximately 2.3 × 10−7 M⊙ yr−1 for this run.

We compute separately the acceleration ap ≡ vp∂pvp, and the
acceleration caused by the forces F along the streamline. These
include the thermal pressure gradient, the Lorentz force, and the
inertial force due to gravitational and centrifugal accelerations:

Finertia ≡ −ρ
(

∇Φ + u · ∇u − vp∂pup

)

. (16)

We present the resulting accelerations F/ρ in Fig. 9, normalized
by the Keplerian value aK ≡ v2K/r at the streamline base. The
sum of the forces decently reproduces the true acceleration in
spite of the variability of the flow. The thermal pressure gradient
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Fig. 8. Velocities projected on a streamline passing through (r = 6r0, z =
5h) in run R10-M3-C2 (fiducial), averaged from 400T0 to 500T0, and
normalized by the Keplerian velocity at the launching radius vK0; flow
velocity v (solid black), sound speed cs (dashed orange), Alfvén veloc-
ity vA (dashed green), slow magnetosonic speed v− (dashed blue) and
fast magnetosonic speed v+ (red dots).
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Fig. 9. Acceleration along a streamline passing through (r = 6r0, z =
5h) in run R10-M3-C2 (fiducial), averaged from 400T0 to 500T0, nor-
malized by the Keplerian acceleration aK0 at the streamline base. The
sum of the different forces (dashed cyan) is shown to validate this
decomposition.

helps accelerating the flow, but it is significantly weak than the
Lorentz force. The latter barely compensates the inertial term,
resulting in an overall small wind acceleration ap/aK0 . 2%.

We split the specific angular momentum of a fluid element
into its matter and magnetic contributions:

j ≡ rvϕ
︸︷︷︸

matter

− rBϕ/κ
︸︷︷︸

magnetic

, (17)

where κ ≡ ρvp/Bp is the ratio of mass over magnetic
flux along the streamline. Both j and κ should be invari-
ant along streamlines for stationary, axisymmetric, ideal MHD
flows (Chandrasekhar 1956; Pelletier & Pudritz 1992). We show
in Fig. 10 that the total specific angular momentum j is
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Fig. 10. Angular momentum along a streamline passing through (r =
6r0, z = 5h) in run R10-M3-C2 (fiducial), averaged from 400T0 to
500T0, normalized to its value at the streamline base; the total angu-
lar momentum (solid black) is decomposed into matter (dashed blue)
and magnetic (red dots) components as explicited in Eq. (17).

approximately constant above z & 5h. The magnetic torque
transfers angular momentum back to the outflowing plasma,
leading to an increase of the kinetic content up to the domain
boundary. This demonstrates that the wind is magnetocentrifu-
gally accelerated. Below 5h, the variations of j indicate that the
average flow does not behave as an ideally conducting plasma.
This is caused by ambipolar diffusion above the disk surface. It
should be noted that the outflow is already super-Alfvénic when
entering the ideal MHD regime z & 5h (cf. Fig. 8). As a conse-
quence, only the sonic and fast-magnetosonic critical points can
impose regularity conditions on the outflow (Ferreira & Pelletier
1995).

The magnetic contribution to j is only 0.4 j0, corresponding
to a magnetic lever arm λ ≈ 1.4, much smaller than expected
from strongly magnetized jets (see Fig. 4 of Ferreira 1997). For
a magnetic lever arm smaller than 3/2, the Bernoulli invariant of
a cold flow should be negative (Casse & Ferreira 2000); this is
indeed the case in this simulation. It follows that the outflow can-
not escape the gravitational field on its own energy content when
it reaches the domain boundary. The outflow can haveB < 0, and
still be both stationary and super fast-magnetosonic. Effectively,
B < 0 corresponds to an outflow which is gravitationally bound
when z→ ∞, but it is not necessarily bound for the gravitational
potential restricted to the computation box.

4.2. Hall and magnetic field polarity

It is known that the Hall drift discriminates between the two po-
larities of the vertical magnetic field (Balbus & Terquem 2001).
When Ω · B > 0, the Hall drift acts to enhance angular mo-
mentum transport; in the opposite case Ω · B < 0, the Hall drift
tends to stabilize the flow, and greatly reduce angular momentum
transport (Lesur et al. 2014).

We draw in Fig. 11 the vertical profiles of horizontal
stressMrϕ for the two orientations of the initial magnetic field.
When Bz > 0 (run 3D-R1-P4), there are three regions of impor-
tant magnetic stress: the midplane and the two disk-corona in-
terfaces. The midplane stress reaches αMrϕ ≈ 10−2 and decreases
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Fig. 11. Vertical profiles of horizontal magnetic stress, normalized by
the vertically averaged pressure in the diskMrϕ/ 〈P〉z in runs 3D-R1-P4
(solid blue,Ω ·B > 0) and 3D-R1-M4 (dashed red,Ω ·B < 0), averaged
in time over 50T0 and radially from 3r0 to 6r0; the green dots show the
average ratio ℓH/h in this same region.

exponentially fast with height. Near z ≈ 2.7h, the surface stress
becomes dominant, and increases up to z ≈ H, where it reaches
αMrϕ ≈ 5× 10−3. This profile is similar to what was found in local
shearing-box simulations (see Fig. 13 of Lesur et al. 2014). In
the opposite case Bz < 0 (run 3D-R1-M4), the surface stress is
essentially the same, but the midplane stress is now αMrϕ ≈ 0.

The vertical distribution of ℓH is overlaid in Fig. 11. It
reaches ℓH/h ∼ 1 deep in the disk, and decreases rapidly with
height. In run 3D-R1-M4, below z . 2h, the combination of a
strong Hall length and a negative vertical magnetic field stabi-
lizes the disk with respect to the HSI. At z & 3h, the Hall drift
becomes negligible regarding the linear stability of the flow, and
we retrieve a polarity-independent system.

The volume-averaged values of αTrϕ differ only by a factor
two between run R1-P3 (R10-P3), and the equivalent run with
a reversed field R1-M3 (resp. R10-M3, cf. Table 3). This esti-
mated αMrϕ includes the disk up to z ≤ H, so part of it is due
to the polarity-independent surface stress. Also, the midplane is
not magnetically dead when Bz < 0 and the initial magnetization
β ≤ 5× 103 (see third panel of Fig. 5). As the intensity of the net
magnetic flux increases, so does the magnetic stress at the disk
surface, and the ambipolar diffusivity. The magnetic field can
then diffuse, from the surface to the midplane, over a few tens
of local orbits (cf. Sect. 5.1). The surface over midplane stress
contrast is smaller at larger radii, where the Hall drift is weaker
(see fifth panel of Fig. 5).

We conclude that Mrϕ ≈ 0 in the midplane only when the
midplane is Hall-shear stable, and the intensity of the back-
ground field is sufficiently weak. For stronger magnetic fields,
the surface-driven torque can reach the midplane (see for exam-
ple Wardle & Koenigl 1993; Salmeron et al. 2011).

4.3. Warm winds

We described the launching and acceleration of a cold, magne-
tized wind in our reference simulation with k = 2. In this sec-
tion, we investigate the role of thermal pressure with a warmer
corona. We consider a corona over disk temperature ratio of 36,
i.e., a ratio of k = 6 in isothermal sound speed.

A75, page 10 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201630056&pdf_id=10
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201630056&pdf_id=11
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Fig. 12. Averaged flow poloidal map for run R10-M3 (from 10 au to
100 au, with Bz < 0) from 400T0 to 700T0; magnetic field lines are
regularly sampled along the midplane, and the velocity field is indicated
with green arrows over the background density field.

4.3.1. Overview

We show in Fig. 12 the average flow morphology in run R10-
M3, initially threaded by a negative Bz < 0. The density in the
disk has homogeneously decreased by 10%, maintaining its ra-
dial and vertical stratification profiles. Magnetic field lines are
straight in the disk, as one can expect in a diffusion-dominated
regime. In the inner regions of the corona, the field lines remain
vertical or bend inward. Because the magnetic field is the weak-
est in these regions, it exerts no constraints on the fluid. The
velocity field in the innermost region appears to be affected by
our outflow polar boundary conditions.

The initial magnetic field has been substantially reduced for
radii as far as 3r0, where positive magnetic flux has entered
the domain from the inner radial boundary. Although this phe-
nomenon is artificially caused by our boundary conditions, it
calls for a dedicated study of the Hall-driven transport of mag-
netic flux in protoplanetary disks (Bai & Stone 2016). The outer
corona displays a laminar structure. Field lines bend outward,
with an inclination greater than 60◦ at the disk surface, favorable
to magnetocentrifugal acceleration. The poloidal velocity and
magnetic field lines are aligned in this region, consistently with a
quasi-steady and ideal MHD wind. The average wind mass loss
rate is ṁW ≈ 2.7 × 10−5 in code units. This corresponds to ap-
proximately 1.7 × 10−7 M⊙ yr−1 at 100 au, comparable to our
fiducial case despite the temperature difference.

We select a streamline in the poloidal plane, passing through
(r = 7r0, z = 5h). The flow and the characteristic MHD velocities
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Fig. 13. Same as Fig. 8 for a streamline passing through (r =
7r0, z = 5h) in run R10-M3, averaged from 400T0 to 700T0. The fast-
magnetosonic point is clearly crossed within the computational domain.

are projected on this streamline in Fig. 13. The increase in sound
speed, from z = 3.7h to 4.7h, marks the disk-corona tempera-
ture transition. As for the fiducial, cold corona case (cf. Fig. 8),
the slow-magnetosonic and Alfvén critical points are crossed
at z ≈ 4h. The fast-magnetosonic critical point is now clearly
within the computational domain. It is crossed by the outflow
way before reaching the outer radial boundary, so the base of the
wind should be causally disconnected from the boundary.

The magnetic field again contributes to 0.4 j0 in the specific
angular momentum along this streamline. According to steady-
state MHD jet theory, a small magnetic lever arm λ ≈ 1.4 cor-
responds to an ejection efficiency ξ ≡ ∂log ṁW/∂log r ∼ 1
(Ferreira & Pelletier 1993; Ferreira 1997). This is consistent
with the high ratio of mass outflow over mass accretion rates ob-
served in our simulation. In this case, there would be too much
matter loaded into the wind to obtain a steady and trans-Alfvénic
outflow without coronal heating (cf. Eq. (40) of Ferreira 1997).

4.3.2. Energy budget

We examine the energetics of the outflow by means of the
Bernoulli invariant. Following Suzuki & Inutsuka (2009), we de-
compose the ideal MHD Poynting flux as:

Π ≡ E × B = (−u × B) × B

= (B⊥ · B⊥)u − (v⊥ · B⊥)B ≡ B2
⊥u + w. (18)

The first term can be thought of as the advection of magnetic
energy by the flow; the second term gives the wave-like transport
of energy. Given a streamline, we can decompose the integral

∫ ∇P

ρ
· dl =

γ

γ − 1

P

ρ
−

∫

T ∇s · dl ≡ H − Q, (19)

respectively an enthalpy contribution minus a heating term. The
first corresponds to the adiabatic work exerted by the fluid,
whereas the second measures its variation of specific entropy s.
By dotting Eq (4) with u, we can construct a quantity constant
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Fig. 14. Contributions to the Bernoulli invariant B (solid black) as ex-
plicited in Eq. (20), along a streamline passing through (r = 7r0, z = 5h)
in run R10-M3, averaged from 400T0 to 700T0; the gravitational con-
tribution is not shown.

along stationary streamlines, the Bernoulli invariant:

B′ ≡ v
2

2
+ Φ +

Πp

ρvp
+

∫ ∇P

ρ
· dl

=
v2ϕ

2
+
v2p

2
+ Φ +

B2
⊥vp + wp

ρvp
+H − Q. (20)

Because Q keeps an integral form, the value of B′ along a
streamline depends on the choice of integration bounds. We
choose to subtract from B′ the heat input Q evaluated at the
domain boundary: B ≡ B′ + Qend. With this definition, a fluid
element having B > 0 is able to escape the gravitational poten-
tial on its own energetic content, without additional heating past
the domain boundary.

We draw the various contributions to B along the stream-
line in Fig. 14. The poloidal component v2p/2 keeps increasing,

as already apparent in Fig. 13. The toroidal component v2ϕ/2 is
initially the main energy reservoir against gravity, and slowly
decreases. This is because the fluid specific angular momen-
tum rvϕ is approximately constant above z & 5h, so vϕ de-
creases as 1/r along the streamline. The wave-like Poynting flux
wp ∼ (v2

K0
/2) is strong at the disk surface z ≈ 3.2h, and most of

it has been consumed at the end of the streamline. However, it is
efficiently converted into kinetic energy only in the ideal-MHD
region z & 5h. The thermal contributions to the Bernoulli invari-
ant, namelyH andQ, both increase at the disk-corona transition.
Beyond z & 5.5h, the enthalpy H decreases, while the heating
Q keeps increasing. The decrease in enthalpy corresponds to the
adiabatic cooling of the fluid, exerting a mechanical work and
thus contributing to the outflow acceleration. The increase in Q
means that the fluid keeps receiving heat, because it is always
colder than the prescribed temperature at a given location.

The final value of B ≈ 1.6 × 10−2 (v2
K0
/2) is positive in this

case, so the outflow has the potential to escape from the gravi-
tational field. We note that the heating Q is necessary to make
B > 0. The quantity B′+Q increases along the streamline, and it
becomes positive at z ≈ 5.1h. In principle, we could stop heating
above this height, and keep a potentially released flow.
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Fig. 15. Same as Fig. 9 in run R10-M3, averaged in time between 400T0

and 700T0, with a streamline passing through (r = 7r0, z = 5h).

The analysis of the Bernoulli invariant suggests that mag-
netic acceleration is important only at the wind basis, whereas
most of the remaining acceleration along the streamline is due to
coronal heating. This association constitutes the key mechanism
at the origin of the magnetothermal winds we observe in these
simulations. This is an extension of the situation described by
Casse & Ferreira (2000), with the important difference that the
flow becomes super-Alfvénic in the non-ideal MHD zone.

4.3.3. Ejection mechanism

We examine the role of coronal heating in the lifting and ac-
celeration of material along a streamline in run R10-M3. The
acceleration of a fluid element and its decomposition into pres-
sure, Lorentz and inertial forces are drawn in Fig. 15. The true
acceleration ap is about 15% stronger than the sum reconstructed
from the averaged forces. This bias may be due to the correlated
fluctuations of density with the Lorentz force, or between veloc-
ity components in the inertial term. We verified that it is entirely
removed in runs showing better stationarity properties.

At the surface of the disk z . H, the streamline is nearly
vertical. In this direction, the inertial potential precisely cancels
the vertical pressure gradient, as required from the initial, hydro-
static equilibrium. In the transition region z/h ∈ [3.7, 4.7], matter
from the disk is being pushed down toward the midplane by the
hot gas at the base of the corona. The inertial acceleration is neg-
ligible in this region, and it is the Lorentz force that provides the
kick lifting matter up into the hotter wind region.

Because the streamlines strongly bend outward at z > 4.7h,
the radial pressure gradient becomes favorable to the outflow,
whereas the Lorentz force is negligible in this region. For z >
6h, the acceleration produced by thermal pressure gradients de-
creases, whereas magnetic acceleration increases again. This is
generic to all magnetically-ejecting runs with a warm corona.

We conclude that in our warm corona simulations, mass is
still loaded into the wind by the Lorentz force. The vertical tem-
perature gradient acts against the launching of a wind. The radial
temperature gradient bends the magnetic field lines, and causes
the outward acceleration of the flow along these lines.
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Fig. 16. Snapshot of run R1-P4-C4 (from 1 au to 10 au, with weak
Bz > 0) at t = 1000T0, showing the toroidal magnetic field in color
background (blue to red), the poloidal velocity field in units of local
sound speed (green arrows in the corona), and the orientation of the
angular momentum flux caused by magnetic stress (purple arrows in
the disk). The orientation of the angular momentum flux is reversed
compared to the fiducial, accreting case.

4.4. Non-accreting disks

Some of our simulations do not exhibit accretion streams in the
midplane. In this section, we describe the opposite configura-
tions, where the radial mass flux is directed outward in the mid-
plane and inward at the disk surface, resulting in a large-scale
meridional circulation (Fromang et al. 2011). We focus on run
R1-P4-C4, which adopted this configuration over the entire du-
ration of the simulation. Although R1-P4-C4 differs from our
fiducial case R10-M3-C2 by four control parameters, only the
orientation of the net magnetic field seems to affect this outcome
in our simulations (cf. Sect. 5.1).

4.4.1. Overview

We show in Fig. 16 the morphology of the flow in run R1-P4-
C4. We note several differences with our fiducial case (cf. Fig. 4).
First, the entire corona exhibits a disorganized velocity structure.
There are no signatures of acceleration above the disk, and the
flow reaches moderate velocities. Second, the toroidal magnetic
field does not expand to the corona, but remains confined within
the disk instead. Finally, the large-scale magnetic field transport
angular momentum from the disk surface to its midplane.

As mentioned in Sect. 4.1.1, studying this configuration iso-
lately makes sense because magnetic structures evolve over long

time scales. However, the accreting property can vary in space
(cf. Sect. 4.4.4), and in time for a given simulation.

4.4.2. Vertical structure

We show in Fig. 17 the vertical structure of the flow in run R1-
P4-C4. In the first panel, the radial velocity is negative at the
disk surface, where it reaches vR/cs ≈ −0.4. It becomes positive
above z ≈ 4.3h, with vR/vK ≈ 5%, two times smaller than the
fiducial case. The azimuthal velocity drops at z ≈ H, where the
gas is heated. The polar velocity vθ is negligible up to z ≈ 4.3h,
beyond which it increases to 2% of vK, again small compared
to the fiducial case (cf. Fig. 5). This outflow is launched twice
higher than in the fiducial case, near the temperature transition
at z ≈ H, suggesting a predominantly thermal wind launching.

The second panel shows that the toroidal magnetic field is
dominant in the disk, twenty to eighty times greater than the ra-
dial one. Unlike the fiducial accreting case, the toroidal field Bϕ
vanishes at z ≈ 4.7h, and does not expand to the corona.

The resulting vertical stressMzϕ is negligible in the corona.
The disk thus receives no angular momentum from the corona,
and a fortiori from our polar boundary conditions. Within the
disk, the Maxwell stress Mzϕ is positive in the southern hemi-
sphere, and negative in the northern one. This induces a flux of
angular momentum from the disk surface toward its midplane.

The fourth panel shows that mass is now streaming outward
in the midplane, and inward at the surface. This is consistent with
the idea that angular momentum is extracted from the surface,
and provided to the midplane by magnetic stress. We emphasize
that the net radial mass flux is approximately zero through this
meridional circulation. The disk does not receive angular mo-
mentum from the corona, and mass accretion is solely caused by
the radial flux of angular momentum, τr ≈ 0, as shown in Fig. 7.

The property of being accreting or not essentially depends
on the sign ofMzϕ ≡ −BzBϕ. Because the disk is threaded by a
net vertical magnetic field, and because the flow is laminar, the
orientation of the angular momentum flux is given by the sign of
Bϕ in both hemispheres. We will refer to this as the vertical phase
of the toroidal field. When Bϕ has a non-accreting phase, the
radial velocity is oriented outward in the midplane, and inward
at the disk surface. The radial pressure gradient is negative in the
corona, so it opposes the launching of a wind directed inward.
This imposes a meridional circulation within the disk.

The pressure gradient forces the radial velocity to change
sign above z & H. The resulting outflow is thermally driven.
It reaches moderate velocities, and it is not organized on large
scales. We were not able to reconstruct streamlines leaving the
disk surface, because of the time-variability of the flow in the
corona. We presume that the outflow mass loading results from
turbulence above the accretion layers. Forcing an outflow ve-
locity at the domain boundaries greatly improved the numerical
stability of our setup in such configurations.

We measured the phase of Bϕ in every run via σϕ, as defined
by Eq. (12). Runs having σϕ > 0 should be accreting, whereas
σϕ < 0 corresponds to predominantly non-accreting configu-
rations. Runs with σϕ ≈ 0 are the object of Sect. 4.5. Time-
averaged values of σϕ for every runs are given in Table 3.

4.4.3. Magnetic equilibrium

We raise two questions regarding the magnetic equilibrium
of the non-accreting configuration. First, if there is no out-
flow to remove toroidal magnetic flux, another process must be
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Fig. 17. Vertical profiles in run R1-P4-C4, averaged in time from 400T0

to 1000T0, and in spherical radius from 5r0 to 8r0. First panel: fluid ve-
locity, normalized by the local Keplerian value vK; the disk mean value
has been subtracted from the azimuthal component. Second panel: mag-
netic field, normalized by the vertically averaged value of the vertical
field Bz. Third panel: horizontal (solid blue) and vertical (dashed red)
magnetic stresses, normalized by the vertically averaged pressure (cf.
Eq. (8)). Fourth panel: radial mass flux (solid blue), and electron minus
ion radial velocity, normalized by the local Keplerian velocity and the
vertically averaged density.

responsible for the saturation of the MRI. Second, because the
corona rotates slower than the disk, the net vertical field should
always exert a global torque on the disk, favoring the accret-
ing configuration. To address these issues, we split the induc-
tion Eq. (5) into several terms, labeled by the associated physical
process:

〈

∂BR

∂t

〉

ϕ

=
1

R

(

cot(θ) +
∂

∂θ

)

·
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− (∇ × 〈EO,H,A
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ϕ
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, (22)

where the electromotive field EO,H,A contains the three non-ideal
effects, as developped in Eq (21).
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Fig. 18. Contributions to the induction of toroidal magnetic field in run
R1-P4-C4, as explicited in Eq. (22), averaged in time from 400T0 to
1000T0 and in spherical radius from 5r0 to 8r0, normalized by the local
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Fig. 19. Same as Fig. 18 for the radial magnetic field BR; see Eq. (21).

We represent in Fig. 18 these contributions to the induction
of toroidal magnetic field ∂tBϕ. The ohmic and Hall induction
terms are not shown for they are negligible in this case.

The sum of the outflow plus advection terms has a minor ef-
fect, located at z ≈ H. Deep in the disk, the shearing of BR is only
balanced by ambipolar diffusion. At z ≈ 3.4h, where the toroidal
Alfvén velocity is maximal, ambipolar diffusion transports the
toroidal field toward the surface, and not toward the midplane.
In the surface layers z ≈ H, we find a competition between the
stretching of Bz and the shearing of BR. Since the stretching term
favors an accreting phase for Bϕ, the non-accreting configuration
sustains a counteracting BR at the surface.

The same decomposition is performed for the radial compo-
nent BR in Fig. 19. The ohmic contribution is negligible again,
so we do not plot it. The Hall term is effective below z <∼ 2h,
balanced by ambipolar diffusion. At the surface z & 3h, the out-
flow term has a moderate amplitude, and we find a competition
between ambipolar diffusion and the stretching of Bθ.
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Fig. 20. Same as Fig. 16 for run R1-P4 at t = 1000T0. The disk exhibits
both an accreting (inner) and a non-accreting (outer) region.

The region z < 2h is separated from the disk surface. Near
the midplane, it is the HSI that causes the growth of horizon-
tal magnetic field. Near the surface, the feedback loop corre-
sponds to the MRI: the accretion layers stretch Bz into Br, which
is sheared into Bϕ; the resulting stressMzϕ removes angular mo-
mentum from the surface, thereby enhancing the accretion lay-
ers. Ambipolar diffusion is responsible for the saturation of the
HSI in the midplane, and of the MRI at the disk surface.

4.4.4. Coexistence of accreting and non-accreting regions

All the cases presented so far were relatively symmetric with
respect to the disk midplane. In particular, the inward or out-
ward mass streams were located near the midplane. Yet we have
disks exhibiting both accreting and non-accreting behaviors at
the same time. We show the radial transition between two differ-
ent portions of the same disk in Fig. 20.

As mentionned in Sect. 4.1.2, the mass flux actually follows
the Bϕ = 0 layer, where the electric current is extremal. The
transition from an accreting to a non-accreting disk region nec-
essarily comes with the current sheet reaching the surface of the
disk. In a region where Bϕ has a non-accreting phase, there is
no magnetized outflow, and Bϕ ≈ 0 above the disk. In this case,
the mass flux follows closed circulation loops along the current
sheet, inward at the surface and outward in the midplane. At the
intersection with an accreting region, part of this mass flux is
reoriented into the wind, and part of it goes to the midplane.

Fig. 21. Averaged flow poloidal map for run R1-M3 (from 1 au to 10 au,
with moderate Bz < 0) from 800T0 to 1000T0; magnetic field lines are
sampled along the midplane, and the velocity field is indicated with
green arrows over the background toroidal field. The polar asymmetry
and the absence of Bϕ sign reversal within the disk are obvious.

4.5. Vertical symmetry breaking

This section describes a spontaneous breaking of the up/down
symmetry identified in our simulations. It is related to the emer-
gence of a favored magnetic polarity over long time scales.

4.5.1. Overview

Within our stratified setup, the horizontal magnetic flux is free
to leave the disk in the vertical direction. One polarity can be
removed or amplified faster than the other, leaving the disk with
only one sign of Bϕ. This was observed in stratified shearing-
box simulations (Lesur et al. 2014; Bai 2015), but considered
unlikely to be directly connected to a global flow geometry. Fo-
cusing on the horizontal magnetic field, we will refer to these as
even configurations with respect to the disk midplane in opposi-
tion to states showing an odd symmetry.

Such a configuration is illustrated in Fig. 21 for run R1-M3.
The entire disk sees Bϕ < 0; the Keplerian and Hall shears ensure
that Br > 0 is also even about the midplane. In the inner half
of the northern corona, the magnetic field lines do not guide the
velocity field. Because the corona obeys ideal MHD, this implies
that this part of the flow is turbulent, resulting in an effective
“turbulent diffusion” for the time-averaged flow. On the contrary,
the outflow in the southern corona is very laminar and stationary.
A magnetic collimation effect is observed in this hemisphere.
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Fig. 22. Vertical profiles in run R1-M3, averaged in time from 800T0 to
1000T0, and in spherical radius from 6r0 to 8r0. First panel: fluid veloc-
ity, normalized by the local Keplerian value vK; the disk mean value has
been subtracted from the azimuthal component. Second panel: magnetic
field, normalized by the vertically averaged value of Bz. Third panel:
horizontal (solid blue) and vertical (dashed red) magnetic stresses, nor-
malized by the vertically averaged pressure (cf. Eq. (8)). Fourth panel:
radial mass flux (solid blue), and ion minus electron radial velocity, nor-
malized by the local Keplerian velocity and average density.

4.5.2. Vertical structure

The vertical structure of run R1-M3 is represented in Fig. 22.
A strong outflow is launched in the southern hemisphere, with
vθ/vK ≈ 20% at z ≈ −8h. The toroidal velocity is higher than the
local Keplerian value, down to z ≈ −6h. The outflow receives
angular momentum via the Maxwell stressMzϕ, and transports

mass at a rate ṁ−w ≈ 2.6 × 10−7 M⊙ yr−1. Picking a streamline
passing through (r = 6r0, z = −5h), its total angular momen-
tum is 1.5 times larger than the Keplerian value at the wind base,
it crosses the fast-magnetosonic velocity before reaching the do-
main boundary, and its Bernoulli invariant B = 0.28 (v2

K0
/2) > 0.

On the other side, the northern hemisphere displays the prop-
erties of a non-accreting disk (cf. Fig. 17). The radial velocity is
oriented inward at the disk surface, and the outflow has a mod-
erate velocity. The toroidal field Bϕ = 0 at z ≈ 4h, beyond which
the vertical flux of angular momentum is essentially zero.

Because Bz and Bϕ keep the same sign within the disk, the
vertical flux of angular momentum Mzϕ is unidirectional. We
find Mzϕ ≈ 0 for z & +4h, and Mzϕ < 0 below. The gradi-
ent ∂zMzϕ thus takes angular momentum from the disk northern
surface, and transports it toward the southern hemisphere. This
causes both the radial flows at the disk surface, and the magnetic
wind launching in the southern hemisphere. Since Mzϕ ≈ 0 in
the northern corona, the disk is not pumping angular momentum
from the northern domain boundaries.

The fourth panel of Fig. 22 shows an accretion layer at
the northern surface, and a decreting layer at the southern one.
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Fig. 23. Evolution of the symmetry coefficients ιϕ and σϕ in run R1-P2;
data have been averaged over bins of 10T0.

On average, the net mass flux is slowly accreting, with τz =

(−4 ± 5) × 10−7. We have separated the southern and northern
wind mass loss rates ṁ−w and ṁ+w (cf. Eq. (10)). Table 3 confirms
that ṁ−w > ṁ+w when ιϕ × sign (Bz) > 0, i.e., the magnetically
ejecting side transports more mass.

4.5.3. Secular evolution of vertical symmetries

We examine the onset of an even configuration in run R1-P2,
which did not immediately choose a favored polarity. We draw
in Fig. 23 the symmetry coefficients ιϕ and σϕ over time, respec-
tively defined by Eqs. (11) and (12). ιϕ defines the average po-
larity of Bϕ in the disk, whereas σϕ characterizes Bϕ symmetry
across the midplane, the ejecting configurations with accretion
in the disk midplane corresponding to σϕ > 0.

During the first 100 T0, ιϕ ≈ 0 indicates that both polari-
ties of Bϕ are equally present in the disk. The average phase of
Bϕ evolves from an accreting configuration σϕ > 0 to a non-
accreting one σϕ < 0 in this interval. From 100T0 to 200T0, the
increase in ιϕ means that the positive Bϕ > 0 polarity is filling
the disk. The fact that σϕ goes to zero confirms that the disk is
adopting an even Bϕ symmetry.

We consider a space-time window in which the transition
from an odd to an even Bϕ symmetry is taking place (between
t = 120 T0 and t = 130 T0), and look at vertical transport of the
horizontal magnetic field. We decompose the induction of radial
field BR in Fig. 24. In the upper panel, we see that the electric
current layer is displaced of z ≈ −1.5h from the midplane, co-
inciding with the current sheet where Br = 0. This current layer
keeps drifting downward in time, and eventually leaves the disk
(fourth panel of Fig. 22).

In the lower panel of Fig. 24, we show that the transport of
negative BR < 0, from the midplane toward the southern sur-
face, is mainly driven by ambipolar diffusion. The outflow and
Hall contributions have a negligible impact on this process. Sim-
ilar symmetry-breaking solutions have been observed in shear-
ing box simulations (Lesur et al. 2014; Bai 2015). The cause of
this phenomenon is yet unknown, but it appears to be robust.

4.6. Self-organization: zonal flows

This section describes the emergence of zonal flows in our sim-
ulations, characterized by axisymmetric density rings, together
with magnetic field accumulations.
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Fig. 24. Vertical profiles in run R1-P2, averaged in time between 120T0

and 130T0, and in spherical radius between 5.5r0 and 6r0; upper panel:
sonic Mach number for the radial Alfvén velocity (solid blue) and elec-
tron minus ion velocity, normalized by the Keplerian velocity (dashed
red); lower panel: induction of radial magnetic field.

4.6.1. Overview

We illustrate in Fig. 25 the morphology of the flow in run R1-P2.
We see a series of density bumps in the disk, radially separated
by approximately the local disk thickness 2H. The magnetic flux
is concentrated in low density regions, and this foliation is main-
tained in both coronae. Some magnetic flux accumulations can
momentarily be as narrow as eight grid cells in the disk. How-
ever, with a magnetic Reynolds number RA ≈ 3, we believe that
this width is primarily attributed to physical diffusivity and not
numerical diffusion. This run also displays an even Bϕ symme-
try, causing the tilting of magnetic field lines through the disk.
As in run R1-M3 (cf. Fig. 21), ejection is thermally driven in the
northern corona, and magnetically enhanced in the southern one.

Density and magnetic field fluctuations are anti-correlated.
Table 3 shows that runs with Bz < 0 or β > 5×103 do not exhibit
such structures. These are the runs in which the disk midplane is
Hall-shear stable, or has linear growth rates smaller than 0.01Ω.
Because our 3D simulations were integrated over shorter time
intervals, the indicated number of zonal flows cannot directly be
compared between equivalent 2D and 3D runs.

4.6.2. Self-organization mechanism

The induction of Bz is governed by the toroidal electromotive
force (EMF), the same as in Eq. (21):
〈

∂Bz

∂t

〉

ϕ,z

= −1

r

∂

∂r

〈

r (EI + EO + EH + EA)ϕ
〉

ϕ,z
, (23)

so the average Bz increases in time where Eϕ decreases with ra-
dius. The ideal, Hall and ambipolar EMFs can be expressed as:

EI ≡ −u × B, EH ≡ ℓH J × B, EA ≡ ηA J⊥, (24)

J⊥ ≡ J −
(

J · B
B · B

)

B. (25)

Fig. 25. Averaged flow poloidal map for run R1-P2 (from 1 au to 10 au,
with strong Bz > 0), from 500T0 to 700T0; magnetic field lines are
sampled along the midplane, and the velocity field is indicated with
green arrows over the background density field. Magnetic field lines are
accumulated in low density rings.

The first panel of Fig. 26 shows the anti-correlated fluctua-
tions of density and magnetic field. In the second panel, we
plot the averaged EMFs. The ohmic contribution has been omit-
ted for it is negligible and cannot confine magnetic flux. The
ideal term EIϕ increases with radius at the location of each mag-
netic field concentration. The velocity field thus acts as a turbu-
lent diffusion. The ambipolar term precisely balances the ideal
one, so it decreases with radius at the location of each band.
This was already noted by Bai & Stone (2014; see their Fig. 8).
Ambipolar diffusion is therefore responsible for the accumu-
lation of Bz. Apart from being negligible by a factor 50, the
Hall term acts against the accumulation of magnetic flux. Hall-
driven self-organization requires the magnetic stress and flux
to be anti-correlated (Kunz & Lesur 2013). This is possible in
non-stratified simulations, when the net magnetic flux becomes
strong enough to stabilize the HSI. In stratified simulations, the
wind-driven stress −BϕBp is known to correlate with the net
magnetic flux for β ≫ 1 (Lesur et al. 2014). Self-organization
can thus be inhibited if the wind drives the magnetic stress in
Hall-shear stable (i.e., strong field) regions.

The direction of the ambipolar EMF is given by the elec-
tric current projected perpendicularly to the local magnetic field.
Upon projection, the sign of the toroidal component J⊥ϕ can be-
come opposed to the sign of Jϕ. This is what happens in our
simulations featuring zonal flows, as shown in the bottom panel
of Fig. 26. In this case, the toroidal component of EA yields a
negative effective resistivity (cf. Eq. (24)).
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Fig. 27. Ambipolar-driven self-organization mechanism: the electric
current J is mainly radial, and the magnetic field B is mainly toroidal;
as a result, the signs of Jϕ and J⊥ϕ are opposed; this is equivalent to a
negative diffusivity for Bz (cf. Eq. (24)).

The typical configuration occurring in such simulations is
sketched in Fig. 27. The magnetic field is mainly toroidal in
the disk, and the dominant component of J is the radial one.
The signs of Jϕ and J⊥ϕ are opposed, and they remain opposed
when flipping the orientation of J and/or B. Ambipolar diffusion
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Fig. 28. Radial profiles of normalized stress in R1-P2, averaged in time
between 500T0 and 700T0.

remains a dissipative process when considering all three spatial
directions. With J⊥ ≃ Jr and ∂ϕ ≃ 0, the diffusion occurs pri-
marily on Bϕ in the vertical direction. We verified that the same
sign inversion occurred in the ambipolar run ABS presented by
Béthune et al. (2016), which also featured magnetic flux concen-
trations without Hall drift.

We show in Fig. 28 the radial profiles of magnetic stress in
the saturated state containing zonal flows. The radial stressMrϕ

is maximal in regions of magnetic field accumulation. The re-
sulting stress divergence pushes mass away from stress maxima,
causing the observed anti-correlation between Bz and ρ.

4.6.3. Hydrodynamic properties and saturation mechanism

Zonal flows refer to quasi-steady deviations from the Keplerian
rotation profile of the disk. We characterize these by the fluctu-
ations of angular velocity Ω relative to the Keplerian one ΩK,
and by the dimensionless shear q ≡ ∂logΩ/∂log r. The radial
profiles of these two diagnostics are drawn in Fig. 29 for run
R1-P2, showing five distinct oscillations. Since β ≫ 1, mag-
netic pressure gradients do not provide a significant support
against gravity. Given the density fluctuations, the deviations
from a Keplerian profile follow the condition of geostrophic
equilibrium:

v′ϕ ≡ vϕ − vK ≃
c2

s

2ΩK

1

ρ0

∂

∂r

[

ρ − ρ0

]

. (26)

One important issue regarding zonal flows is their ability to trap
dust particles (Weidenschilling 1977). Several objects have now
revealed axisymmetric structures in their dust distribution, such
as rings and gaps (Brogan et al. 2015; Nomura et al. 2016). One
possible scenario involves zonal flows. Dust particles undergo a
drag force from the gas as they orbit the star at the local Kep-
lerian velocity, whereas the gas can rotate slower or faster de-
pending on its radial pressure gradient. If the gas rotates faster, it
will transfer angular momentum to the dust and make it migrate
outward, or inward if it rotates slower. Dust grains are thus accu-
mulated in pressure maxima. We prove in Fig. 29 that the zonal
flows produced in our simulations are actually able to cause tran-
sitions from sub- to super-Keplerian rotation. These zonal flows
would therefore act as dust traps.

The profile of dimensionless shear is superimposed to the ro-
tation profile in Fig. 29, and tells us about the saturation of this
process. In the limit q→ −2, the distribution of specific angular
momentum is flat and the flow is marginally stable with respect
to Rayleigh’s criterion. This criterion appears to set the lower
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Fig. 30. Space-time diagram of vertically and azimuthally averaged βz

in runs R1-P3 (upper panel) and 3D-R1-P3 (lower panel); only the first
300T0 of the two-dimensional run are shown.

bound for the shear, as if any deviation q < −2 would instantly
reorganize the flow to prevent hydrodynamic instability. How-
ever, we do not observe any evidence of purely hydrodynamic
turbulence in these simulations. The disk therefore never crosses
the Rayleigh line.

4.6.4. Three-dimensional simulations

We now ascertain that these structures are not restricted to two-
dimensional simulations. The formation of axisymmetric rings
in run R1-P3 and in its three-dimensional equivalent run 3D-
R1-P3 are shown in Fig. 30. We observe the emergence of zonal
flows on the same time-scale at about the same location, and with
the same radial separation. The structures form very early in the
simulation (50T0 at 4r0, i.e., five local orbits), the contrast in βz ≡
2P/B2

z increases in time up to two orders of magnitude. They
evolve over hundreds of local orbits, but we still count seven
bands in run R1-P3 after 1000T0.
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Fig. 31. Symmetry coefficients σϕ and ιϕ in our set of 2D simula-
tions, averaged over representative time intervals; colors indicate the
initial midplane magnetization β, blue corresponding to Bz < 0; runs
in [1, 10] au are plotted with circles, runs in [10, 100] au are plotted
with squares; different background colors correspond to different disk-
corona temperature contrast k; the error bars correspond to standard de-
viations over time.

The present self-organization phenomenon is thus not in-
hibited in three-dimensional simulations. Regarding the non-
axisymmetric stability of these structures, they could be Rossby
wave unstable for the criterion given by Lovelace et al. (1999).
Nevertheless, run 3D-R1-P3 proves that they are stable over
20 local orbits to all modes fitting in a quarter disk. Three-
dimensional simulations of a full disk with an increased reso-
lution and/or a less diffusive numerical scheme will be required
to confirm their stability over long time scales.

5. Discussion

5.1. Large-scale configuration of the magnetic field

We gather the symmetry coefficients σϕ and ιϕ from Table 3,
and plot them in Fig. 31. We distinguish three populations in
this area. Runs with Bz < 0 are the only ones on the right half
of the figure (σϕ > 0), i.e., overall loosing angular momentum
in the wind and therefore accreting. The blue square associated
with run R10-M3 is close to the origin, because its outer half is
accreting while the inner half is non-accreting. On the left side
σϕ < 0, we find runs with a positive and weak magnetic field.
The third population is located near (σϕ, ιϕ) ≈ (0,±1), i.e., only
one sign of Bϕ in the disk, accreting in one hemisphere and non-
accreting on the other. These runs mostly have Bz > 0 and a
strong magnetization β ≤ 5 × 103.

It is tempting to see a correlation between the sign of Bz

and the presence of magnetized outflows. However, we believe
that this correlation is fortuitous. Indeed, the vertical phase of Bϕ
seems to be set at least partially by the noise injected in our initial
conditions. This is illustrated in Fig. 32 showing the evolution of
Bϕ as a function of time. From 10T0 to 40T0, the MRI amplifies
Bϕ at z ≈ 3h, causing σϕ to alternate from positive to negative
as the instability saturates and eventually settles with σϕ > 0. In
this example, σϕ > 0 is clearly set by the initial phase and satu-
ration mechanism of the most unstable MRI mode, which itself
depends on how the MRI was initially seeded.
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Fig. 32. Evolution of the toroidal magnetic field Bϕ along a vertical
cut at r = 5r0 and over the first 150T0 (color scale) of run R10-M3-
C2 (accreting); values have been normalized by the initial, unsigned
vertical field at this radius.

Several hundred inner orbits later, one polarity of the toroidal
magnetic field can be vertically removed out of the disk, leading
to a one-sided outflow. Among these runs with ιϕ = ±1, most

have Bz > 0 and β < 5 × 104, the exception being run R1-M3.
These configurations are stable attractors in the sense that these
disks never return to an odd symmetry of Bϕ about the midplane.

5.2. Magnetothermal winds

We have shown that all runs display a vertical outflow, al-
though it is disorganized for non-accreting disks (cf. Sect. 4.4).
We observed no difference between two and three-dimensional
winds. Our winds exhibit several properties of steady-state,
magnetically-driven jets. However, they become super-Alfvénic
before reaching the ideal MHD regime, contrarily to all pub-
lished models of magnetically-driven jets from accretion disks.
This could explain why, although they also heated the base of
the wind, Casse & Ferreira (2000) never achieved an ejection
efficiency as high as the one we obtain. It should be possible
to design models going continuously from thermally-driven to
magnetically-driven winds. Our simulations provide such a link.

One important control parameter for magnetically-driven
winds is the disk magnetization (1/β). At a comparably low
disk magnetization, Murphy et al. (2010) also obtained super-
fast-magnetosonic winds, but with a larger magnetic lever arm
(see their Figs. 8 and 14, and also Stepanovs & Fendt 2016).
However, they used constant α viscosity and resistivity coeffi-
cients, with prescribed vertical profiles to mimic turbulent trans-
port in the disk. This suggests that different transport regimes
within disk may lead to different wind properties.

We plot the wind mass loss rate ṁW of our two-dimensional
runs in Fig. 33 as a function of the midplane magnetization β.
Runs R1-M3 (blue circle) and R10-P3 (red square), both of
which have ιϕ = ±1 (cf. Fig. 31), also have higher mass loss
rates than the other simulations of the same radial range. Given
this degree of freedom, we find no clear dependence of ṁW with
the polarity of the initial magnetic field alone. There is no appar-
ent correlation of ṁW with the temperature contrast k either.

The wind mass loss rate typically scales as ṁW ∼ β−1/2 in
runs R1 and R10 taken separately. This is consistent with the
shearing-box measurements of Bai & Stone (2013), regardless
of the fast-magnetosonic point being crossed in the computa-
tional domain (see Sect. 4.1.4 of this paper, and Sect. 3.4 of

102 103 104 105

β

10−6

10−5

10−4

ṁ
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Fig. 33. Wind mass loss rate relative to the disk mass ṁW/md as a func-
tion of the initial midplane magnetization β; the symbols and color
coding are the same as in Fig. 31; the two dashed lines indicate the
ṁW ∼ β−1/2 scaling for R1 and R10 runs, bottom and top, respectively.

Lesur et al. 2013). In physical units, the wind mass loss rate is

ṀW ≈ 2 × 10−2
(

r0

1 au

)−1/2
(

ṁW

md

)

· (27)

The fact that ṁW/md increases by a factor 4 ≈
√

10, from R1
runs to R10 runs, means that ṀW is roughly independent of the
inner radius. We can sum the contributions over [1, 100] au to
get

ṀW ≈ 3 × 10−5β−1/2 M⊙ yr−1. (28)

6. Summary

We have performed global simulations of protoplanetary disks
in the non-ideal MHD framework. Our model includes both ra-
dial and vertical density stratification, spanning one decade in
radius to separately cover the ranges from 1 au to 10 au and
from 10 au to 100 au, with 20 disk scale heights vertically. The
ionization fraction is computed dynamically, and all three non-
ideal MHD effects are accounted for. The disk is embedded in a
warm corona, with several temperature contrasts.

In the disk, the flow is essentially laminar and evolves over
hundreds of local orbital periods. Angular momentum is trans-
ported by a large-scale magnetic stress, unsuited for an α vis-
cosity prescription. The radial transport of angular momentum
causes no net mass accretion in our disk model. The vertical
flux of angular momentum can take both orientations through
the disk. If angular momentum is transported from the disk mid-
plane to the surface, then a magnetized wind is launched and the
disk accretes at rates on the order of 10−7 M⊙/yr. Conversely,
angular momentum can be transported from the disk surface to
the midplane, resulting in a large-scale meridional circulation.
This circulation is characterized by the gas flowing radially in-
ward at the surface, and outward in the midplane. In this case,
a turbulent and low density wind is observed, causing no net
mass accretion. Accreting and non-accreting regions can coex-
ist in one single disk, the boundary between the two domains
evolving on secular timescales. The Hall drift can reduce the an-
gular momentum flux in the midplane, depending on the polarity
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of the vertical magnetic field threading the disk, but the overall
contrast in stress is only within a factor of three.

Because of the presence of a warm corona, the winds we
obtain are magnetothermal. They constitute a new class of solu-
tions because the plasma can reach super-Alfvénic speeds before
entering the ideal MHD regime. The mass loading of the wind
is driven by the Lorentz force, but the subsequent acceleration is
predominantly thermal. We have linked the wind mass loss rate
to the disk magnetization, and recovered the ṁW ∝ β−1/2 rela-
tion. Several of our simulations also exhibit asymmetric winds
where magnetic ejection occurs on one side of the disk only. We
have associated this state with the expulsion of the electric cur-
rent sheet, usually located near the disk midplane. We speculate
that this configuration is a stable attractor for the disk, allowing
it to evacuate angular momentum at higher rates than the sym-
metric situation. One-sided molecular outflows (Pety et al. 2006)
could be a consequence of such magnetic configurations.

Finally, we have identified a self-organization process lead-
ing to the formation of axisymmetric density rings. To these den-
sity rings are associated zonal flows, able to trap dust particles.
The vertical magnetic flux becomes concentrated in density min-
ima. We have argued that ambipolar diffusion alone is responsi-
ble for this process. Bai & Stone (2014) also observed enhanced
magnetic flux concentrations in MRI turbulence simulations.
They proposed a mechanism driven by ideal MHD electromo-
tive forces. In our case, we have shown that the concentration
mechanism relies solely on ambipolar diffusion. We are there-
fore looking at a different mechanism from the one they pro-
posed. We presume that Gressel et al. (2015) did not observe this
phenomenon because of the lower magnetization and ionization
fraction in their simulations. We have shown that the Hall drift
works against the confinement of magnetic flux in our case. This
demonstrates that Hall-driven self-organization (Kunz & Lesur
2013; Béthune et al. 2016) is inefficient in stratified simulations,
as already suggested by stratified shearing boxes (Lesur et al.
2014; Bai 2015).

We note that we have not explored systematically the global
transport of poloidal magnetic flux in our simulations. The
poloidal field being a key ingredient for MHD winds, any
long-term prediction for the evolution of these disks implies
a parametrization for the evolution of this field (Suzuki et al.
2016). This transport depends strongly on the vertical disk struc-
ture (e.g. Guilet & Ogilvie 2012, 2013), and non-ideal effects
add more complications to this picture (Bai & Stone 2016). In
our simulations, we found that transport of flux was highly sen-
sitive to the presence of self-organized structures, which act as
physical boundaries for the radial transport of poloidal field. This
is to be expected since self-organization is after all a conse-
quence of poloidal flux transport. For this reason, we believe that
any description of poloidal flux transport needs to incorporate
the possibility of self-organization, without which flux transport
could be largely overestimated.

The main caveats of our study are related to the thermo-
dynamics and chemistry of protoplanetary disks. The validity
of our prescription for the temperature distribution should be
compared with self-consistent, radiative transfer simulations. By
omitting small dust grains, we may also have severely underesti-
mated the magnitude of non-ideal plasma effects. Our main jus-
tification is practical in nature since both these treatments come
with large computational overhead. These limitations will need
to be addressed in future work.
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Appendix A: Initial conditions

We construct steady, locally isothermal, hydrodynamic disk so-
lutions to the mass and momentum Eqs. (3) and (4). We first pre-

scribe an isothermal sound speed distribution cs ≡
√

∂P/∂ρ. The

use of c2
s = c2

0
(r/r0)α helps building simple analytical solutions.

The distance unit r0 = 1 in this section. With the gravitational
potential Φ = −1/R, the momentum equations in spherical coor-
dinates can be written

v2ϕ

R
= c2

s∂R log(ρ) +
αc2

s

R
+

1

R2
, (A.1)

cot(θ)v2ϕ = c2
s∂θ log(ρ) + α cot(θ)c2

s . (A.2)

We can isolate vϕ and equate the two lines; defining f ≡ log(ρ),
x ≡ log(R) and y ≡ − log(sin(θ)), we obtain

(

∂x + ∂y
)

f = − 1

Rc2
s

=
1

c2
0

exp (− (α + 1) x + αy) . (A.3)

This can be solved by the method of characteristics, once a mid-
plane density profile ρ(r, z = 0) = ρ0(r/r0) n has been prescribed:

ρ(R, r) = ρ0

(

r

r0

)n

exp

[

1

c2
s (r)

(

1

R
− 1

r

)]

, (A.4)

and it is straightforward to obtain for the velocity field

v2ϕ(R, θ) =

(

1 − (α + 1)

(

1 − 1

sin(θ)

))

1

R
+ (n + α) c2

s (R, θ). (A.5)

To have a constant opening angle of the disk, we set a constant
sound to Keplerian speed ratio: cs,disk/vKepler = 5%, i.e., α =
−1. In this case, the disk midplane density must decrease with
n = −2 in order to produce the desired surface density profile

Σ(r) ≡
∫

ρdz ∼ r −1.
We define the disk-corona transition as the location where

the disk equilibrium density is one thousandth of the local mid-
plane density: ρ(r, zi) = 10−3ρ(r, z = 0). The transition angle is
then given by sin(θi) = 1 + log(10−3) (h/r)2, corresponding to a
constant zi ≈ 3.72h ≡ H.

At a given cylindrical radius, the isothermal sound speed is
increased up to a factor k higher than the midplane value. This
ratio of corona to disk temperature is constant with cylindrical
radius, and fixed to k = 6 for most runs. The transition from
the disk to the warm corona is smoothed in the interval sin(θ) ∈
[sin(θi) − 0.2(h/r), sin(θi)], such that

cs,corona(r, θ) = cs,disk(r, θi) ×
(

1 + (k − 1)
sin(θi) − sin(θ)

0.2(h/r)

)

, (A.6)

in order to avoid strong gradients and, if possible, resolve the
physics at the transition. The gas in the corona is thus fully
heated at a height zc/h ≈ 4.68.

The coronal density distribution takes the same form as in
Eq. (A.4), except this time the solution is extended from the
disk surface and not from the midplane. In order to continu-
ously match the isothermal pressure fields Piso ≡ ρc2

s at the in-
terface, the factor ρ0 in Eq. (A.4) must be replaced by ρ0 7→
ρ(R, θi)

[

cs,disk(R, θi)/cs,corona(R, θ)
]2

.
The velocity field in the corona takes exactly the same form

as (A.5). Due to the vertical temperature gradient, there is a ver-
tical shear in azimuthal velocity in the transition layer ∂zvϕ , 0;
we verified via hydrodynamic simulations that this layer quickly

relaxes to a steady and stable state. We add a white noise to the
three components of the initial velocity field, with amplitude 1%
of the local sound speed, so as to quickly trigger the MRI.

The initial magnetic field has only Bz , 0. It is initialized via
its vector potential B = ∇× A to ensure the solenoidal condition
∇ ·B = 0 from the beginning. To set a constant average/midplane
β, the magnetic field intensity must decrease as r−3/2, whence
Aϕ = 2B0

√
r0/r, with B0 the intensity of the magnetic field at the

inner radius r0 (see the appendix of Suzuki & Inutsuka 2014).
The initial conditions deviates from a true MHD equilibrium,
but only at order 1/β.

Appendix B: Boundary conditions

Three dimensional simulations are periodic in the azimuthal di-
rection. The remaining boundary conditions are listed below.
These boundary conditions are designed to prevent boundary-
driven flows while remaining relatively simple. To isolate the
corners at the inner radial boundary, we define the critical radius
rc/r0 ≡ (1 + sin(π/2 − θ0))/2, with θ0 = 20(h/r) the polar extent
of the computational domain in one hemisphere.

– ρ: zero gradient through all boundaries, with a lower bound
ρc = 10−6ρ0 at the inner radial boundary;

– P: isothermal distribution ρcs(r, θ)
2 at all boundaries;

– vR: zero gradient through all boundaries; outward cs(R, θ) as
lower bound at the outer radial boundary in the corona;

– vθ: zero gradient through all boundaries; outward cs(R, θ) as
lower bound at both polar boundaries;

– vϕ: zero gradient through polar and outer radial boundaries;
at the inner radial boundary: initial Keplerian velocity in the
disk, constant angular velocity vϕ/R in the corona;

– BR: zero gradient through polar boundaries if r > rc, zero
value otherwise;

– Bθ: zero value at inner radial boundary, zero gradient through
outer radial boundary;

– Bϕ: zero gradient through radial and polar boundaries if r >
rc, zero value otherwise.

We complete these boundary conditions with buffer zones, inside
the computational domain to limit the influence of the bound-
aries on the disk. The inner buffer includes both the disk and
the corona in {(R, θ) | R < 1.05r0}. The outer buffer includes only
the disk in {(R, θ) | R > 9.5r0} ∩ D. Let wb be the radial width
of the considered buffer. Within the buffer, we explicitly relax a
given field X to some prescribed distribution X0:

∂X

∂t
(t) = − f × m × (X(t) − X0) , (B.1)

with a characteristic frequency scale

f (R, θ) ≡ 5 ×
(

ΩKepler(R, θ) + cs(R, θ)/wb

)

, (B.2)

and a linear modulation m(R), equal to 1 at the domain boundary
and 0 at the other edge of the buffer (in the active domain). Only
the three components of the velocity field are modified inside the
buffers in continuity with the boundary conditions:

– vR: relaxed to zero at both boundaries;
– vθ: relaxed to maintain a constant angular velocity vθ/R, sam-

pled at the edge of the buffer on the active domain side;
– vϕ: relaxed to the initial velocity in the disk region of both

buffers, and to a constant angular velocity vϕ/R in the corona
region of the inner buffer, also sampled at the buffer edge.
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Appendix C: Internal conditions

In addition to the buffer zones, we control the values of each
computational grid cell and at each time step. The first reason is
to avoid excessively high Alfvén velocities, imposing small time
steps to satisfy the CFL stability criterion. This is one of the
main difficulties with global, stratified MHD simulations includ-
ing a net magnetic flux. A common remedy is to impose a lower
bound, i.e., a floor value on the density. However, we checked
that arbitrarily low densities are well handled in the absence of
magnetic field, and we found that a density floor could produce
significant pressure gradients in the outer corona. We therefore
increase the density only when the Alfvén velocity becomes too
large. With our prescribed temperature distribution, the Alfvén
velocity seldom reaches vA . v0, which we set as its upper limit.

The second control performed on the whole computational
domain is related to the gas temperature distribution. Since we
do not solve for the radiation field, we enforce a locally isother-
mal equilibrium, i.e., a constant sound speed distribution c0(r, z).
For a steady toroidal flow, the vertical shear of azimuthal veloc-
ity is given by

∂

∂z

v2ϕ

r
=

[

∇P × ∇ρ
ρ2

]

· eϕ, (C.1)

which depends on the thermodynamics of the flow. Our lo-
cally isothermal equilibrium has a non-zero vertical shear,
and is therefore subject to the vertical shear instabil-
ity (Goldreich & Schubert 1967; Fricke 1968; Urpin &
Brandenburg 1998). It was shown by Nelson et al. (2013) that
this instability could be strongly attenuated by letting the en-
tropy distribution reorganize, and then relaxing the temperature
distribution over a fraction of orbital period. For this reason, we
evolve the total energy density assuming an ideal gas:

E ≡ P

γ − 1
+

1

2

(

ρv2 + B2
)

+ ρΦ, (C.2)

∂tE = −∇ ·
[(

E + P + B2/2
)

u − (u · B) B
]

(C.3)

with γ = 7/5 corresponding to cold diatomic molecules. We then

bring the isothermal sound speed cs ≡
√

P/ρ back to its initial
distribution, over a fraction of local orbital period:

∂p

∂t
(r, z, t) = −Ω(r)

ǫ

(

p(r, z, t) − ρ(r, z, t) c2
0(r, z)

)

. (C.4)

Radiative transfer simulations predict short cooling rates in the
bulk of the disk (Flock et al. 2013; Stoll & Kley 2014). We ver-
ified via hydrodynamic simulations that ǫ = 1/10 would, in-
deed, force this instability to saturate at an imperceptibly small
level. This value is comparable to the threshold derived by
Lin & Youdin (2015) with our set of parameters, ǫ0 ∼ 1/8.

Appendix D: Caps on non-ideal MHD effects

We apply two different limiters on non-ideal effects. In the
first place, our simplified chemical model cannot properly rep-
resent the strong degree of ionization high in the corona. We
therefore multiply the diffusivities ηO,H,A in Eq. (5) by a factor

exp
(

−xe/10−8
)

. This coefficient ensures a smooth decrease of

the ambipolar diffusivity until up to eight scale heights.
Because we use an explicit integration scheme, all three

non-ideal effects impose severe constraints on the admissible
timesteps satisfying the Courant-Friedrich-Lewy (CFL) stabil-
ity criterion. We add a second cap to prevent excessively small
timesteps. The strongest constraint come from the Hall drift,
so we choose to limit the ratio ℓH/h(r) ≤ 4. This limit affects
only the inner region r . 2.3r0 for runs at r0 = 1 au, and
does not concern runs at r0 = 10 au. The ohmic and ambipolar
diffusivities are limited via their associated Reynolds numbers
RO,A ≡ Ωh2/ηO,A ≥ 1/4. This limiter only affects ambipolar dif-
fusion in the surface layers z & 3h of the disk. Once we have
applied the first cap on the ionization fraction, this second lim-
iter forces the saturation values of ηA only in runs R1-P2 and
R10-P2, i.e., where the initial magnetization is the strongest. In
these two runs, the Reynolds number is saturated at RA ≈ 1/4 in
the surface layers from z >∼ 2.6h to 3h.
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