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Abstract

In this paper, we present a new method to rigorously compute smooth branches
of zeros of nonlinear operators f : Rl1 × B1 → Rl2 × B2, where B1 and B2 are
Banach spaces. The method is first introduced for parameter continuation and then
generalized to pseudo-arclength continuation. Examples in the context of ordinary,
partial and delay differential equations are given.

1 Introduction

Finding solutions of a nonlinear functional differential equation

G(p, u) = 0, (1)

where p is a set of parameters, is central in mathematics. In particular, when (1) takes
the form of a partial differential equation or a delay equation, finding explicit solutions
becomes a real challenge, due to the nonlinearity of G and to the fact that the state space
is infinite dimensional.

Several computer-assisted approaches to solve rigorously systems of nonlinear equa-
tions have been proposed since the early 1990’s [2, 4, 5, 7, 10, 11, 12, 13, 14, 15, 17, 18]. A
combination of topological methods (Banach fixed point theorem, Conley index theory),
a priori analytic estimates and use of interval arithmetic have led to new theorems about
the existence of solutions. In early works like in [17, 18], the proofs of existence were
done for fixed parameters. In [5, 7] these arguments were put in a context of continua-
tion, where a premium was placed on minimizing computational cost, the focus remained
on discrete parameter values only. This method was referred to as validated continua-
tion. In [4, 10], continuous branches of solution curves were obtained, in the context of a
predictor-corrector algorithm. The idea was to directly work with small intervals of pa-
rameters (using interval arithmetic) and then draw conclusions about solution branches
for these intervals of parameters. However, the computational cost of such methods is
high, since trivial predictors were used, leading to very small step sizes in the parameter.
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In [1], validated continuation was adapted to prove the existence of piecewise continuous
solution curves of (1). At each step of the algorithm, first order predictors were used to
prove the existence of small continuous solutions curves, allowing significantly larger step
sizes. With this in mind, we now aim to develop a method that allow us to rigorously
obtain the existence of global smooth solution curves, in the context of both parameter
and pseudo-arclength continuation.

Before proceeding, it is worth mentioning that this method might as well be applied
to finite dimensional systems. However, the motivation for applying rigorous numerical
techniques to such problem is less appealing, as the confidence in getting reliable outputs
from classical numerical methods is high, since the main source of error is often due to
round-off. In the context of infinite dimensional problems, the numerical methods must
be applied to some finite dimensional approximation, which raises questions concerning
the validity of the output. With this in mind, we develop a method that provides an
internal check of consistency on the dimension of truncation from the infinite to finite
dimensional problem, hence delivering rigorous mathematical proofs.

When looking for solutions of (1) with a periodic profile, one may apply a Fourier
transformation to the a priori unknown solution u and then solve for the Fourier coef-
ficients. This transforms (1) into an equivalent problem in Fourier space. We will turn
to concrete examples quickly, where we also specify the parameters and spaces involved,
but we first introduce the general setting and notation. Denote by g : Rl1 ×B1 → B2 the
Fourier transformation of G, where Rl1 is the parameter space and B1, B2 are Banach
spaces. Sometimes, we will be interested in finding solutions of g = 0 satisfying additional
conditions (see Examples 1 and 2 below). An extra set of l2 equations will then ensure
that the additional conditions are satisfied, i.e., h = 0 with h : Rl1 × B1 → Rl2 . Hence,
consider the infinite dimensional system of equations

F : Rl1 ×B1 → Rl2 ×B2 : (p, ξ) 7→ F(p, ξ) = (h(p, ξ), g(p, ξ)) = 0, (2)

where p = (p1, . . . , pl1) ∈ Rl1 are the original parameters of (1) and ξ consists of the
Fourier coefficients of u. To be more specific, we denote these by ξ = (ξk)∞k=0 with, in
general, ξk ∈ Rn, n ≥ 1 (see below for examples where n = 1, 2; one may also think of
systems of equations and higher dimensional spatial settings, leading to larger n). In this
paper, we do not deal with the details of the equivalence (for periodic solutions) of (1)
and (2), which will be context dependent. Let us remark that although in the present
paper we restrict attention to periodic solutions, extensions to non-periodic (boundary
value) problems are possible within this setting.

Since the periodic solutions of (1) we are looking for, are reasonably smooth, we
choose our Banach spaces such that the Fourier coefficients ξ = (ξk)k, ξk ∈ Rn decay
quickly. There are of course many possibilities. We only deal with one popular choice,
used in [1, 4, 5, 6, 7], mostly in the context of validated continuation. We choose weight
functions (q > 0)

ωqk =
{

1, k = 0;
kq, k ≥ 1, (3)

which are used to define the norm

‖ξ‖q = sup
k≥0

ωqk|ξk|∞, (4)

and the Banach space
Ωq = {ξ , ‖ξ‖q <∞}, (5)
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consisting of sequences with algebraically decaying tails. We finally let B1 = Ωq1 and
B2 = Ωq2 . Throughout we assume that F is a C1 function.

Example 1. Consider the problem of computing periodic solutions (with a special sym-
metry) of the fourth order Swift-Hohenberg ordinary differential equation

−u′′′′ − νu′′ + u− u3 = 0, ν ∈ R. (6)

This ODE has a conserved quantity (first integral), called the energy, which is given by

E = u′′′u′ − 1
2
u′′

2 +
ν

2
u′

2 +
1
4

(u2 − 1)2.

We restrict our attention to finding periodic solutions at the zero energy level E = 0.
Plugging the cosine Fourier expansion

u(y) = ξ0 + 2
∑
k≥1

ξk cos kLy

into (6), the problem g = (gk)k≥0 = 0, where

gk
def=
[
1 + νL2k2 − L4k4

]
ξk −

∑
k1+k2+k3=k

ξk1ξk2ξk3 , k ≥ 0, (7)

corresponds to finding periodic solutions u of (6), see [1]. Here, p = (p1, p2) ∈ R2, where
p1 = ν and p2 = L is the frequency of u ( 2π

L is its period). The extra equation

h
def= −2L2

∞∑
l=1

l2ξl −
1√
2

[
ξ0 + 2

∞∑
l=1

ξl

]2

+
1√
2

= 0

is added in order to ensure that E = 0 (one evaluates the energy at y = 0, where u′ = 0).
Letting F = (h, g), the problem F(p, ξ) = 0 is considered, with F : R2 ×Ωq → R×Ωq−4,
q > 3, see also Section 4.2.

Example 2. Consider the problem of finding periodic solutions of the so-called Wright’s
delay equation

y′(t) = −αy(t− 1)[1 + y(t)], α >
π

2
(8)

considered in [16]. Plugging the Fourier expansion

y(t) = ξ0,1 + 2
∞∑
k=1

[ξk,1 cos kLt− ξk,2 sin kLt]

into (8) and letting ξk = (ξk,1, ξk,2) ∈ R2 (with ξ0,2 = 0), consider

gk
def= Rk

(
ξk,1
ξk,2

)
+ α

∑
k1+k2=k
ki∈Z

Θk1

(
ξk1,1ξk2,1 − ξk1,2ξk2,2
ξk1,1ξk2,2 + ξk1,2ξk2,1

)
, k ≥ 0,

where

Rk =
(

α cos kL −kL+ α sin kL
kL− α sin kL α cos kL

)
and Θk1 =

(
cos k1L sin k1L
− sin k1L cos k1L

)
.
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Solving g = (gk)k≥0 = 0 corresponds to finding periodic solutions of (8), see [9]. In order
to eliminate arbitrary shifts of the periodic solution y, the normalizing condition y(0) = 0
is imposed. Hence,

h
def= y(0) = ξ0,1 + 2

∞∑
k=1

ξk,1 = 0

is appended to g = 0. Letting F = (h, g) and p = (α,L) ∈ R2, the problem F(p, ξ) = 0 is
considered, with F : R2 × Ωq → R× Ωq−1, q ≥ 2.

Example 3. Consider the problem of looking for stationary solutions of nonlinear partial
differential equations of the form

ut = L(p, u) +
P∑
j=2

cj(p)uj in D =
N∏
l=1

[
0,

2π
Ll

]
, (9)

defined on N -dimensional rectangular spatial domains, where L is a linear differential
operator in u. In particular, consider the two-dimensional problem N = 2, L(u) =(
ν − (1 + ∆)2

)
u, P = 3, c2 = 0, c3 = −1 with periodic boundary conditions, see [6].

More precisely, consider

ut = νu− (1 + ∆)2u− u3 = 0, in D =
[
0,

2π
L1

]
×
[
0,

2π
L2

]
u(x, y, t) = u(x+

2π
L1
, y, t), u(x, y, t) = u(x, y +

2π
L2
, t) (10)

u(x, y, t) = u(−x, y, t) = u(x,−y, t) = u(−x,−y, t).

Plugging the expansion of the time independent a priori unknown solution

u(x, y) =
∑

k1,k2∈Z
ck1,k2e

ik1L1xeik2L2y

into (10), we need to solve

gi,j(ν, ξ)
def= µi,j(ν)ξi,j −

∑
i1+i2+i3=i
j1+j2+j3=j
ik,jk∈Z

ξi1,j1ξi2,j2ξi3,j3 = 0, i, j ≥ 0 (11)

where ξi,j is the real part of ci,j, ξ = (ξi,j)i,j≥0, ξ−ik,jk = ξik,−jk = ξ−ik,−jk = ξik,jk and
µi,j = ν −

[
1−

(
i2L2

1 + j2L2
2

)]2. Letting F = (gi,j)i,j≥0, solving F(ν, ξ) = 0 corresponds
to finding solutions of (10).

1.1 Parameter continuation

We want to develop a computational method to rigorously continue the zeros of F :
Rl1 ×Ωq1 → Rl2 ×Ωq2 , as we move one of the parameters of p, say p1. We introduce only
the main ideas here, and discuss the method in detail in Section 2. Fixing the parameters
p2, . . . , pl1 and considering ν def= p1 as the continuation parameter, we define the infinite
dimensional vector of variables x = (p2, . . . , pl1 , ξ) and the new map

f : R×
[
Rl1−1 × Ωq1

]
→ Rl2 × Ωq2 : (ν, x) 7→ f(ν, x). (12)
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Under the assumption that Dxf(ν, x) is nonsingular along the branch of zeros that we
are computing, we vary the parameter ν. In this case, the implicit function theorem
implies that the branch of zeros can be viewed globally as the graph of a function of
the parameter ν. The idea is to transform the problem f(ν, x) = 0 into a fixed point
equation and to apply the Banach fixed point theorem. Since we want develop this idea
in a computational setting, consider a finite dimensional projection f (m) of (12). First,
using a Newton-like iterative scheme on f (m), we compute an approximate zero x̄ of
(12) at the parameter value ν = ν0. Next, we compute a tangent vector ẋ such that
Dxf(ν0, x̄)ẋ+Dνf(ν0, x̄) ≈ 0. Using the vectors x̄ and ẋ, we define the set of predictors
by

xν = x̄+ ∆ν ẋ, (13)

where ∆ν is small. Consider the Banach space Φ = Rl1−1×Ωq1 (with the induced product
norm). We compute an approximate inverse A of the linear operator Dxf(ν0, x̄). For
ν = ν0 + ∆ν close to ν0, we define Tν : Φ→ Φ by

Tν(x) = x−Af(ν, x), (14)

and look for a fixed point of Tν using the Banach fixed point theorem. Note that it is
sufficient that A is injective to ensure that fixed points of T are in bijection with zeros
of f .

Example 4. For the problem introduced in Example 1, the approximate inverse A may
be constructed as follows [1]. Denote by Dxf

(m)(ν0, x̄) the Jacobian matrix of the pro-
jection f (m) at the approximate solution (ν0, x̄), and let Jm be an approximate inverse
of Dxf

(m)(ν0, x̄), computed using an LU decomposition. Recalling (7), denote the linear
part of gk by µk(L, ν) = 1 + νL2k2 − L4k4. Now we define

A
def=


Jm 0TF 0TF 0TF · · ·

0F µm(L̄, ν0)−1 0 0 · · ·
0F 0 µm+1(L̄, ν0)−1 0 · · ·
0F 0 0 µm+2(L̄, ν0)−1

...
...

...
. . .

 ,

which acts as an approximate inverse of the linear operator Dxf(ν0, x̄), provided of course
that the projection dimension m is large enough. Note that A : R× Ωq−4 → R2 × Ωq.

The goal is to prove that there exists a ball B(r,∆ν) = xν + B(r) ⊂ Φ of radius r
using norm (4), centered at xν , such that Tν maps the ball B(r,∆ν) into itself and acts as
a contraction on B(r,∆ν), for small ∆ν = ν − ν0. To verify these conditions, we need to
compute two bounds Y = Y (∆ν) and Z = Z(r,∆ν). In essence, Y measures how far the
center xν of B(r,∆ν) is mapped from itself (under Tν), whereas Z measures the contrac-
tion rate of (all components of) Tν on B(r,∆ν). The most computationally demanding
part of the method is the construction of the bounds Y and Z (see for instance Sections
3.2 and 3.3 in [1] or Section 6 in [5]). Their construction requires a combination of a pri-
ori analytic estimates (bounds on the truncation error terms) and rigorous computations
involving interval arithmetic. Once the bounds Y and Z are computed, verifying that

‖Y (∆ν) + Z(r,∆ν)‖Φ < r (15)

is sufficient to conclude that Tν : B(r,∆ν)→ B(r,∆ν) is a contraction (see Lemma 5 and
[17]), yielding a unique zero of f(ν, x) at ν = ν0 + ∆ν . In practice, we use an iterative
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procedure (with ∆ν varying) to find the approximate maximal ∆0
ν for which there exists

an r > 0 such that (15) is satisfied (see Section 2 and [1]). If this step is successful, let ν1 =
ν0+∆0

ν . We then have a continuum of zeros C0 =
{(
ν, x0(ν)

)
| f
(
ν, x0(ν)

)
= 0, ν ∈ [ν0, ν1]

}
,

see Lemma 7. Since we want to repeat the argument with initial parameter value ν1,
we then put ourself in the context of a continuation method. This involves a predictor
and corrector step. Recalling (13), the predictor at the parameter value ν1 = ν0 + ∆0

ν is
given by x̂1

def= x̄+ ∆0
ν ẋ. The corrector step, based on a Newton-like iterative scheme for

the projection f (m), takes x̂1 as its input and produces, within a prescribed tolerance,
a zero x̄1 at ν1. We can then compute a new tangent vector ẋ1, build the new set of
predictors x̄1 + ∆ν ẋ1, construct the bounds Y,Z at the parameter value ν1 and try to
verify (15) again. If we are successful in finding a new ∆0

ν , we let ν2 = ν1 + ∆0
ν and we

get the existence of a continua of zeros C1 =
{(
ν, x1(ν)

)
| f
(
ν, x1(ν)

)
= 0, ν ∈ [ν1, ν2]

}
.

Once we have the two continuum of zeros C0 and C1, we ask the natural question: can we
prove that C0 and C1 connect at

(
ν1, x

0(ν1)
)

=
(
ν1, x

1(ν1)
)

such that C0 ∪ C1 is a smooth
one dimensional branch of solutions of f = 0? In turns out that there is a simple check
that can be added to the continuation step in order to give an answer to this question,
see Proposition 8.

1.2 Pseudo-arclength continuation

The rigorous continuation introduced in the previous section requires Dxf(ν, x) to be
nonsingular along the branch of zeros we are following. This implies that the continuation
method will necessarily fail when trying to continue past a fold. One way to overcome
this difficulty is to consider the continuation parameter ν as a variable and the arclength
of the curve as a new parameter [8]. Consider the vector of variables X = (p, ξ) and recall
(2). To solve F(X) = 0 past folds, we append one equation to the system, namely the
equation E = 0 of a plane almost perpendicular to the curve we are following. In practice,
we do not know exactly the arclength of the curve. The new continuation parameter,
denoted by s, will then be the pseudo-arclength of the curve. Note that E depends on s.
The details of the construction of E are rather technical and are presented in Section 3.
In essence, we apply the rigorous continuation method on F(s,X) = 0, where

F(s,X) =
(
E(s,X)
F(X)

)
.

With this construction, note that DXF (s,X) will be nonsingular at a fold point. Hence,
we can expect a Newton-like map to contract neighborhoods of the fold point. In
Lemma 10 and Proposition 11 we formulate the algorithms to establish the existence
of a smooth solution curve.

The paper is organized as follow. In Section 2, we introduce the parameter continu-
ation method to obtain smooth branches of zeros. In Section 3, we show how to modify
the continuation method in order to continue past folds: pseudo-arclength continuation.
In Section 4, we first present an example of the parameter continuation in the context of
periodic solutions of delay-differential equations. We also discuss an application of the
pseudo-arclength method to periodic solutions of ordinary differential equations. This
example provides an improvement of a result presented in [1].
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2 Parameter continuation

In this section, we develop a method to compute smooth solution curves of

F : Rl1 × Ωq1 → Rl2 × Ωq2 ,

as we move one of the parameters of p. Without loss of generality, we consider ν def= p1

as the continuation parameter. Hence, we fix all parameters p2, . . . , pl1 . Defining the
infinite dimensional vector of variables x = (p2, . . . , pl1 , ξ), we want to do rigorous branch
following for the problem f(ν, x) = 0. As mentioned before, we transform this problem
into a fixed point problem Tν(x) = x. With x as given above, define the norm

‖x‖Φ = max
{
|p2|, . . . , |pl1 |, ‖ξ‖q1

}
, (16)

and the corresponding Banach space

Φ =
{
x = (p2, . . . , pl1 , ξ) , ‖x‖Φ <∞

}
. (17)

Consider ν0 fixed and suppose the existence of x̄ ∈ Φ such that f(ν0, x̄) ≈ 0. Assume
we have an bijective linear operator A : Rl2 × Ωq2 → Rl1−1 × Ωq1 which acts as an
approximation for the inverse of Dxf(ν0, x̄). Recalling (14), consider the Newton-like
operator Tν(x) = x−Af(ν, x), with ν close to ν0. Suppose also that we have computed
a tangent vector ẋ ∈ Φ such that Dxf(ν0, x̄)ẋ + Dνf(ν0, x̄) ≈ 0. The idea is to find
balls in Φ on which Tν is a contraction mapping, thus leading to solutions of f(ν, x) = 0.
Recalling that ξk ∈ Rn, let us define the ball of radius r in Φ, centered at the origin,

Bq1(r) def= [−r, r]l1−1 ×
∞∏
k=0

[
− r

ωq1k
,
r

ωq1k

]n
. (18)

We will drop q1 from the notation whenever this does not compromise clarity. Recalling
(13), consider the predictors based at ν0: xν = x̄+∆ν ẋ, with ∆ν = ν−ν0. For ν close to
ν0 we define the ball centered at xν by Bxν(r) = xν +B(r). To simplify the presentation,
define k0 = −l1 + 1, so that the indexing of the sets begins at k = k0. To show that
Tν is a contraction mapping, we need bounds Yk and Zk for all k ≥ k0, such that, with
∆ν = ν − ν0, ∣∣∣[Tν(xν)− xν ]k

∣∣∣ ≤ Yk(∆ν), (19)

and
sup

b,c∈B(r)

∣∣∣[DTν(xν + b)c]k
∣∣∣ ≤ Zk(r,∆ν). (20)

Note that Yk, Zk ∈ R for k0 ≤ k < 0, and Yk, Zk ∈ Rn for k ≥ 0. As mentioned earlier,
we refer to Sections 3.2 and 3.3 in [1] or in Section 6 in [5] for explicit computations of
the bounds (19) and (20). The following lemma was proved in [1].

Lemma 5. Consider ν = ν0 + ∆ν . If there exists an r > 0 such that ‖Y + Z‖Φ < r,
with Y = (Yk)k≥k0 and Z = (Zk)k≥k0 , satisfying (19) and (20), respectively, then Tν is
a contraction mapping on Bxν (r) with contraction constant at most ‖Y + Z‖Φ/r < 1.
Furthermore, there is a unique x̃ν ∈ Bxν (r) such that f(ν, x̃ν) = 0, and x̃ν lies in the
interior of Bxν (r).
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For sake of simplicity of the presentation, we assume n = 1. The generalization of the
discussion below for the case n ≥ 1 is straightforward, using component-wise comparison
for all vector inequalities concerned. An example with n = 2 can be found in [9].

The bounds/functions Yk(∆ν) and Zk(r,∆ν) can be constructed so that they are
polynomials in r and |∆ν | (note the absolute value) with non-negative coefficients. Of
course, in parameter continuation, at each step one is interested in either ∆ν > 0 or
∆ν < 0, but we stick with the general setting since using the sign of ∆ν will only
marginally improve the bounds and step size. Also, for sufficiently large k, say k ≥ M ,
one may choose

Yk = 0, and Zk = ẐM

(
M

k

)q1
,

for some ẐM = ẐM (r,∆ν) > 0, where M is a computational parameter (to be discussed
in the example presented in Section 4.2). The reason why one can choose Yk = 0 for k
large enough is because the quantity [Tν(xν)−xν ]k eventually vanishes. This is due to the
fact that xν has only finitely many non zero entries (e.g. see Section 3.2 in [1]). In order
to verify the hypotheses of Lemma 5 in a computationally efficient way, we introduce the
following notion of radii polynomials.

Definition 6. Let Yk(∆ν) = 0 and Zk(r,∆ν) = ẐM (r,∆ν)
(
M
k

)q1 for all k ≥ M . We
define the radii polynomials {pk0 , . . . , pM−1, pM} by

pk(r, |∆ν |)
def=

{
Yk(∆ν) + Zk(r,∆ν)− r

ωk
, k = k0, . . . ,M − 1;

ẐM (r,∆ν)− r
ωM

k = M,

where we recall that Yk(∆ν) = Yk(|∆ν |) and Zk(r,∆ν) = Zk(r, |∆ν |) are polynomials with
non-negative coefficients. In particular, pk is increasing in |∆ν | ≥ 0 and convex in r ≥ 0.

Here, we repeat the discussion presented in [1], as it sheds light on the reason why
the radii polynomials pk are useful. Some terms of the polynomials Yk and Zk are close
to zero. More precisely,

Yk ∼ δ1 + δ2|∆ν |+O(∆2
ν),

Zk ∼ δ3r +O(∆νr, r
2),

where δ1, δ2 and δ3 are very small: δ1 ≈ 0 because of the choice of x̄, δ2 ≈ 0 because the
choice of ẋ, and δ3 ≈ 0 because of the choice of the linear operator A and the Newton-like
map Tν . Therefore, the radii polynomials are roughly of the form

pk(r, |∆ν |) ∼ (δ1 + |∆ν |δ2)−
(

1
ωk
− δ3

)
r +O(r2,∆νr,∆2

ν).

Hence, for a reasonably large range of ∆ν , one may anticipate to find a small r > 0
(but not too small) at which all radii polynomials are negative. The following is a slight
modification of a result presented in [1].

Lemma 7. Recall (2) and suppose that F ∈ C`
(
Rl1 ×B1,Rl2 ×B2

)
, ` ≥ 1. If there

exists an r > 0 and a small ∆ν such that pk(r, |∆ν |) < 0 for all k = k0, . . . ,M , then
there exists a C` function x̃ : [ν0−∆ν , ν0 + ∆ν ]→ Φ : ν 7→ x̃(ν) such that f(ν, x̃(ν)) = 0
for all ν ∈ [ν0 −∆ν , ν0 + ∆ν ]. Furthermore, these are the only solutions of f(ν, x) = 0
in the tube {|ν − ν0| ≤ ∆ν , x− xν ∈ B(r)}.
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Proof. Since pk is increasing in |∆ν | ≥ 0, existence and uniqueness of a solution x̃(ν) for
ν ∈ [ν0−∆ν , ν0 + ∆ν ] follows from the definition of the radii polynomials and Lemma 5.
In particular, for every fixed ν ∈ [ν0 − ∆ν , ν0 + ∆ν ], Tν : Bxν → Bxν is a contraction.
Consider the change of variable y = x− xν . Then, the operator

T̃ : [ν0 −∆ν , ν0 + ∆ν ]×B(r)→ B(r) : (ν, y) 7→ T̃ (ν, y) def= Tν(y + xν)

is a uniform contraction on B(r). Since F ∈ C`
(
Rl1 ×B1,Rl2 ×B2

)
, we have that T̃ ∈

C` ([ν0 −∆ν , ν0 + ∆ν ]×B(r), B(r)). By the uniform contraction principle, see e.g. [3],
we conclude that x̃(ν) is a C` function of ν.

After one successful step, based at (ν, x) = (ν0, x̄0) with predictor ẋ0 and step size
∆ν , we find the corrector x̄1 at ν = ν1 = ν0 + ∆ν using a Newton iteration, and we
rebuild the radii polynomials, now based at (ν, x) = (ν1, x̄1). Suppose now that we have
performed two succesful continuation steps, i.e., in both steps we have found radii r0 and
r1, respectively, where the radii polynomials are negative. We thus have two continuous
solution graphs over intervals [ν0, ν1] and [ν1, ν2]: Lemma 7 implies the existence of two
functions x0(ν) and x1(ν) of class C` such that C0

def=
{(
ν, x0(ν)

)
| ν ∈ [ν0, ν1]

}
and C1

def={(
ν, x1(ν)

)
| ν ∈ [ν1, ν2]

}
are smooth branches of solutions of f(ν, x) = 0. The question

is to determine whether or not C0 and C1 connect at the parameter value ν1 to form a
smooth continuum of zeros C0 ∪ C1. In other words, can we prove that x0(ν1) = x1(ν1)
and that the connection is smooth? It turns out that validated continuation is well suited
to answer this question in a nice fashion. At the parameter value ν1, we have two sets
enclosing a unique zero namely

B0
def= x̄0 + (ν1 − ν0)ẋ0 +B(r0),

and
B1

def= x̄1 +B(r1).

We want to prove that the solutions in B0 and B1 are the same. We return now to the
radii polynomials pk(r, |∆ν |), k = k0, . . . ,M constructed at basepoint (ν, x) = (ν1, x̄1),
and evaluate them at ∆ν = 0:

p̃k(r) = pk(r, 0).

Since p̃k(r1) < 0, we find a non empty interval I def= [r−1 , r
+
1 ] containing r1 such that

p̃k(r) are all strictly negative on I. We now have two additional sets enclosing a unique
zero at parameter value ν1, namely

B±1
def= x̄1 +B(r±1 ).

Proposition 8. If B0 ⊂ B+
1 or B−1 ⊂ B0, then C0∪C1 consists of a continuous branch of

solutions of f(ν, x) = 0, and C0∩C1 = {(ν1, x
0(ν1)} = {(ν1, x

1(ν1)} ∈ B0∩B1. Moreover,
if T (ν, x) = Tν(x) is of class C`, then C0 ∪ C1 is a C` smooth curve.

Proof. For a geometric representation of the proof, we refer to Figure 1. The sets B−1 ,
B+

1 and B1 all contain a unique zero of f(ν1, ·). Since the balls are nested, these zeros
are one and the same, namely x1(ν1). Furthermore, B0 also contains exactly one zero of
f(ν1, ·), namely x0(ν1). The assertion implies that either B0 and B+

1 , or B0 and B−1 are
nested, hence x0(ν1) = x1(ν1). This means that C0 ∪ C1 consists of a one dimensional
continuous branch of zeros of f . It remains to prove smoothness at ν = ν1. By Lemma 7,
x1(ν) is a smooth C` function on the interval [ν1 − ∆ν , ν1 + ∆ν ]. Moreover, we assert

9



x̄0

x̄1

•

ν0 ν1 ν2

•

B1

B0

B
+
1

B
−

1

Figure 1: B0 ∩B1 contains a unique zero of (12) and C0 ∪ C1 consists of a continuum of
zeros. This picture illustrates the proof of Proposition 8

that x0(ν) and x1(ν) coincide on [ν1 − ε, ν1] for ε > 0 sufficiently small. Namely, x1(ν1)
lies in the interior of the tube {(ν, x), |ν − ν1| ≤ ∆ν , x − (x̄1 + (ν − ν1)ẋ1) ∈ B(r1)},
and (ν, x1(ν)) are the only zeros of f inside this tube. On the other hand, the solution
curve x0(ν) must enter the tube for ν close to ν1, since x0(ν1) is in the interior. From
uniqueness of solutions inside the tube (Lemma 7) it follows that indeed x0(ν) and x1(ν)
coincide on [ν1 − ε, ν1] for ε > 0 sufficiently small. Hence, we conclude that the union
C0 ∪ C1 is C` smooth.

In practice, the hypotheses of Proposition 8 are verified as follows. The center points
x̄0 + (ν1 − ν0)ẋ0 of B0 and x̄1 of B1, B

±
1 are computed using the finite dimensional

approximations f (m0) and f (m1) of f , respectively. This means that x̄0+(ν1−ν0)ẋ0 ∈ Rm0

and x̄1 ∈ Rm1 . Let m̄ = max{m0,m1}. Recalling (18), let q0 and q1 be the decay rates
of the tails of B0 and B1, respectively. Note that B1, B−1 and B+

1 have the same decay
rate. If q0 < q1, the tail of B+

1 decays faster than the tail of B0, which clearly means that
B0 6⊂ B+

1 . Hence, we have to check whether or not B−1 ⊂ B0 by verifying that the product
of the first m̄ intervals of B−1 is a subset of the product of the m̄ first intervals of B0 (this
consist of checking 2m̄ inequalities on a computer) and checking that r−1 < r0. This will
ensure that B−1 ⊂ B0. Similarly, if q0 > q1, we can only investigate that B0 ⊂ B+

1 . We
proceed as before; that is we verify the inclusion of the m̄ dimensional finite part of the
sets and then check that r0 < r+

1 . If q0 = q1, we have the choice. For instance, we can
start by verifying that B0 ⊂ B+

1 . If it is true, we stop. If not, we determine whether or
not B−1 ⊂ B0. If we can show that B−1 ⊂ B0, then we have the wanted continuum. If
not, we cannot conclude about the continuity of the branch.

3 Pseudo-arclength continuation

In this section, we adapt the continuation method presented in Section 2 to pseudo-
arclength continuation. In general, there may be no preferred parameter in which one
wants to continue, or if there is, one would like to continue past folds. This is where

10



(X − X̂) · Ẋ = 0
X̂

•

p1

‖X‖ F(X) = 0

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04
0.92

0.925

0.93

0.935

0.94

0.945

Figure 2: Solving F(X) = 0 on the plane (X − X̂) · Ẋ = 0.

pseudo-arclength continuation comes into the picture [8]. The first step is to reformulate
the problem so that Dxf(ν, x) being singular is no longer an obstruction for the method.

3.1 Avoiding the singularity of the derivative

Considering X = (p, ξ), where all parameters p are now variables, we want to solve
F(X) = 0, where F is given by (2), restricted to a plane almost perpendicular to the
branch of zeros we are following (see [8]). Suppose that we have a predictor X̂ and some
guess about the direction Ẋ of the curve, then one can define the plane (X − X̂) · Ẋ = 0.
This plane is transverse to the curve and contains the predictor. Appending the equation
of the plane to F , we consider

F(X) def=
(

(X − X̂) · Ẋ
F(X)

)
= 0.

In this setting, a generic fold point X̄ is hyperbolic, that is, DXF(X̄) is nonsingular.
Hence, we can expect a contraction mapping argument to be successful. For a geometric
representation, we refer to Figure 2.

3.2 Piecewise smooth solution curves

We now incorporate the discussion of Section 3.1 in the context of a predictor-corrector
algorithm. From a previous step, we have a direction vector Ẋ0, and suppose we have
computed an approximate solution X̄1 of F(X) = 0 in a plane perpendicular to Ẋ0.
We want to construct the radii polynomials based at X̄1. We numerically compute Ẋ1

such that DF(X̄1)Ẋ1 ≈ 0. Then, fixing ∆s > 0 (to be determined later), we define the
predictors {

Xs = X̄1 + s∆sẊ1,

X ′s = Ẋ0 + s(Ẋ1 − Ẋ0),
s ∈ [0, 1]. (21)

Using these, we introduce a family of planes

Πs = {(s,X) | E(s,X) def= (X −Xs) ·X ′s = 0} , (22)

where X · Y denotes an inner product (in practice we use the usual dot product in
Euclidian space, since Xs and X ′s only have finitely many nonzero components). The

11



•X̄1

Xs

Π0

Π1

Πs

Figure 3: The family of planes {Πs, s ∈ [0, 1]}.

family {Πs | s ∈ [0, 1]} is an interpolation between the plane Π0 from the previous step
and the plane Π1 perpendicular to the predictors Xs, see Figure 3. Note that we can
choose Ẋ1 to be approximately of unit length and such that Ẋ0 · Ẋ1 is positive, so that
Ẋ0 and Ẋ1 point roughly in the same direction (and we do not back trace on the solution
curve). When we set P = (s, p) and H = (E, h), then we are in the setting of parameter
continuation introduced in Section 2, for zeros of F(P, ξ) = (H, g), except that the first
equation E = 0 changes at each step in the iterative continuation process (which has
some consequences for matching the piecewise continuous solution curves, as discussed
in Section 3.3). The set of equations is more conveniently written as

F(s,X) =
(
E(s,X)
F(X)

)
. (23)

We point out one difference in notation compared to parameter continuation, namely, a
single continuation step is always described by s ∈ [0, 1], while ∆s controls the length
of the step (pseudo-arclength). As in parameter continuation, we do not need to fix the
step size a priori, allowing us to choose a near optimal ∆s at each continuation step.

Remark 9. Alternative choices of (21) can be made. For example, here we describe how
to obtain a C1 representation of the curve. One can compute two nearby approximate
solutions X̄0 and X̄1 on the solution curve (and thereby thus also fixing the step size), as
well as corresponding direction vectors Ẋ0 and Ẋ1. Then, for s ∈ [0, 1], we set

Xs = s3[Ẋ1 − Ẋ0 − 2(X̄1 − X̄0 − Ẋ0)] + s2[3(X̄1 − X̄0 − Ẋ0)− (Ẋ1 − Ẋ0)] + sẊ0 + X̄0

and X ′s = d
dsXs. Hence, X ′0 = Ẋ0 and X ′1 = Ẋ1. We can then look for zeros of (23), with

E(s,X) def= (X −Xs)·X ′s. The advantage of such a choice is the global C1 representation
of the predictors Xs, whereas the downside are a significantly larger amount of terms in
the estimates, as well as the need to fix a priori the distance between successive points.

We look to enclose uniquely zeros of (23) in sets of the form BXs(r) = Xs + B(r),
where

B(r) = [−r, r]l1 ×
∞∏
k=0

[
− r

ωk
,
r

ωk

]n
.

12



As before, we set up an equivalent fixed point problem. Suppose that numerically, we
found an approximation A of the inverse of DXF(0, X̄1). We then define the fixed point
problem

Ts(X) = X −AF(s,X). (24)

Using the same construction as in Section 2, we construct bounds Y and Z, as well as
the radii polynomials pk(r,∆s), k = k0, . . . ,M , uniform in s ∈ [0, 1], where k0 = −l1,
since we now consider l1 parameters as variables. We use the radii polynomials to find
the approximate maximum value ∆s ≥ 0 such that there exists an r1 > 0 satisfying
pk(r1,∆s) < 0, for all k = k0, . . . ,M . Hence, for every s ∈ [0, 1], the set BXs(r1) encloses
a unique zero X̃1(s) of (23). Assuming that F defined in (2) is of class C`, we can
conclude that the function X̃1(s) is of class C` (see Lemma 7). We now address the
question of the smoothness of the curve

C def=
{
X̃1(s)

∣∣∣ F
(
s, X̃1(s)

)
= 0, s ∈ [0, 1]

}
.

Lemma 10. Recall (21) and suppose that Ẋ0, Ẋ1 ∈ Rm+l1 . Define

κ1
def=

−1∑
k=k0

|(Ẋ1 − Ẋ0)k|+
m−1∑
k=0

1
ωk
|(Ẋ1 − Ẋ0)k|

κ2
def= min{Ẋ1 · Ẋ0, Ẋ1 · Ẋ1},

where ωk is the decay rate of the set B(r). Let r1 > 0 and ∆s > 0 such that pk(r1,∆s) < 0,
for all k = k0, . . . ,M . If

κ1r1 < ∆sκ2, (25)

then C is a smooth curve.

Proof. We will show that the parametrization X̃1(s) is such that d eX1

ds (s) never vanishes,
implying that C is a smooth curve. Note that κ1, κ2 ≥ 0, since Ẋ1 is chosen so that
Ẋ1 · Ẋ0 ≥ 0. We prove that d eX1

ds (s) 6= 0, for all s ∈ [0, 1]. The definition of C implies that
E(s, X̃1(s)) = 0, for all s ∈ [0, 1]. Hence, for all s ∈ [0, 1], we get that

∂E

∂s

(
s, X̃1(s)

)
+
∂E

∂X

(
s, X̃1(s)

)dX̃1

ds
(s) = 0. (26)

Recalling (21) and (22), we show that the first term does not vanish

∂E

∂s

(
s, X̃1(s)

)
= −∆sẊ1 ·X ′s + (X −Xs) · (Ẋ1 − Ẋ0) 6= 0.

Let us estimate the two terms separately. Since s ∈ [0, 1] and ∆s > 0,

∆sẊ1 ·X ′s = ∆s

[
Ẋ1 · Ẋ0 + s(Ẋ1 · Ẋ1 − Ẋ1 · Ẋ0)

]
≥ ∆s min{Ẋ1 · Ẋ0, Ẋ1 · Ẋ1}
= ∆sκ2.

Since X̃1(s)−Xs ∈ B(r1),∣∣∣(X̃1(s)−Xs) · (Ẋ1 − Ẋ0)
∣∣∣ ≤ −1∑

k=k0

|(Ẋ1 − Ẋ0)k|r1 +
m−1∑
k=0

1
ωk
|(Ẋ1 − Ẋ0)k|r1

= κ1r1.
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Figure 4: Two smooth solution curves C0 and C1 that we want to connect smoothly. Note
that the ordering of the planes Π0

1 and Π1
0 may be different, but this does not influence

the arguments.

It follows that ∂E
∂s (s, X̃1(s)) ≤ −∆sκ2 + κ1r1 < 0, for all s ∈ [0, 1]. We conclude from

(26) that d eX1

ds (s) 6= 0, for all s ∈ [0, 1]. By the implicit function theorem, C is a smooth
curve.

In practice, we verify condition (25) at the end of the continuation step, that is when
we have found an r1 > 0 and the approximately maximal ∆s such that pk(r1,∆s) < 0
for all k = k0, . . . ,M . We compute κ1 and κ2 and then check that κ1r1 −∆sκ2 < 0.

3.3 Matching the piecewise smooth solution curves

In Section 3.2, we introduced the theory to compute smooth pieces of solution curves.
In this section, we show how to glue these pieces to form a global smooth solution curve.
Suppose that we have performed two successful pseudo-arclength continuation steps and
obtained two smooth pieces of solution curves C0 def=

{
X̃0(s), s ∈ [0, 1]

}
and C1 def={

X̃1(s), s ∈ [0, 1]
}

of F(X) = 0, with Ci originating in Πi
0 and ending in Πi

1 (i = 0, 1),
see Figure 4. Consider the sets

B0
def= B(r0) + X̂1 and B1

def= B(r1) + X̄1, (27)

each enclosing a unique zero of F on Π0
1 and on Π1

0 respectively. Note that there might
be a small distance between the planes Π0

1 : (X−X̂1) ·Ẋ0 = 0 and Π1
0 : (X−X̄1) ·Ẋ0 = 0.

Indeed, X̄1 was numerically computed such that

δ
def=
∣∣(X̄1 − X̂1) · Ẋ0

∣∣ ≈ 0, (28)

but exact equality cannot be guaranteed. We remark that if Ẋ0 is computed so that
‖Ẋ0‖ ≈ 1, then δ is a very good approximation of the distance between the parallel
planes Π0

1 and Π1
0 (see Figure 4). We need to fill the gap between the planes. Consider
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Π̃τ : Ẽ(τ,X) def=
(
X − X̄1

)
· Ẋ0 + τ = 0, τ ∈ [−δ, δ],

the interpolation with parallel planes between Π1
0 for τ = 0 and Π0

1 for τ = ±δ (depending
on the sign of (X̄1−X̂1)·Ẋ0). As in Section 3.2, we would like to find uniform r+

1 > r−1 > 0
such that BX̄1

(r−1 ) and BX̄1
(r+

1 ) both contain, for all τ ∈ [−δ, δ], a unique zero of

F̃(τ,X) def=
(
Ẽ(τ,X)
F(X)

)
. (29)

Let A be the operator used in the construction of the radii polynomials based at X̄1. In
other words, A was used to define the uniform contraction T that yielded the existence
of C1. Define T̃τ (X) = X − AF̃(τ,X) and consider the uniform predictor X̄1 for all
τ ∈ [−δ, δ]. For every τ ∈ [−δ, δ], we want to enclose a unique fixed point of T̃τ in BX̄1

(r),
for some r > 0. Consider the radii polynomials p̃k(r, |τ |), k = k0, . . . ,M , associated to
this problem. Recalling (19) and (20), we note that the bound Z does not depend on τ ,
while the bound Y depends on |τ | linearly, see equations (31) and (32) below. Note that
p̃k(r, |τ |) ≤ p̃k(r, δ), for all k and for all τ ∈ [−δ, δ]. Suppose that there exist r+

1 > r−1 > 0
such that p̃k(r+

1 , δ) < 0 and p̃k(r−1 , δ) < 0, for all k = k0, . . . ,M . Hence, for any given
τ ∈ [−δ, δ], the sets

B±1
def= BX̄1

(r±1 ) = X̄1 +B(r±1 ) (30)

contain a unique zero of (29). By Lemma 7, we get the existence of

C0,1 def=
{
X̃0,1(τ)

∣∣∣ F̃
(
τ, X̃0,1(τ)

)
= 0, τ ∈ [−δ, δ]

}
,

where X̃0,1(τ) is a smooth function. In the context of pseudo-arclength continuation, the
following result is the analogue of Proposition 8.

Proposition 11. Suppose that C0 and C1 are smooth curves. If B0 ⊂ B+
1 or B−1 ⊂ B0,

then C0 ∪ C0,1 ∪ C1 consists of a smooth solution curve of F(X) = 0.

Proof. We show that C0 and C1 connect smoothly via C0,1. First note that B±1 and B1 all
uniquely enclose a zero of F in the plane Π1

0. Since these balls are nested, these zeros are
the same, namely X̃0,1(0) = X̃1(0). Note also that B±1 and B0 all uniquely enclose a zero
of F in the plane Π0

1. By hypothesis, B0 and B+
1 are nested or B−1 and B0 are nested,

implying that X̃0,1(±δ) = X̃0(1). This settles continuity of C0 ∪ C0,1 ∪ C1. Smoothness
of C0,1 follows immediately (as in the proof of Lemma 10), since ∂ eE

∂τ = 1. Furthermore,
combining the continuity of the polynomials p̃k and the fact that p̃k(r−1 , δ) < 0, we
infer the existence of an ε > 0 such that p̃k(r−1 , δ + ε) < 0. The smooth solution curve
{(τ, X̃0,1(τ)), |τ | ≤ δ + ε}, which slightly elongates C0,1, overlaps (at the ends) with C0

and C1, by arguments analogous to those used in the proof of Proposition 8. Hence, we
conclude that C0 and C1 connect smoothly via C0,1.

In practice, the construction of the radii polynomials p̃k(r, |τ |) is very little extra
work. Indeed, consider the radii polynomials pk(r,∆s), k = k0, . . . ,M , based at X̄1,
which were used to conclude about the existence of C1. Let Yk(∆s) and Zk(r,∆s) be the
bounds used in the construction of pk(r,∆s). Recalling the definition of (29), we first
realize that

sup
b,c∈B(r)

∣∣∣[DT̃τ (X̄1 + b)c]k
∣∣∣ ≤ Zk(r, 0), (31)
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for all k = k0, . . . ,M . This is due to the fact that DF̃(τ,X) = DF(0, X). Furthermore,
using the triangle inequality, we get that∣∣∣[T̃τ (X̄1)− X̄1]k

∣∣∣ =
∣∣∣[−AF̃(τ, X̄1)]k

∣∣∣
=

∣∣∣∣[−A( −τ
F(X̄1)

)]
k

∣∣∣∣
≤

∣∣∣∣[A( τ
0

)]
k

∣∣∣∣+
∣∣∣∣[−A( 0

F(X̄1)

)]
k

∣∣∣∣
≤ |τ ||A1,k|+ Yk(0), (32)

by the definition of Yk. Combining (31) and (32), we conclude that

p̃k(r, |τ |) = pk(r, 0) + |τ ||A1,k|. (33)

Thus, the difference between the construction of p̃k and pk is given in (33).

4 Applications

In this section, we introduce two applications of the method, where we compute global
smooth solution curves of differential equations. The first application, in the context of
delay equations, uses the parameter continuation method of Section 2 and the second
one, in the context of ordinary differential equations, uses the pseudo-arclength method
of Section 3.

4.1 Periodic solutions of delay equations

In [9], the parameter continuation method introduced in Section 2 is applied to the
so-called Wright’s equation

y′(t) = −αy(t− 1)[1 + y(t)], α >
π

2
. (34)

The continuation argument is used to compute a continuous branch F0 of slowly oscil-
lating periodic solutions (SOPS) of (34) and to show (rigorously) that F0 does not have
any fold points on the parameter interval

[
π
2 + ε, 2.24

]
, where ε = 7.3165 × 10−4. This

result is an attempt to partially answer the conjecture that equation (34) has a unique
SOPS for every α > π

2 . A representation of the rigorously computed branch of SOPS is
shown Figure 5. The details of the construction of the radii polynomials and the main
results of this problem can be found in [9].

4.2 Forcing theorem and periodic solutions of ordinary differen-
tial equations

As was mentioned in Example 1, we are interested in computing periodic solutions of the
Swift-Hohenberg equation −u′′′′ − νu′′ + u− u3 = 0 with a special symmetry at the zero
energy level E = 0. In [1], a rigorous continuation argument in the parameter ν is used
to prove the following result.

Proposition 12. For every ν ∈ [0, 2], the dynamics of the Swift-Hohenberg ODE (6)
on the energy level E = 0 is chaotic in the sense that there exists a two-dimensional
Poincaré return map which has a compact invariant set on which the topological entropy
is positive.
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Figure 5: A continuous branch of slowly oscillating periodic solutions of (34).

The reason why the continuation is stopped at ν = 2 is the apparent existence of a
saddle-node bifurcation (a fold) at ν ≈ 2.03165.

In what follows, we extend Proposition 12 by using the rigorous pseudo-arclength con-
tinuation introduced in Section 3 to continue through the fold. DefineX = (ν, L, ξ0, ξ1, ξ2, . . . )
and

h(X) def= −2L2
∞∑
l=1

l2ξl −
1√
2

[
ξ0 + 2

∞∑
l=1

ξl

]2

+
1√
2
,

and for all k ≥ 0,

gk(X) def= [1 + νL2k2 − L4k4]ξk −
∑

k1+k2+k3=k
ki∈Z

ξk1ξk2ξk3 ,

where ξ−k
def= ξk. Define F = (h, g0, g1, g2, . . . )T . Let us describe the algorithm, where we

focus on the differences with the parameter continuation in [1] (in particular Procedure
16 and the bounds in Sections 3.2 and 3.3 in [1]).

From a previous step, assume that we computed a smooth solution curve C0 and a
direction vector Ẋ0. Here are the steps to fulfill in order to prove existence of (and
compute) another piece of smooth solution curve C1 and to glue it smoothly to C0:

1. Using a finite dimensional approximation F (m) : Rm+2 → Rm+2, we compute an
approximate zero X̄1 of F on a plane perpendicular to Ẋ0. We also compute a new
direction vector Ẋ1 such that DF(X̄1)Ẋ1 ≈ 0. Knowing Ẋ0, X̄1 and Ẋ1, we build
the predictors defined in (21), the family of planes {Πs | s ∈ [0, 1]} defined in (22)
and the augmented map F(s,X) defined in (23).

2. We compute the derivative DXF(M)(X̄1), where we choose the computational pa-
rameter M = 3m−2 (see [1]), and a numerical approximation JM of the its inverse.
We define µk(L, ν) = 1+νL2k2−L4k4, the part of gk which is linear in the Fourier

17



modes ξk. We define the linear operator A on sequence spaces by

A
def=


JM 0 0 0 · · ·

0 µM (L̄, ν̄)−1 0 0 · · ·
0 0 µM+1(L̄, ν̄)−1 0 · · ·
0 0 0 µM+2(L̄, ν̄)−1

...
...

...
. . .

 . (35)

In order to make sure that A is bijective, we verify using interval arithmetic that
‖JMDXF(M)(X̄1)− I‖∞ < 1 (with I the 3m× 3m identity matrix).

3. We set Ts(X) = X − AF (X, s). We construct the bound Y defined component-
wise by (19). Let us mention that since ν is consider a variable(as opposed to a
parameter), ν̄ and ν̇ (the first components of X̄1 and Ẋ1, respectively ) will appear
in Y . For a complete description of how to compute the bound Y (∆s), we refer
to [1]. Notice also that F−2(Xs) = 0. Next we construct Z defined by (20), again
including ν as a variable. Otherwise, the only difference with the construction in [1]
is the fact that we need to compute an upper bound Z−2(r,∆s). Without repeating
the framework of [1] (in particular we refer the reader to [1] for the precise definition
of A†, the approximate inverse of A), we note that for k = −2,(

[DF(s,Xs + b)−A†]c
)
−2

= DE(s,Xs + b)c− ẊT
0 · c

= (X ′s − Ẋ0)T · c
= s(Ẋ1 − Ẋ0)T · c

=
[
(Ẋ1 − Ẋ0)T · vF

]
rs.

Defining C1,0
−2 =

∣∣∣(Ẋ1 − Ẋ0)T · vF
∣∣∣, we get that for every b, c ∈ B(r) and s ∈ [0, 1],∣∣∣([DF (Xs + b, s)−A†]c

)
−2

∣∣∣ ≤ C1,0
−2r.

Incorporating C1,0
−2 in Table 3 in [1], we have all the ingredients to build the Z(r,∆s).

Note that Table 3 in [1] contains the coefficients of the polynomials Zk(r,∆s) defined
by (20). We construct the radii polynomials pk(r,∆s), k = −2, . . . ,M defined in
Definition 6. We compute r1 > 0 and an approximately maximal ∆s > 0 (if
they exist and are computable) such that pk(r,∆s) < 0. Recalling Lemma 10, we
construct κ1 and κ2 and verify inequality (25). If the inequality is satisfied, we
combine Lemma 7 and Lemma 10 to conclude the existence of the new piece of
smooth solution curve C1.

4. We compute δ defined in (28), recall (33) and construct the radii polynomials
p̃k(r, |τ |). If we can show the existence of r+

1 > r−1 > 0 such p̃(r+
1 , δ), p̃(r

−
1 , δ) < 0,

we construct the sets B0, B1 and B±1 defined in (27) and (30). If we can show that
the hypothesis of Proposition 11 is satisfied, that is, if we can show that B0 ⊂ B+

1

or B−1 ⊂ B0, then we conclude that C0 and C1 connect smoothly via C0,1.

We have successfully iterated the above steps for the Swift-Hohenberg problem. This
proves the existence of a global smooth branch of periodic solutions of (6) at the energy
level E = 0, see Figure 6 (the additional geometric property needed in [1] is also satisfied).
We thus obtain the following Corollary, generalizing Proposition 12.
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ν

‖u‖

1.88 1.9 1.92 1.94 1.96 1.98 2 2.02 2.04
0.92

0.925

0.93

0.935

0.94

0.945

Figure 6: A smooth branch of periodic solutions of (6) at the energy level E = 0.

Corollary 13. Let ν∗ = 2.0316. For every parameter value ν ∈ [0, ν∗], the Swift-
Hohenberg equation (6) is chaotic at the energy level E = 0.

Using the rigorous pseudo-arclength continuation, we also obtained that the branch of
periodic solutions we followed has a fold for a parameter value ν ∈ [2.031647, 2.031657].
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