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deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, 

and 0.96 ± 0.03 for Dark-Black. When using a 5-category, 

this resulted in 0.74 ± 0.05 for Very Pale, 0.72 ± 0.03 for 

Pale, 0.73 ± 0.03 for Intermediate, 0.87±0.1 for Dark, 

and 0.97 ± 0.03 for Dark-Black. A comparative analysis 

in 194 independent samples from 17 populations demon-

strated that our model outperformed a previously proposed 

10-SNP-classifier approach with AUCs rising from 0.79 

to 0.82 for White, comparable at the intermediate level of 

0.63 and 0.62, respectively, and a large increase from 0.64 

to 0.92 for Black. Overall, this study demonstrates that the 

chosen DNA markers and prediction model, particularly 

the 5-category level; allow skin colour predictions within 

and between continental regions for the first time, which 

will serve as a valuable resource for future applications in 

forensic and anthropologic genetics.

Abstract Human skin colour is highly heritable and 

externally visible with relevance in medical, forensic, and 

anthropological genetics. Although eye and hair colour can 

already be predicted with high accuracies from small sets 

of carefully selected DNA markers, knowledge about the 

genetic predictability of skin colour is limited. Here, we 

investigate the skin colour predictive value of 77 single-

nucleotide polymorphisms (SNPs) from 37 genetic loci 

previously associated with human pigmentation using 2025 

individuals from 31 global populations. We identified a 

minimal set of 36 highly informative skin colour predictive 

SNPs and developed a statistical prediction model capable 

of skin colour prediction on a global scale. Average cross-

validated prediction accuracies expressed as area under the 

receiver-operating characteristic curve (AUC) ± standard 
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Introduction

Predicting phenotypes from genotypes is a component of 

complex genetics that has etched its way into many dis-

ciplines including personalized medicine, forensic genet-

ics, anthropological genetics, and consumer genetics, 

depending on the particular phenotype that is predicted 

from DNA information. The ability to predict human 

phenotypes with genetic markers has been of continual 

interest and significant progress has been made, not only 

in these applied disciplines, but also to more fundamental 

genetics researchers as it paves the way to find out why 

certain DNA markers are found to be associated with cer-

tain phenotypic traits.

In the case of eye colour, one of the first physical 

appearance traits to be studied for predictability from 

DNA, elucidation of its associated DNA markers (Duffy 

et al. 2007; Eiberg et al. 2008; Frudakis et al. 2003, 2007; 

Graf et al. 2005; Han et al. 2008; Kanetsky et al. 2002; 

Kayser et al. 2008; Liu et al. 2010; Posthuma et al. 2006; 

Rebbeck et al. 2002; Sturm et al. 2008; Sulem et al. 2007, 

2008; Zhu et al. 2004), and subsequent step-wise ranking 

on how suitable they were for phenotype prediction (Liu 

et al. 2009) led to the introduction, further development, 

and forensic validation of the IrisPlex system (Chaitanya 

et al. 2014; Walsh et al. 2011a, b, 2012). It achieved aver-

age prediction accuracies, expressed as Area Under the 

receiver-operating characteristic Curve (AUC), of 0.94 

for blue, 0.95 brown, and 0.74 for intermediate (Walsh 

et al. 2014), and was used in practical applications (Dem-

binski and Picard 2014; Kastelic et al. 2013; Yun et al. 

2014). Moreover, it was demonstrated that for the SNP 

with the highest prediction rank, rs12913832 from intron 

86 of the HERC2 gene, the two alleles act as a molecu-

lar switch regulating expression of the nearby OCA2 gene 

via long-distance enhancer function (Visser et al. 2012).

For human hair colour, gene mapping studies also 

identified numerous highly associated SNPs (Box et al. 

1997; Branicki et al. 2007, 2008a; Fernandez et al. 2008; 

Flanagan et al. 2000; Graf et al. 2005; Grimes et al. 2001; 

Han et al. 2008; Harding et al. 2000, 2002, Kanetsky 

et al. 2004; Mengel-From et al. 2009; Pastorino et al. 

2004; Rana et al. 1999; Sulem et al. 2007, 2008; Valen-

zuela et al. 2010; Valverde et al. 1995; Voisey et al. 2006), 

22 of which proved decidedly predictive for hair colour 

categories (Branicki et al. 2011). From this, and previous 

eye colour knowledge, the HIrisPlex system was devel-

oped and forensically validated for combined eye and 

hair colour prediction from DNA achieving AUCs of 0.92 

for red, 0.85 for black, 0.81 for blond, and 0.75 for brown 

(Draus-Barini et al. 2013; Walsh et al. 2013, 2014). The 

HIrisPlex DNA markers and prediction models were used 

in what has been referred to as the oldest forensic case to 

date—King Richard III (King et al. 2014) as well as in 

anthropological estimations of ancestral physical appear-

ance (Cassidy et al. 2016; Gallego-Llorente et al. 2016; 

Gamba et al. 2014; Jones et al. 2015; Martiniano et al. 

2016; Olalde et al. 2015).

Skin coloration, however, is a more difficult physical 

appearance trait to examine genetically and to elucidate 

how its associated markers can be ranked for prediction, 

due to its population specific influence (Jablonski and 

Chaplin 2000, 2013). The maximal skin colour difference 

between people from different continents, as a result of 

environmental adaptation and consequence of the out of 

Africa migration (Liu et al. 2006), leads to a restriction in 

gene mapping studies. Genome-wide association studies 

(GWASs) are typically conducted in genetically homogene-

ous samples to avoid, as much as possible, the false posi-

tives that may be produced due to different genetic back-

ground between study samples. Therefore, GWASs on skin 

colour that are performed within continental groups such as 

Europeans (Han et al. 2008; Liu et al. 2015; Sulem et al. 

2008) or South Asians (Edwards et al. 2010; Stokowski 

et al. 2007) basically identified a list of SNPs explaining 

subtle skin colour variation within each continental group, 

but in principle cannot reveal a complete list of skin col-

our-associated SNPs. Consequently, a previously described 

prediction model built on exclusively European subjects 

using SNPs identified in a European skin colour GWAS 

(Liu et al. 2015) had no power to predict skin colour differ-

ences between non-European continents, such as East Asia, 

Africa, and Native Americans, where considerable skin col-

our differences exist (Liu et al. 2015). Conversely, previ-

ously described skin colour prediction models developed 

from multi-ethnic data (Maroñas et al. 2014; Valenzuela 

et al. 2010) had no power to predict skin colour differences 

within continental groups, such as within Europeans. Note-

worthy, a model combining many of these associated SNPs, 

allowing both DNA-based skin colour prediction within 

and between continents, has not been described thus far.

The early attempts at predicting skin colour pheno-

types from DNA were highly limited in their outcomes 

(Mushailov et al. 2015; Spichenok et al. 2011; Valenzuela 

et al. 2010). More recently, Maroñas et al. (2014) published 

a skin colour prediction study examining 59 pigmentation-

associated SNPs in two populations, Africans and Euro-

peans as well as a subset of admixed African-Europeans. 

Upon training their Bayesian classifier model with a set of 

280 individuals, the authors decided on a set of 10 SNPs 

that together achieved AUC values of 0.999 for white, 

0.966 for black, and 0.803 for intermediate skin colour. 

However, due to the low numbers used in the validation 

set (n = 118) and the limited populations and individuals 

studied, it is worthwhile to re-examine these prediction 

accuracies on a more extensive global scale. Moreover, the 
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previous studies treated Europeans as one group in their 

prediction analysis (i.e., light skin colour), thereby ignoring 

the level of skin colour variation from very pale via pale to 

intermediate that exists among people of European descent.

In an effort to circumvent the current limitations in pre-

dicting skin colour from DNA, we tested a large number of 

SNPs previously associated with human pigmentation traits 

in a considerable number of individuals from worldwide 

populations to investigate their skin colour predictive value. 

As skin colour phenotypes, we used skin types obtained 

from the Fitzpatrick scale, which is of widespread use in 

dermatology research and clinical practice. The Fitzpatrick 

scale groups individuals based on both visually perceived 

skin colour and skin sensitivity to sun, including tanning 

ability; the latter being important to differentiate between 

Europeans of differing light skin tones. We selected a set of 

the most skin colour informative SNP predictors and built 

a statistical model for predicting skin colour from DNA 

on a global scale using 3 and 5 skin colour categories. In 

addition, we directly compared the prediction outcomes of 

our newly developed skin colour model with a previously 

developed model using a separate set of global individuals 

not previously involved in SNP predictor selection, model 

building, and model testing.

Materials and methods

Samples and skin colour phenotyping

We used 1159 individuals from Southern Poland, 347 indi-

viduals from Ireland, 119 from Greece, and 329 individu-

als living in the USA (parental place of birth for many of 

these individuals is outside the US; these include Nigeria, 

Mexico, Argentina, Columbia, India, Bangladesh, Cuba, 

Palestine, Canada, China, Honduras, Germany, Philip-

pines, Russia, Sudan, Japan, Saudi Arabia, Pakistan, El 

Salvador, Spain, Haiti, South Korea, Vietnam—see online 

resource information 1). Informed consent was obtained 

from all individual participants included in the study and 

was approved by ethical committees of the cooperating 

institutions. Also included in this study were 71 individu-

als from the HGDP-CEPH (Rosenberg 2006) set, i.e., from 

Senegal (n = 21), Nigeria (n = 21), Kenya (n = 11), and 

Papua New Guinea (n = 17). In total, 2025 individuals 

were genotyped.

In terms of phenotyping, skin colour classifications fol-

lowed the Fitzpatrick scale (Fitzpatrick 1988). The scale 

represents a dermatological assessment to estimate the 

response of different types of skin to UV light; therefore, it 

takes into account visual perception of skin colour, as well 

as tanning ability (Fitzpatrick 1988). It is commonly used 

by medical practitioners for the classification of a persons 

skin type, ranging from skin type 1 (pale white skin—no 

tanning ability), 2 (white skin—minimal tanning ability), 

3 (light brown skin—tanning ability), 4 (moderate brown 

skin—tanning ability), and 5 (dark brown skin—tanning 

ability) to skin type 6 (deeply pigmented dark brown to 

black skin)—see online resource information 2. The Pol-

ish samples were assessed for their Fitzpatrick skin type by 

an experienced dermatologist (AB) at sample collection. 

The Irish, Greek, and US individuals were also assessed by 

the same dermatologist upon consultation of photographic 

imagery, and a detailed questionnaire on their ability to tan. 

Images were taken approximately 20 cm from the forearm 

of the individual using a Nikon D5300 and R1 ring flash 

with the following settings: Focus 22, Aperture 1/125, ISO 

200. Therefore, all individuals collected were assigned an 

objective Fitzpatrick scale designation by the same quali-

fied dermatologist avoiding the subjective designations 

that the volunteers themselves would provide in question-

naire data. For the HGDP-CEPH samples, for which no 

individual skin colour phenotype information was avail-

able, Fitzpatrick scales 6 was assigned as assumed from 

population knowledge of these African and New Guinean 

groups, as people living in these geographic regions only 

have very dark-black skin colour. The 6 Fitzpatrick scales 

were then re-classified into 5 final skin colour prediction 

categories for further analyses, i.e., Very Pale (6% of all 

samples used), Pale (44%), Intermediate (42%), Dark (3%), 

and Black (5%) by condensing the Fitzpatrick categories 3 

and 4 into the Intermediate prediction category and leav-

ing all other categories the same. Categories 3 and 4 of the 

Fitzpatrick scale are considered very close dermatologi-

cally; therefore, it was deemed acceptable to combine these 

categories for the prediction training of this skin colour 

model. In a 3-category scale, we grouped Fitzpatrick scale 

1–4 Into Light (92%), scale 5 Into Dark (3%), and scale 

6 into Dark-Black (5%). Henceforth, the term skin colour 

category with reference to the categories predicted shall be 

used for reasons of simplicity in the text; however, it does 

include not only the visual perception of skin colour but 

also the ability or lack of to tan. Further information on the 

Fitzpatrick scale can be found in online resource informa-

tion 2.

For directly comparing our findings with those from 

Maroñas et al. (2014), individuals from an independ-

ent sample set (n = 194, 17 different populations from 

Europe, Middle-East, Africa, and Asia) not used in the 

previous marker ascertainment, model building, or test-

ing, were predicted for skin colour using both models, the 

one established here, and the one proposed by Maroñas 

et al. (2014). For this, the same skin colour phenotyping 

approach as described by Maroñas et al. (2014) was used to 

make the study outcomes directly comparable. L*ab groups 

were designated a simple 3-category definition of White, 
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Intermediate, and Black based on groups of L*ab values. 

The spectrometer values were: L*ab = 74.14–60.36 for 

White, comprising 132 samples; 59.32–40.04 for Interme-

diate, comprising 43 samples; 39.75–29.99 for Black, com-

prising 20 samples.

SNP assessment, genotyping, & statistical analyses

This study examined 2025 individuals for 77 single-nucle-

otide polymorphisms (SNPs) from 37 genetic loci that 

were associated with human pigmentation variation, skin 

colour in particular, in the previous studies (see Table 1 

for more details). SNPs were genotyped using SNaPshot 

(Life Technologies) multiplexes designed and optimized 

very similar to those described elsewhere (Walsh et al. 

2011b, 2013). A subset of 53 SNPs (see Table 1) from 

24 genes were selected for further assessment based on 

their independent contribution (R2 p value <0.05 uncor-

rected) towards categorical skin colour prediction, while 

factoring in sex and population. Finally, the Akaike Infor-

mation Criterion (AIC) was used for determining opti-

mal SNP selection from the 53 SNPs, which resulted 

in 36 SNPs from 16 genes (SLC24A5 rs1426654, IRF4 

rs12203592, MC1R rs1805007, rs1805008, rs11547464, 

rs885479, rs228479, rs1805006, rs1110400, rs1126809, 

rs3212355, OCA2 rs1800414, rs1800407, rs12441727, 

rs1470608, rs1545397 SLC45A2 rs16891982, rs28777, 

HERC2 rs1667394, rs2238289, rs1129038, rs12913832, 

rs6497292, TYR rs1042602, rs1393350, RALY rs6059655, 

DEF8 rs8051733, PIGU rs2378249, ASIP rs6119471, 

SLC24A4 rs2402130, rs17128291, rs12896399, TYRP1 

rs683, KITLG rs12821256, ANKRD11 rs3114908, and 

BNC2 rs10756819).

After quality control due to some missing genotypes for 

the full 36 SNP set, Multinomial Logistic Regression (MLR) 

modelling was performed for the prediction of categorical 

skin colour based upon a set of 1423 individuals. Details of 

the model for the prediction analysis follow studies on eye 

(Liu et al. 2009; Walsh et al. 2011b) and hair (Branicki et al. 

2011; Walsh et al. 2013) colour prediction previously per-

formed. In brief, categorical skin colour, based on five cat-

egories (and also three categories), is designated y, and is 

determined by genotype × (number of minor alleles per k) of 

k SNPs. For the 5-category designation, π1, π2, π3, π4, and 

π5 denote the probability of Very Pale, Pale, Intermediate, 

Dark, and Dark-Black, respectively. To investigate the perfor-

mance of the 36 skin colour-associated SNPs in a prediction 

model overall, cross validations were conducted in 1000 ran-

domized replicates; in each replicate, 80% individuals were 

used as the new training set (n = 1138) and the remaining 

samples were used as the testing set (n = 285). AUC values 

were derived from the testing set, and the average AUC val-

ues and the standard deviation were reported. AUC values 

of 0.5 designate a random prediction, whereas values closer 

to 1 indicate perfect prediction accuracy. Prediction results 

were produced for five categories as previously named and 

for three categories; Light (collapsing Very Pale, Pale, and 

Intermediate), Dark and Dark-Black to illustrate a 3-category 

grouping. For this study, skin colour prediction probabilities 

were generated for the test set with the highest probability 

leading to the most probable prediction for skin colour for 

each individual.

For comparing our findings with those of Maroñas 

et al. (2014), an independent set of individuals (n = 194) 

described as the ‘model comparison set’ were genotyped 

for the 36 skin colour SNP predictors identified in this 

study as well as the 10 skin colour SNP predictors pro-

posed by Maroñas et al. (2014) study, allowing a direct 

comparison of the prediction performance of these two 

models and their own sets of DNA predictors. For this, 

the 10 SNPs proposed by Maroñas et al. (2014); KITLG 

rs10777129, SLC45A2 rs13289 and rs16891982, TYRP1 

rs1408799, SLC24A5 rs1426654, OCA2 rs1448484, 

SLC24A4 rs2402130, TPCN2 rs3829241, ASIP rs6058017, 

and rs6119471 were genotyped in these 194 samples using 

SNaPshot (Life Technologies) multiplexing. The Naïve 

Bayes skin classifier (http://mathgene.usc.es/snipper/skin-

classifier.html) was used to predict each individual using 

the websites requested genotype input. An assessment of 

the models performance for categorical skin colour pre-

diction was made on the full set of 194 individuals using 

a confusion matrix of prediction versus observed pheno-

type, which yielded AUC, Sensitivity, Specificity, Positive 

Predictive Value (PPV), and Negative Predictive Value of 

the model. To directly compare to the performance of the 

36 markers proposed by this group, the same individu-

als were assessed using this study’s proposed 3-category 

model using the same phenotype scale as recommended 

by Maroñas et al. (2014). Therefore, the only differing fac-

tor was the performance of the Maroñas et al. (2014) skin 

colour classifier and the 36-marker model proposed in this 

study for the prediction of categorical skin colour.

All statistical analyses were performed with the R statis-

tics software (R Core Team 2013), using packages MASS 

(Venables 2002), mlogit (Croissant 2013), ROCR (Sing 

et al. 2005), pROC (Robin et al. 2011), and caret (Kuhn 

et al. 2016).

Results and discussion

Selection of skin colour SNP predictors

We tested 77 previously pigmentation-associated SNPs 

from 37 genetic loci (see Table 1 for more information) in 

2025 individuals for their value in predicting skin colour 

http://mathgene.usc.es/snipper/skinclassifier.html
http://mathgene.usc.es/snipper/skinclassifier.html


851Hum Genet (2017) 136:847–863 

1 3

T
a
b

le
 1

 
 D

N
A

 v
ar

ia
n
t 

in
fo

rm
at

io
n
 f

o
r 

7
7
 S

N
P

s 
p
re

v
io

u
sl

y
 a

ss
o
ci

at
ed

 w
it

h
 h

u
m

an
 p

ig
m

en
ta

ti
o
n
 v

ar
ia

ti
o
n
 i

n
cl

u
d
in

g
 t

h
ei

r 
lo

ca
ti

o
n
, 

ci
ta

ti
o
n
s,

 a
s 

w
el

l 
as

 s
k
in

 c
o
lo

u
r 

as
so

ci
at

io
n
 a

n
d
 p

re
d
ic

ti
o
n
 

ra
n
k
in

g
 d

et
ai

ls
 o

b
ta

in
ed

 f
ro

m
 t

h
e 

p
re

se
n
t 

st
u
d
y

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

1
rs

6
6
7
9
6
5
1

1
H

IS
T

2
H

2
B

F
C

/T
1
4
9
,7

5
7
,4

5
3

n
s

2
rs

1
2
2
3
3
1
3
4

2
E

F
R

3
B

C
/T

2
5
,1

0
6
,1

4
6

Q
u
il

le
n
 e

t 
al

. 

( 2
0
1
2
)

n
s

3
rs

4
0
1
3
2

5
S

L
C

4
5
A

2
A

/G
3
3
,9

5
0
,5

9
7

N
an

 e
t 

al
. 
(2

0
0
9
)

n
s

4
rs

1
6
8
9
1
9
8

2
5

S
L

C
4
5
A

2
C

/G
3
3
,9

5
1
,5

8
7

L
iu

 e
t 

al
. 
(2

0
0
9
);

 

S
to

k
o
w

sk
i 

et
 a

l.
 (

2
0
0
7
);

 

V
al

en
zu

el
a 

et
 a

l.
 

(2
0
1
0
);

 B
ra

n
ic

k
i 

et
 a

l.
 (

2
0
1
1
)

0
.1

4
2
 (

8
.1

3
e-

5
8
)

5
0
.2

7
9
1
2
2
0
9

1
.7

2
E

-0
8

5
rs

2
2
8
7
9
4
9

5
S

L
C

4
5
A

2
C

/T
3
3
,9

5
4
,4

0
5

S
to

k
o
w

sk
i 

et
 a

l.
 

( 2
0
0
7
)

0
.0

0
6
 (

0
.0

0
4
)

6
rs

2
8
7
7
7

5
S

L
C

4
5
A

2
G

/T
3
3
,9

5
8
,8

5
3

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
);

 H
an

 

et
 a

l.
 (

2
0
0
8
)

0
.0

9
7
 (

3
.1

4
E

-4
0
)

2
4

8
.6

5
E

-0
2

7
.5

7
E

-0
2

7
rs

2
6
7
2
2

5
S

L
C

4
5
A

2
A

/G
3
3
,9

6
3
,7

6
4

H
an

 e
t 

al
. 
(2

0
0
8
);

 

L
iu

 e
t 

al
. 
( 2

0
0
9
);

 

S
to

k
o
w

sk
i 

et
 a

l.
 

(2
0
0
7
)

n
s

8
rs

6
8
6
7
6
4
1

5
S

L
C

4
5
A

2
C

/T
3
3
,9

8
5
,7

5
1

G
ra

f 
et

 a
l.

 (
2
0
0
7
)

n
s

9
rs

1
3
2
8
9

5
S

L
C

4
5
A

2
C

/G
3
3
,9

8
6
,3

0
3

G
ra

f 
et

 a
l.

 (
2
0
0
7
);

 

H
an

 e
t 

al
. 
(2

0
0
8
);

 

M
ar

o
ñ
as

 e
t 

al
. 

( 2
0
1
4
)

0
.0

1
1
4
 (

5
.8

E
-0

5
)

1
0

rs
1
9
3
6
2
0
8

6
In

te
rg

en
ic

 b
et

w
ee

n
 

A
T

P
5
F

1
P

6
 a

n
d
 

L
O

C
1
0
0
1
2
9
5
5
4

C
/T

1
3
9
,6

4
4
,2

4
7

n
s

1
1

rs
1
2
2
0
3
5
9
2

6
IR

F
4

C
/T

3
9
6
,3

2
0

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 H
an

 e
t 

al
. 

( 2
0
0
8
);

 L
iu

 e
t 

al
. 

(2
0
0
9
);

 P
ra

et
o
ri

u
s 

et
 a

l.
 (

2
0
1
3
)

0
.0

2
0
1
 (

5
.1

8
e-

0
9
)

2
−

0
.1

7
5
6
5
9
6
6

1
.9

7
E

-1
2

1
2

rs
4
9
5
9
2
7
0

6
L

O
C

1
0
5
3
7
4
8
7
5

A
/C

4
5
7
,7

4
7

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 H
an

 e
t 

al
. 

( 2
0
0
8
);

 S
u
le

m
 

et
 a

l.
 (

2
0
0
7
)

n
s

1
3

rs
4
7
7
8
2
3

7
<

N
A

>
G

/T
6
3
,2

8
7
,7

2
2

0
.0

0
6
8
 (

0
.0

0
1
)



852 Hum Genet (2017) 136:847–863

1 3

T
a
b

le
 1

 
 c

o
n
ti

n
u
ed

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

1
4

rs
1
3
8
5
2
2
9

8
C

8
o
rf

3
7
-A

S
1

A
/G

9
5
,7

5
9
,3

1
8

n
s

1
5

rs
1
0
7
5
6
8
1
9

9
B

N
C

2
A

/G
1
6
,8

5
8
,0

8
5

L
iu

 e
t 

al
. 
( 2

0
1
5
);

 

V
is

se
r 

et
 a

l.
 

(2
0
1
4
)

0
.0

2
1
 (

2
.4

8
E

-0
9
)

3
6

1
.3

2
E

-0
3

9
.4

6
E

-0
1

1
6

rs
6
8
3

9
T

Y
R

P
1

A
/C

1
2
,7

0
9
,3

0
4

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 L
iu

 e
t 

al
. 

( 2
0
0
9
)

0
.0

0
9
6
 (

4
.6

E
-0

5
)

3
2

1
.7

0
E

-0
2

3
.8

3
E

-0
1

1
7

rs
3
7
6
3
9
7

1
0

G
A

T
A

3
A

/G
8
,0

6
1
,3

3
4

n
s

1
8

rs
1
0
4
4
3
9
1
5

1
0

P
R

K
G

1
A

/T
5
2
,0

6
0
,8

1
8

n
s

1
9

rs
1
2
7
6
5
8
5
2

1
0

P
R

K
G

1
C

/T
5
2
,0

6
1
,5

6
6

n
s

2
0

rs
1
0
8
3
1
4
9

6
1
1

G
R

M
5

A
/G

8
8
,8

2
4
,8

2
2

N
an

 e
t 

al
. 
(2

0
0
9
)

n
s

2
1

rs
4
9
3
6
8
9
0

1
1

In
te

rg
en

ic
 b

et
w

ee
n
 

O
R

1
0
G

7
 a

n
d
 

O
R

1
0
D

5
P

A
/G

1
2
4
,0

4
4
,0

3
4

0
.0

1
1
3
 (

1
.5

E
-0

5
)

2
2

rs
3
5
2
6
4
8
7
5

1
1

T
P

C
N

2
A

/T
6
9
,0

7
8
,9

3
0

Ja
co

b
s 

et
 a

l.
 

(2
0
1
5
);

 S
u
le

m
 

et
 a

l.
 (

2
0
0
8
);

 

V
al

en
zu

el
a 

et
 a

l.
 

( 2
0
1
0
);

 Z
h
an

g
 

et
 a

l.
 (

2
0
1
3
)

0
.0

0
3
4
 (

0
.0

1
6
)

2
3

rs
1
0
4
2
6
0
2

1
1

T
Y

R
A

/C
8
9
,1

7
8
,5

2
7

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 J
o
n
-

n
al

ag
ad

d
a 

et
 a

l.
 

( 2
0
1
6
);

 S
u
le

m
 

et
 a

l.
 (

2
0
0
7
)

0
.0

0
2
5
 (

0
.0

4
)

1
2

−
0
.0

6
2
2
3
7
0
7

3
.5

2
E

-0
3

2
4

rs
1
3
9
3
3
5
0

1
1

T
Y

R
A

/G
8
9
,2

7
7
,8

7
7

H
an

 e
t 

al
. 
(2

0
0
8
);

 

L
iu

 e
t 

al
. 
(2

0
0
9
);

 

N
an

 e
t 

al
. 
( 2

0
0
9
);

 

S
u
le

m
 e

t 
al

. 

(2
0
0
7
)

0
.0

1
0
9
 (

1
.8

E
-0

5
)

2
1

−
5
.6

0
E

-0
2

5
.9

6
E

-0
2

2
5

rs
1
1
2
6
8
0
9

1
1

T
Y

R
A

/G
8
9
,2

8
4
,7

9
3

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
);

 

S
u
le

m
 e

t 
al

. 

(2
0
0
7
)

0
.0

1
5
 (

2
.2

E
-0

6
)

1
9

−
0
.0

8
3
5
7
7
1
0

2
.2

8
E

-0
2

2
6

rs
6
4
2
7
4
2

1
2

K
IT

L
G

A
/G

8
8
,9

0
5
,9

6
8

Jo
n
n
al

ag
ad

d
a 

et
 a

l.
 

(2
0
1
6
)

0
.0

5
3
3
 (

5
.2

E
-2

1
)



853Hum Genet (2017) 136:847–863 

1 3

T
a
b

le
 1

 
 c

o
n
ti

n
u
ed

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

2
7

rs
1
2
8
2
1
2
5

6
1
2

K
IT

L
G

C
/T

8
8
,9

3
4
,5

5
7

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
);

 G
u
en

th
er

 

et
 a

l.
 (

2
0
1
4
);

 

S
u
le

m
 e

t 
al

. 

( 2
0
0
7
)

0
.0

0
2
4
 (

0
.0

4
6
)

3
3

−
1
.5

2
E

-0
2

6
.5

3
E

-0
1

2
8

rs
3
7
8
2
9
7
4

1
3

D
C

T
A

/T
9
4
,4

4
0
,6

4
1

L
ao

 e
t 

al
. 
(2

0
0
7
)

0
.0

0
9
5
 (

6
.6

E
-0

5
)

2
9

rs
2
0
5
0
5
3
7

1
3

H
S

6
S

T
3

C
/T

9
6
,6

0
8
,6

4
6

n
s

3
0

rs
4
9
8
3
1
6
1

1
4

<
N

A
>

A
/T

1
9
,7

2
6
,7

1
6

0
.0

0
7
 (

0
.0

0
1
)

3
1

rs
1
2
8
9
6
3
9

9
1
4

L
O

C
1
0
5
3

7
0
6
2
7
 

(u
p
st

re
am

 o
f 

S
L

C
2
4
A

4
)

G
/T

9
2
,3

0
7
,3

1
8

H
an

 e
t 

al
. 
(2

0
0
8
);

 

L
iu

 e
t 

al
. 
(2

0
0
9
);

 

S
u
le

m
 e

t 
al

. 

(2
0
0
7
)

0
.0

1
1
 (

1
.8

E
-0

5
)

2
9

-2
.5

5
E

-0
2

2
.0

8
E

-0
1

3
2

rs
2
4
0
2
1
3
0

1
4

S
L

C
2
4
A

4
A

/G
9
2
,3

3
4
,8

5
8

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
);

 S
u
le

m
 

et
 a

l.
 (

2
0
0
7
)

0
.0

2
7
 (

6
.8

E
-1

2
)

2
7

3
.9

8
E

-0
2

1
.0

9
E

-0
1

3
3

rs
1
7
1
2
8
2
9

1
1
4

S
L

C
2
4
A

4
A

/G
9
2
,4

1
6
,4

8
1

L
iu

 e
t 

al
. 
(2

0
1
5
)

0
.0

1
4
7
 (

7
.2

8
E

-0
7
)

2
8

−
3
.9

1
E

-0
2

1
.3

0
E

-0
1

3
4

rs
1
2
9
1
4
2
6

8
1
5

<
N

A
>

A
/G

2
2
,1

5
0
,2

9
2

n
s

3
5

rs
1
1
2
9
0
3
8

1
5

H
E

R
C

2
A

/G
2
8
,1

1
1
,7

1
2

L
iu

 e
t 

al
. 
(2

0
1
0
);

 

M
en

g
el

-F
ro

m
 

et
 a

l.
 (

2
0
1
0
)

0
.0

9
2
 (

1
.7

7
E

-3
7
)

1
7

0
.1

0
5
3
6
4
1
2

8
.3

8
E

-0
3

3
6

rs
1
2
9
1
3
8
3

2
1
5

H
E

R
C

2
A

/G
2
8
,1

2
0
,4

7
1

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
0
7
);

 

K
ay

se
r 

et
 a

l.
 

(2
0
0
8
);

 L
iu

 e
t 

al
. 

( 2
0
0
9
);

 M
en

g
el

-

F
ro

m
 e

t 
al

. 

(2
0
1
0
);

 S
tu

rm
 

et
 a

l.
 (

2
0
0
8
);

 

S
u
le

m
 e

t 
al

. 

( 2
0
0
7
);

 V
is

se
r 

et
 a

l.
 (

2
0
1
2
)

0
.0

9
1
 (

9
.9

E
-3

7
)

2
0

8
.1

2
E

-0
2

3
.4

5
E

-0
2

3
7

rs
2
2
3
8
2
8
9

1
5

H
E

R
C

2
C

/T
2
8
,2

0
8
,0

6
8

M
en

g
el

-F
ro

m
 e

t 
al

. 

(2
0
0
9
),

 (
2
0
1
0
)

0
.0

3
3
 (

5
.2

4
E

-1
4
)

1
5

−
0
.1

1
3
7
8
2
9
7

8
.0

0
E

-0
3

3
8

rs
8
1
8
2
0
2
8

1
5

H
E

R
C

2
C

/T
2
8
,2

2
2
,7

8
8

L
iu

 e
t 

al
. 
(2

0
0
9
)

n
s

3
9

rs
3
9
4
0
2
7
2

1
5

H
E

R
C

2
A

/C
2
8
,2

2
3
,5

7
6

E
ib

er
g
 e

t 
al

. 
(2

0
0
8
)

n
s

4
0

rs
6
4
9
7
2
9
2

1
5

H
E

R
C

2
A

/G
2
8
,2

5
1
,0

4
8

K
ay

se
r 

et
 a

l.
 

( 2
0
0
8
);

 L
iu

 e
t 

al
. 

(2
0
0
9
)

0
.0

7
5
 (

2
.2

9
E

-3
0
)

3
0

5
.7

9
E

-0
2

2
.2

7
E

-0
1

4
1

rs
1
6
9
5
0
9
4

1
1
5

H
E

R
C

2
A

/G
2
8
,2

5
7
,5

9
7

L
iu

 e
t 

al
. 
(2

0
0
9
)

n
s



854 Hum Genet (2017) 136:847–863

1 3

T
a
b

le
 1

 
 c

o
n
ti

n
u
ed

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

4
2

rs
1
6
6
7
3
9
4

1
5

H
E

R
C

2
A

/G
2
8
,2

8
5
,0

3
5

D
u
ff

y
 e

t 
al

. 
( 2

0
0
7
);

 

K
ay

se
r 

et
 a

l.
 

(2
0
0
8
);

 L
iu

 e
t 

al
. 

(2
0
0
9
);

 M
en

g
el

-

F
ro

m
 e

t 
al

. 

( 2
0
1
0
);

 S
tu

rm
 

et
 a

l.
 (

2
0
0
8
);

 

S
u
le

m
 e

t 
al

. 

( 2
0
0
7
)

0
.0

5
2
 (

1
.1

5
E

-2
1
)

6
0
.1

6
0
1
7
3
7
4

4
.7

0
E

-0
8

4
3

rs
1
4
7
3
9
1
7

1
5

L
O

C
1
0
1
9
2
7
0
7
9

C
/T

2
2
,0

6
7
,2

1
0

n
s

4
4

rs
1
5
4
5
3
9
7

1
5

O
C

A
2

A
/T

2
7
,9

4
2
,6

2
5

E
d
w

ar
d
s 

et
 a

l.
 

(2
0
1
0
)

0
.0

1
6
6
 (

2
.2

7
E

-0
7
)

3
4

−
1
.0

3
E

-0
2

7
.5

1
E

-0
1

4
5

rs
1
8
0
0
4
1
4

1
5

O
C

A
2

A
/G

2
7
,9

5
1
,8

9
0

D
o
n
n
el

ly
 e

t 
al

. 

(2
0
1
2
);

 E
d
w

ar
d
s 

et
 a

l.
 (

2
0
1
0
)

0
.0

4
7
 (

2
.7

9
E

-1
9
)

4
−

0
.5

3
9
9
0
2
9
4

6
.1

2
E

-1
1

4
6

rs
1
8
0
0
4
0
7

1
5

O
C

A
2

A
/G

2
7
,9

8
5
,1

7
1

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
);

 D
o
n
n
el

ly
 

et
 a

l.
 (

2
0
1
2
);

 

D
u
ff

y
 e

t 
al

. 

(2
0
1
0
);

 L
iu

 e
t 

al
. 

( 2
0
0
9
)

0
.0

0
7
 (

4
.4

E
-0

4
)

8
−

0
.1

9
8
2
7
3
4
9

1
.2

0
E

-0
6

4
7

rs
1
8
0
0
4
0
1

1
5

O
C

A
2

C
/T

2
8
,0

1
4
,9

0
6

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
0
8
b
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
0
7
)

0
.0

0
5
4
 (

0
.0

0
5
)

4
8

rs
1
2
4
4
1
7
2

7
1
5

O
C

A
2

A
/G

2
8
,0

2
6
,6

2
8

L
iu

 e
t 

al
. 
(2

0
0
9
)

0
.0

0
4
7
 (

0
.0

0
5
)

2
5

6
.0

3
E

-0
2

8
.2

3
E

-0
2

4
9

rs
1
4
4
8
4
8
5

1
5

O
C

A
2

A
/C

2
8
,0

3
7
,5

9
4

D
u
ff

y
 e

t 
al

. 
(2

0
0
7
);

 

K
ay

se
r 

et
 a

l.
 

( 2
0
0
8
);

 L
iu

 e
t 

al
. 

(2
0
0
9
)

n
s

5
0

rs
1
6
9
5
0
8
2

1
1
5

O
C

A
2

A
/G

2
8
,0

3
8
,3

6
0

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
)

0
.0

3
7
 (

3
.6

E
-1

5
)

5
1

rs
1
4
7
0
6
0
8

1
5

O
C

A
2

A
/C

2
8
,0

4
2
,9

7
4

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 M
en

g
el

-

F
ro

m
 e

t 
al

. 
(2

0
0
9
)

0
.0

6
3
 (

1
.0

4
E

-2
5
)

3
1

−
3
.7

9
E

-0
2

2
.6

6
E

-0
1

5
2

rs
7
4
9
5
1
7
4

1
5

O
C

A
2

A
/G

2
8
,0

9
9
,0

9
1

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
0
9
);

 D
o
n
n
el

ly
 

et
 a

l.
 (

2
0
1
2
);

 

D
u
ff

y
 e

t 
al

. 

(2
0
0
7
);

 E
d
w

ar
d
s 

et
 a

l.
 (

2
0
1
0
);

 L
iu

 

et
 a

l.
 (

2
0
0
9
)

n
s



855Hum Genet (2017) 136:847–863 

1 3

T
a
b

le
 1

 
 c

o
n
ti

n
u
ed

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

5
3

rs
1
4
2
6
6
5
4

1
5

S
L

C
2
4
A

5
A

/G
4
8
,1

3
4
,2

8
6

L
am

as
o
n
 

et
 a

l.
 (

2
0
0
5
);

 

S
to

k
o
w

sk
i 

et
 a

l.
 

(2
0
0
7
);

 S
tu

rm
 

an
d
 L

ar
ss

o
n
 

( 2
0
0
9
);

 V
al

en
-

zu
el

a 
et

 a
l.

 (
2
0
1
0
)

0
.1

5
 (

1
.1

9
E

-5
9
)

1
0
.5

2
4
1
2
6
6
1

1
.9

2
E

-2
3

5
4

rs
1
1
0
7
6
6
4

9
1
6

A
F

G
3
L

1
P

C
/G

8
9
,9

9
2
,9

2
7

0
.0

0
5
8
 (

0
.0

0
2
)

5
5

rs
3
1
1
4
9
0
8

1
6

A
N

K
R

D
1
1

A
/G

8
9
,3

1
7
,3

1
6

L
aw

 e
t 

al
. 
(2

0
1
5
)

0
.0

2
0
1
 (

9
.8

E
-0

9
)

3
5

3
.9

3
E

-0
3

8
.5

6
E

-0
1

5
6

rs
8
0
4
9
8
9
7

1
6

D
E

F
8

A
/G

8
9
,9

5
7
,7

9
3

H
an

 e
t 

al
. 
(2

0
0
8
);

 

Ji
n
 e

t 
al

. 
(2

0
1
2
)

0
.0

2
2
 (

1
.5

E
-0

9
)

5
7

rs
8
0
5
1
7
3
3

1
6

D
E

F
8

A
/G

8
9
,9

5
7
,7

9
7

L
aw

 e
t 

al
. 
(2

0
1
5
)

0
.0

2
9
 (

2
.7

E
-1

2
)

1
6

−
0
.0

6
3
6
4
4
8
1

8
.1

6
E

-0
3

5
8

rs
1
6
4
7
4
1

1
6

D
P

E
P

1
C

/T
8
9
,6

2
5
,8

8
9

H
an

 e
t 

al
. 
(2

0
0
8
);

 

N
an

 e
t 

al
. 
( 2

0
0
9
)

0
.0

1
5
 (

2
.7

6
E

-0
7
)

5
9

rs
2
2
3
9
3
5
9

1
6

F
A

N
C

A
C

/T
8
9
,7

8
3
,0

7
1

n
s

6
0

rs
3
2
1
2
3
5
5

1
6

M
C

1
R

C
/T

8
9
,9

1
7
,9

6
9

V
al

en
zu

el
a 

et
 a

l.
 

(2
0
1
0
)

0
.0

2
0
6
 (

2
.8

9
E

-0
8
)

2
2

2
.0

0
E

-0
1

6
.1

4
E

-0
2

6
1

rs
3
1
2
2
6
2
9

0
6
 

(N
2
9
in

sA
)

1
6

M
C

1
R

IN
D

E
L

 -
/i

n
sA

8
9
,9

1
9
,3

4
1

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
)

0
.0

0
8
5
 (

1
.2

E
-0

4
)

6
2

rs
1
8
0
5
0
0
5

1
6

M
C

1
R

G
/T

8
9
,9

1
9
,4

3
5

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
);

 

S
to

k
o
w

sk
i 

et
 a

l.
 

(2
0
0
7
);

 S
tu

rm
 

et
 a

l.
 (

2
0
0
3
)

n
s

6
3

rs
1
8
0
5
0
0
6

1
6

M
C

1
R

A
/C

8
9
,9

1
9
,5

0
9

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
);

 L
iu

 

et
 a

l.
 (

2
0
1
5
)

0
.0

0
3
 (

2
.2

E
-0

2
)

1
3

−
0
.3

1
0
6
5
3
0
9

5
.6

3
E

-0
3

6
4

rs
2
2
2
8
4
7
9

1
6

M
C

1
R

A
/G

8
9
,9

1
9
,5

3
1

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 S
tu

rm
 

et
 a

l.
 (

2
0
0
3
)

0
.0

1
9
 (

7
.4

5
E

-0
9
)

1
1

−
0
.1

0
9
1
5
1
8
0

1
.7

0
E

-0
3

6
5

rs
1
1
5
4
7
4
6

4
1
6

M
C

1
R

A
/G

8
9
,9

1
9
,6

8
2

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
)

0
.0

0
7
1
 (

4
.6

E
-0

4
)

9
−

2
.9

6
E

-0
1

5
.0

6
E

-0
4

6
6

rs
1
8
0
5
0
0
7

1
6

M
C

1
R

C
/T

8
9
,9

1
9
,7

0
8

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
);

 

S
u
le

m
 e

t 
al

. 

(2
0
0
7
)

0
.0

2
6
8
 (

1
.2

8
E

-1
1
)

3
−

0
.2

8
2
3
1
4
7
5

5
.9

2
E

-1
2



856 Hum Genet (2017) 136:847–863

1 3

T
a
b

le
 1

 
 c

o
n
ti

n
u
ed

S
N

P
C

h
ro

m
o
so

m
e

G
en

e
A

ll
el

es
B

P
 (

G
R

C
h
3
8
)

R
ef

er
en

ce
 p

ig
m

en
-

ta
ti

o
n
 a

ss
o
ci

at
io

n

S
k
in

 c
o
lo

u
r 

co
r-

re
la

ti
o
n
 [

r2
 (

p
 

v
al

u
e)

]*

R
an

k
in

g
 i

n
 fi

n
al

 

m
o
d
el

C
o
ef

fi
ci

en
ts

 (
fi

tt
ed

 

g
lm

)

P
 v

al
u
e

6
7

rs
2
0
1
3
2
6
8

9
3
 

(Y
1
5
2
O

C
H

)

1
6

M
C

1
R

C
/A

8
9
,9

1
9
,7

1
3

B
ra

n
ic

k
i 

et
 a

l.
 

( 2
0
1
1
)

n
s

6
8

rs
1
1
1
0
4
0
0

1
6

M
C

1
R

C
/T

8
9
,9

1
9
,7

2
1

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
)

0
.0

0
3
7
 (

1
.1

E
-0

2
)

1
8

−
0
.2

0
0
5
9
9
5
6

1
.0

2
E

-0
2

6
9

rs
1
8
0
5
0
0
8

1
6

M
C

1
R

C
/T

8
9
,9

1
9
,7

3
5

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 S
u
le

m
 

et
 a

l.
 (

2
0
0
7
)

0
.0

2
1
 (

9
.2

E
-1

0
)

7
−

0
.1

9
9
9
4
9
0
6

1
.2

5
E

-0
7

7
0

rs
8
8
5
4
7
9

1
6

M
C

1
R

A
/G

8
9
,9

1
9
,7

4
6

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 S
tu

rm
 

et
 a

l.
 (

2
0
0
3
)

0
.0

3
2
6
 (

7
.6

3
E

-1
4
)

1
0

−
0
.1

6
3
0
0
8
8
9

5
.4

2
E

-0
4

7
1

rs
1
8
0
5
0
0
9

1
6

T
U

B
B

3
C

/G
8
9
,9

2
0
,1

3
7

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
);

 D
u
ff

y
 

et
 a

l.
 (

2
0
1
0
)

n
s

7
2

rs
3
3
3
1
1
3

1
7

S
P

N
S

2
C

/G
4
,4

9
7
,0

6
0

0
.0

1
3
 (

2
.4

1
E

-0
6
)

7
3

rs
6
1
1
9
4
7
1

2
0

A
S

IP
C

/G
3
4
,1

9
7
,4

0
5

H
ar

t 
et

 a
l.

 (
2
0
1
3
)

0
.2

1
4
 (

4
.7

6
E

-8
5
)

2
6

9
.2

7
E

-0
2

9
.5

1
E

-0
2

7
4

rs
2
4
2
4
9
8
4

2
0

A
S

IP
C

/T
3
4
,2

6
2
,5

6
8

V
al

en
zu

el
a 

et
 a

l.
 

( 2
0
1
0
)

0
.0

4
4
 (

2
.0

6
E

-1
7
)

7
5

rs
1
8
8
5
1
2
0

2
0

M
Y

H
7
B

C
/G

3
4
,9

8
9
,1

8
5

L
iu

 e
t 

al
. 
(2

0
1
5
)

0
.0

0
3
 (

0
.0

3
9
)

7
6

rs
2
3
7
8
2
4
9

2
0

P
IG

U
A

/G
3
4
,6

3
0
,2

8
5

B
ra

n
ic

k
i 

et
 a

l.
 

(2
0
1
1
)

0
.0

0
8
 (

1
.4

E
-0

4
)

2
3

−
4
.7

6
E

-0
2

7
.3

6
E

-0
2

7
7

rs
6
0
5
9
6
5
5

2
0

R
A

L
Y

A
/G

3
4
,0

7
7
,9

4
1

Ja
co

b
s 

et
 a

l.
 

( 2
0
1
5
);

 L
iu

 e
t 

al
. 

(2
0
1
5
)

0
.0

0
8
 (

4
.2

E
-0

4
)

1
4

−
0
.1

1
3
7
1
2
7
1

7
.2

3
E

-0
3

n
s 

n
o
t 

si
g
n
ifi

ca
n
t



857Hum Genet (2017) 136:847–863 

1 3

from DNA using the Fitzpatrick scale as a phenotype clas-

sification system. A partial correlation correcting for sex 

and population ancestry yielded a subset of 53 SNPs that 

were statistically significantly associated with the categori-

cal skin colour scale in these individuals (p < 0.05 uncor-

rected) (see Table 1 for associated SNPs).

Next, model selection was performed on the resulting 

53 SNPs using the Akaike Information Criterion (AIC) to 

estimate the information lost using certain combinations 

of SNPs, resulting in a balance between goodness of fit for 

the prediction model and number of SNP inclusions. This 

approach led to a final set of 36 SNPs from 16 genes (see 

“Materials and methods”) that were selected for final pre-

diction modelling. Only individuals with a complete list 

of genotypes for the 36 SNPs could be used for prediction 

modelling; this led to a decrease in final numbers from 

2025 to 1423 individuals.

Prediction modelling of skin colour phenotypes 

from genotypes

MLR modelling was performed on this 36-SNP set in 

1423 individuals using the following categories: Very Pale 

n = 98, Pale n = 631, Intermediate n = 555, Dark n = 49, 

and Dark-Black n = 90. To illustrate the breakdown of 

each SNP’s contribution towards categorical skin colour 

prediction using 100% of the individuals (n = 1423), each 

SNP is added sequentially and their collated prediction 

effect in terms of AUC is estimated, as shown in Fig. 1. 

To describe the final model chosen, the α and β for each 

SNP were derived from the full set of 1423 individuals 

(Male n = 556, Female n = 867; Very Pale n = 98, Pale 

n = 631, Intermediate n = 555, Dark n = 49, and Dark-

Black n = 90) for each skin colour category, and were 

highlighted for their significant contribution (p value <0.05 

uncorrected) towards a certain skin colour category (see 

Table 2). An illustration of the performance of the chosen 

5-category and 3-category model and AUC estimates on the 

total 100% set can be seen in Fig. 2.

However, as the use of 100% of the samples is likely to 

overestimate the model’s prediction accuracy, the total data 

set was split 1000 times into 80% training sets (n = 1138) 

and 20% testing sets (n = 285) and reassessed by perform-

ing cross validations (CV). The resulting average AUC val-

ues with standard deviation achieved for the different skin 

colour categories represent the true model performance 

assessment, and were 0.74 ± 0.05 for Very Pale, 0.72 ± 

0.03 for Pale, 0.73 ± 0.03 for Intermediate, 0.87 ± 0.1 for 

Dark, and 0.97 ± 0.03 for Dark-Black. For the 3-category 

model, the achieved average AUC values with standard 

deviation were 0.97 ± 0.02 for Light, 0.83 ± 0.11 for Dark, 

and 0.96 ± 0.03 for Dark-Black.

Although the lower values in the Very Pale, Pale, and 

Intermediate categories reflect a dispersal of the Light 

category into three separate sub-categories, the predic-

tion model factors in this variation to differentiate indi-

viduals that display obvious skin colour differences, i.e., 

very pale skin versus more ‘olive’ tones. Each category 

provides additional information on the tanning ability 

of that predicted individual, which is particularly rel-

evant for predicting the variation seen within Europe, 

especially when comparing northern to southern Euro-

peans. For instance, although they yield lower independ-

ent AUC values, taken collectively together in terms of 

Fig. 1  Illustration of the accumulative contribution of each of the 

selected 36 SNP predictors towards AUC prediction accuracy of 5 

skin colour categories based on the full set of 1423 individual. SNP 

predictors were added to the prediction model one by one in the 

sequential order from highest to lowest prediction rank. Each colour-

coded line represents one of the 5 DNA-predicted skin colour cate-

gories. Skin colour phenotyping was via skin types derived from the 

Fitzpatrick scale
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their probability, they provide additional information 

overall on whether the individual will remain light or 

pale skinned all year round (as is the case with Pale to 

Very Pale high probability estimates) or could potentially 

darken with tanning (representative of high intermedi-

ate category probability estimations). In these cases, one 

must also consider the time of the year (i.e., summer/

winter) on whether an individual could potentially appear 

darker due to sun exposure or remain the same due to 

lack of sun exposure.

The models established in this study illustrate the rea-

sonably high degree of categorical skin colour prediction 

Table 2  Contribution of each of the 36 selected SNP predictors of skin colour towards binomial prediction categories in terms of the beta coef-

ficients and its statistical significance, within the 5-category skin colour prediction model

Rank

DNA variant_

allele Gene Function

Very Pale

(beta)*

Very 

Pale(p)

Pale 

(beta)* Pale(p)

Dark(beta

)* Dark(p)

Black(bet

a)* Black(p)

1 rs1426654_G

SLC24A

5 missense 1.55E+01 0.9942928 1.77E+01 0.993404 1.20E+00 2.77E-05 3.77E-01 0.319734 -2.36E+00 0.0004942

2 rs12203592_T IRF4 Intronic -7.51E-01 1.58E-05 -2.16E-01 4.74E-02 5.99E-01 7.14E-07 9.92E-01 0.1763 1.35E+00 0.3978746

3 rs1805007_T MC1R missense -1.35E+00 4.51E-05 -1.71E-01 0.381957 7.47E-01 0.0005226 -9.43E-03 0.988182 3.38E+00 0.0676266

4 rs1800414_C OCA2 missense -9.70E-01 0.0585353 3.10E-01 0.509712 -7.05E-01 0.0816092 6.53E-02 0.940198 2.32E+01 0.9965547

5 rs16891982_C

SLC45A

2 missense 6.22E-02 0.9162894 6.93E-01 0.022566 4.97E-02 0.8310418 -5.96E-01 0.167571 -9.87E-01 0.2208321

6 rs1667394_C HERC2 Intronic 2.34E-01 0.511466 7.89E-01 1.51E-06 -7.12E-01 6.69E-06 -3.73E-01 0.439589 1.57E-01 0.868159

7 rs1805008_T MC1R missense -4.13E-01 0.2408292 -5.76E-01 0.002058 5.00E-01 0.0089664 1.78E+01 0.996328 1.46E+01 0.994609

8 rs1800407_A OCA2 missense -5.06E-01 0.1424749 -4.37E-01 0.023029 4.16E-01 0.0317966 1.44E+00 0.058356 1.47E-01 0.9215988

9 rs11547464_A MC1R missense -1.01E+00 0.1458374 2.61E-01 0.543709 -1.13E-01 0.7867291 1.92E+01 0.998487 -1.26E+00 0.6761456

10 rs885479_T MC1R missense -2.67E-01 0.5489678 -1.90E-01 0.413344 -1.40E-01 0.5139418 -3.08E-01 0.56802 6.36E-02 0.9574336

11 rs2228479_A MC1R missense -4.92E-01 0.1144651 -1.93E-01 0.247803 2.32E-01 0.1706836 6.63E-01 0.286954 -7.25E-01 0.5266929

12 rs1042602_T TYR missense -2.60E-01 0.1929436 -1.70E-02 0.862792 2.50E-03 0.9796564 -2.29E-01 0.5263 1.30E+00 0.0915205

13 rs1805006_A MC1R missense -1.07E+00 0.0761868 -5.39E-01 0.265437 1.54E+00 0.043044 1.68E+01 0.998875 1.18E+01 0.9987211

14 rs6059655_A RALY Intronic -5.60E-01 0.0544301 -1.02E-01 0.570206 2.90E-01 0.1350065 1.80E+01 0.996243 1.90E+00 0.6150876

15 rs2238289_C HERC2 Intronic -3.02E-01 0.5552944 -6.19E-01 0.01014 5.48E-01 0.0137588 -3.65E-01 0.453662 -6.17E-01 0.5492788

16 rs8051733_C DEF8 Intronic -5.14E-02 0.8332057 -2.75E-01 0.019515 3.17E-01 0.0062002 -1.09E-02 0.973421 -7.59E-01 0.2163218

17 rs1129038_G HERC2 utr variant -2.22E-02 0.9665727 5.37E-01 0.017675 -3.67E-01 0.0784101 -1.33E+00 0.010994 1.38E+00 0.285247

18 rs1110400_C MC1R missense 5.28E-01 0.5208184 -9.73E-01 0.021921 9.83E-01 0.0349447 1.71E+01 0.998621 1.32E+01 0.9981779

19 rs1126809_A TYR missense -1.09E+00 0.0009996 1.71E-01 0.323763 3.75E-02 0.8266796 3.51E-02 0.94582 -1.06E+00 0.3860315

20 rs12913832_A HERC2 Intronic 5.50E-01 0.2901178 -7.13E-02 0.731546 -1.45E-02 0.9403802 -3.63E-02 0.940461 -1.35E+00 0.28026

21 rs1393350_T TYR Intronic 1.39E-01 0.6145368 -2.76E-01 0.059699 2.37E-01 0.1099633 -7.46E-01 0.089607 1.99E+00 0.1174444

22 rs3212355_A MC1R utr variant 1.71E+01 0.998324 3.89E-01 0.478824 -2.35E-01 0.6234064 -1.34E+00 0.063992 2.69E-01 0.8913592

23 rs2378249_C PIGU Intronic -2.34E-01 0.3312696 4.01E-02 0.760401 9.67E-02 0.4565752 -3.54E-02 0.922082 1.27E-01 0.839637

24 rs28777_C

SLC45A

2 Intronic -3.51E-01 0.5680952 4.80E-01 0.15932 2.15E-01 0.3840998 -1.32E+00 0.001628 2.48E-01 0.7438982

25 rs12441727_A OCA2 Intronic -5.15E-01 0.1294029 3.35E-01 0.061498 -8.81E-02 0.5922469 -8.10E-01 0.036732 -1.74E-01 0.8160609

26 rs6119471_C ASIP Intronic -4.53E-01 0.6352219 1.09E+00 0.13888 9.89E-01 0.0180537 8.07E-01 0.078096 -7.50E-01 0.373023

27 rs2402130_G

SLC24A

4 Intronic 6.52E-02 0.7651712 1.27E-01 0.280665 -6.01E-02 0.608181 3.93E-01 0.260224 -5.00E-01 0.4372495

28 rs17128291_C

SLC24A

4 Intronic -3.19E-01 0.1218117 1.18E-03 0.99181 3.00E-02 0.7983005 1.52E-01 0.755635 2.42E+00 0.1352896

29 rs12896399_T

SLC24A

4 Intergenic -9.27E-02 0.6156681 -8.05E-02 0.397458 7.94E-02 0.4051686 2.72E-01 0.40895 -2.66E-02 0.9688827

30 rs6497292_C HERC2 Intronic 3.00E-01 0.585069 1.69E-01 0.511455 -1.95E-01 0.3963796 7.49E-01 0.097886 -6.74E-01 0.3594738

31 rs1470608_T OCA2 Intronic 9.00E-03 0.9797841 -2.48E-01 0.177785 2.75E-01 0.1103997 8.61E-01 0.042551 -6.99E-01 0.3548479

32 rs683_G TYRP1 Intronic -6.23E-02 0.7246088 3.05E-02 0.738261 8.17E-02 0.3761086 -4.01E-01 0.204862 -2.45E-02 0.9725941

33 rs12821256_G KITLG Intergenic 1.69E-02 0.955171 -2.89E-01 0.066387 2.38E-01 0.1394087 -5.19E-01 0.394784 2.36E+00 0.2742918

34 rs1545397_T OCA2 Intronic -1.85E-01 0.5744969 1.07E-01 0.502868 -1.22E-01 0.4187563 -1.32E-01 0.743928 2.82E-02 0.9732721

35 rs3114908_A

ANKRD

11 Intronic -6.48E-02 0.7409674 -4.10E-02 0.689547 1.09E-01 0.2902776 -5.70E-01 0.06615 1.99E-01 0.7600475

36 rs10756819_G BNC2 Intronic 3.17E-01 0.0850126 -5.26E-02 0.565598 8.85E-02 0.3303634 7.41E-02 0.784686 -7.89E-01 0.1844509

* Each group is measured as Very Pale versus the rest, Pale versus the rest, Intermediate versus the rest, Dark versus the rest, and Dark-Black versus the rest 

and significant contribu�ons are highlighted in their respec�ve skin colour categories.

Intermediate

and (beta)*
Intermediate

and (p)
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accuracy achieved with this set of 36 SNPs from 16 

genes. Not only are the models on both a 3 and 5-category 

level capable of separating light versus dark skin colours 

between continental groups, but, moreover, the 5-category 

model also has the ability to separate the subtle variation 

observed within continental groups, as observed in the 

Light category expanding to Very Pale, Pale, and Interme-

diate category predictions.

Comparison with previously reported set of skin colour 

DNA predictors

To directly compare the skin colour prediction result of our 

newly established model based on a set of 36 SNPs with 

that of the 10 SNP set skin classifier previously reported 

by Maroñas et al. (2014), we genotyped a total of 42 SNPs 

(4 SNPs overlap between the 36 and the 10 SNPs) in an 

independent set of 194 samples from individuals living in 

the US (see online resource information) not previously 

used in selecting the set of SNP predictors nor for the pre-

vious model building and testing. For this analysis, we col-

lected skin colour data from these 194 individuals using a 

handheld Konica Minolta spectrophotometer CM700d and 

assigned three skin colour categories White, Intermedi-

ate, and Black using CIE L*ab values in the same way as 

previously described by Maroñas et al. (2014). Of the 194 

individuals, 131 (68%) individuals were assigned White, 43 

(22%) samples were assigned Intermediate, and 20 (10%) 

samples were assigned Black. When using the 10 SNP set 

skin classifier from Maroñas et al. (2014), the achieved 

AUC values were 0.79 for White, 0.63 for Intermediate, 

and 0.64 for Black.

However, when using our newly proposed model, an 

improvement in AUC was observed for White (Light) from 

0.79 to 0.82, comparable at the Intermediate (Dark) level, 

from 0.63 to 0.62, and a large increase for Black (Dark-

Black) from 0.64 to 0.92 (see Table 3). It should be men-

tioned, however, that the improved yet low values for the 

36-SNP do not reflect the true performance of the model, 

as the 36 SNP predictors highlighted in the present study 

were identified using Fitzpatrick scale phenotypes, not 

using the phenotype scale previously applied by Maroñas 

et al. (2014) and what is used in this comparative analysis. 

If, however, the 194 individuals were assessed according 

to Fitzpatrick-based skin colour categories, Light, Dark, 

and Dark-Black accuracy levels increase further to 0.92, 

0.74, and 0.94 AUC, respectively (see Table 3). Finally, it 

is believed that the addition of skin colour specific predic-

tion markers is not solely responsible for the large increase 

in the Black category prediction between models. The 

increase could also be inflated by the low numbers of Black 

individuals used for training of the Bayesian classifier 

model (n = 22), especially considering their use of prior 

odds where allele combinations of individuals from a more 

global ‘Black’ category would not be wholly represented. 

Fig. 2  Illustration of the prediction performance of the set of 36 

SNPs for the 5-category (a) and the 3-category (b) skin colour pre-

diction model using ROC curves with AUC estimates (including the 

cross-validated measures) using the full training set of 1423 individu-

als from 29 populations. Skin colour phenotyping was via skin types 

derived from the Fitzpatrick scale
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In any case, these results indicate that our newly proposed 

model based on a set of 36 skin colour predicting SNPs 

outperformed the previously proposed model based on a set 

of 10 SNPs published by Maroñas et al. (2014) regarding 

prediction accuracy of skin colour from DNA.

Finally, to provide a proof-of-principle on the final 

markers chosen for a global skin colour prediction 

model and the data set used to train the model, 14 indi-

viduals were selected from the ‘model comparison set’ 

(not previously involved in modelling), and the 5-cate-

gory scale skin colour probabilities are shown together 

with a skin image (Fig. 3). The individuals were chosen 

to represent different countries around the world where 

their birth parents were born in and outside the US. It 

should be noted that considering the highest two cate-

gorical probabilities (and not only the highest one) seem 

to best reflect the colour palette of that particular indi-

vidual. These preliminary data indicate that the DNA 

markers and the prediction model we have developed in 

this study may achieve DNA-based global skin colour 

prediction regardless of bio-geographic ancestry, which, 

however, requires further investigation in additional 

individuals from around the world. In addition, as with 

all pigmentation traits, a move to a more continuous skin 

colour prediction would inevitably improve accuracy 

overall. However, additional global skin colour markers 

must be unearthed first via large-scale GWAS’s.

The current prediction model is based on multinomial 

logistic regression, which included a set of carefully selected 

SNPs. Prediction modeling using alternative approaches, 

such as the derivation of polygenic scores based on weighted 

allele sums using an extended list of trait-associated SNPs, 

may or may not provide higher prediction accuracies as it 

depends on the number of added SNPs that actually have 

low to no association/predictive effects. Moreover, the low 

quality and quantity of DNA typically obtained in applica-

tions using DNA-based prediction of visible traits, such as 

extracts from teeth or bones in anthropological applications 

and crime scene traces in forensic applications, typically do 

not allow the analyses of large numbers of SNPs. Therefore, 

the use of microarray technology is not optimal, and thus, a 

targeted approach, such as the genotyping of a limited set of 

DNA markers, recommended here for skin colour prediction, 

is currently the preferred method of choice.

Conclusions

Overall, we demonstrate that global skin colour, between 

and within continental groups, can be accurately predicted 

from DNA using a set of 36 carefully selected SNPs from 

16 genes. The DNA markers and the model introduced here 

deliver prediction accuracies already high enough for prac-

tical applications, although for the three different light skin 

colour categories, they may be further improved with addi-

tional (but currently unknown) SNP predictors once identi-

fied via future GWAS’s. We envision that if combined with 

the previously established eye and hair colour predicting 

SNPs, such as those from the IrisPlex and HIrisPlex sys-

tems, all three human pigmentation traits can be reliably 

predicted from DNA in future forensic and anthropological 

applications.

Table 3  Model performance 

comparison of the 10-SNP set 

Bayes Classifier by Maroñas 

et al. (2014) and the 36-SNP 

set prediction model from 

the present study using the 

independent “model comparison 

set” of 194 individuals from 

17 populations not previously 

used for marker discovery by 

applying the same phenotyping 

method previously employed by 

Maroñas et al. (2014) to allow 

direct comparison of the two 

prediction approaches

* The 36-SNP set model performance assessment using Fitzpatrick scale phenotypes as the observed phe-

notype

AUC Sensitivity Specificity PPV NPV

Bayes classifier 10-SNP model Maroñas et al. (2014)

 White 0.79 0.97 0.62 0.84 0.91

 Int 0.63 0.37 0.88 0.47 0.83

 Black 0.64 0.30 0.98 0.67 0.92

36-SNP set model current study

 White 0.82 0.99 0.65 0.86 0.98

 Int 0.62 0.26 0.98 0.79 0.82

 Black 0.92 0.90 0.94 0.64 0.99

36-SNP set model current study—Fitzpatrick scale*

 Light 0.92 0.99 0.85 0.95 0.98

 Dark 0.74 0.50 0.99 0.86 0.93

 Dark-Black 0.94 0.92 0.96 0.79 0.99
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