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Abstract In this paper, we consider the n-dimensional (n ≥ 2) damped models of
incompressible fluid mechanics in Besov spaces and establish the global (in time)
regularity of classical solutions provided that the initial data are suitable small.
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1 Introduction

The n-dimensional incompressible damped Boussinesq system concerned here can be
represented in the form
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⎧
⎪⎪⎨

⎪⎪⎩

∂t u + (u · ∇)u + νu + ∇ P = θen,

∂tθ + (u · ∇)θ + ηθ = 0,

∇ · u = 0
u(x, 0) = u0(x), θ(x, 0) = θ0(x),

(1.1)

where u : R
n × R+ → R

n is a vector field denoting the velocity, θ : R
n × R+ → R

is a scalar function denoting the temperature in the content of thermal convection and
the density in the modeling of geophysical fluids, P is the scalar pressure, en is the
unit vector in the xn direction, and ν ≥ 0 and η ≥ 0 are real parameters. In the case
when ν = η = 0, the system (1.1) reduces to the standard inviscid n-dimensional
Boussinesq system. Also the system (1.1) becomes the standard viscous Boussinesq
equations when νu and ηθ are replaced by −ν�u and −η�θ , respectively.

The Boussinesq system is extensively used in the atmospheric sciences and oceano-
graphic turbulence in which rotation and stratification are important (see for example
Pedlosky (1987) and references therein). Thus, over the past few years, the Boussi-
nesq system has been studied extensively theoretically, see Abidi and HmidI (2007),
Cao and Wu (2013), Chae (2006), Chae and Wu (2012), Cao and Titi (2007), Chae
and Nam (1997), Constantin and Vicol (2012), Danchin and Paicu (2009, 2011), Shu
(1994), Hmidi et al. (2010, 2011), Hou and Li (2005), Larios et al. (2010), Miao and
Xue (2011), Xu (2010), Xu and Ye (2013), Ye (2014) and references therein. Mathe-
matically the 2D Boussinesq equations serve as a lower dimensional model of the 3D
hydrodynamics equations. In fact, the Boussinesq equations retain some key features
of the 3D Navier-Stokes and the Euler equations such as the vortex-stretching mecha-
nism. As pointed out in Majda and Bertozzi (2002), the inviscid Boussinesq equations
can be identified with the 3D Euler equations for axisymmetric flows. Construct-
ing global unique solutions for some nonconstant θ0 is a challenging open problem
(even in the two-dimensional case) which has many similarities with the global exis-
tence problem for the three-dimensional incompressible Euler equations. The global
well-posedness of completely inviscid Boussinesq system is still an outstanding open
problem.

In this paper, we are also concerned with the following Euler equations for the
homogeneous incompressible fluid flows with damping in R

n :

⎧
⎨

⎩

∂t u + (u · ∇)u + μu + ∇ P = 0,

∇ · u = 0,

u(x, 0) = u0(x).

(1.2)

Here, μ ≥ 0 is real parameter. u = (u1, u2, · · · , un), u j = u j (x, t), j = 1, 2, · · ·, n,

is the velocity of the flow, and P = P(x, t) is the scalar pressure. It is a obvious fact
that in the case μ = 0, the Eq. (1.2) reduce to the standard incompressible n-dimension
Euler system. The local in time well-posedness for the n-dimension Euler equations
in the standard Sobolev space Hm(Rn), m > n+2

2 , was done by Kato (1972), and the
problem of finite time singularity for the local smooth solution is still an outstanding
open problem. In this direction, there is a celebrated result on the blow-up criterion
Beale et al. (1984) and its refinements (Chae 2006; Constantin et al. 1996) taking into
account geometric considerations on the vorticity directions. In Chae (2004), Chae
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proved local existence and uniqueness of solutions to n-dimensional Euler in critical

Besov space (for velocity) B
n
p +1

p,1 (Rn) with p ∈ (1, ∞). The local well-posedness

in B1∞,1(R
n) was settled by authors Pak and Park (2004). We refer the readers to

the interesting works on damped compressible Euler equations and damped Navier-
Stokes equations (for instance Sideris et al. 2003; Constantin et al. 2014). The finite
time blow-up problem of the local classical solution is known as one of the most
important and difficult problems in partial differential equations (see e.g., Constantin
1994, 2007; Kozono and Taniuchi 2000; Majda and Bertozzi 2002).

Finally, the n-dimensional surface quasi-geostrophic equation (SQG) is considered
here. ⎧

⎨

⎩

∂tθ + (u · ∇)θ + γ θ = 0,

u j = R jθ, ∇ · u = 0,

θ(x, 0) = θ0(x).

(1.3)

Here, γ ≥ 0 is a parameter. The function θ : R
n × R+ → R represents the potential

temperature, and the fluid velocity u : R
n × R+ → R

n is determined by θ(x, t) via
the formula

u j = ±Rπ( j)θ, π( j) is a permutation of j, j = 1, 2, . . . , n

where u j may take either a plus or a minus sign, and R j = ∂ j√−�
are Riesz transforms.

In the particular case n = 2, we have

u = R⊥θ =
(

∂x2

(−�)
1
2

θ,
−∂x1

(−�)
1
2

θ

)

= (R2θ, −R1θ),

where R1 and R2 are the 2-D Riesz transforms.
Recently, the SQG has been intensively investigated because of both its mathemat-

ical importance and its potential for applications in meteorology and oceanography
(Pedlosky 1987). The global regularity problem for this case remains open. This is
probably the simplest active scalar equation for which the global regularity is unknown.
It shares parallel properties with the 3D Euler equations. Also the system (1.3) becomes
the standard the dissipative SQG when γ θ is replaced γ (−�)αθ . The global regularity
issue concerning the SQG has recently been studied very extensively, and important
progress has been made. Here, we only mention some works on the SQG (see e.g.,
Caffarelli and Vasseur 2010; Chae and Constantin 2012; Chae et al. 2011; Cao and Titi
2007; Constantin and Vicol 2012; Constantin 2001; Constantin and Wu 2008; Con-
stantin and Wu 2009; Constantin and Wu 1999; Córdoba and Córdoba 2004; Dong
and Li 2008; Gancedo 2008; Hmidi et al. 2007; Kiselev 2011; Kiselev et al. 2007; Li
and Rodrigo 2009; Miao and Xue 2011; Wu 2002). In particular, the global regularity

for the critical case ( γ θ replaced by γ (−�)
1
2 θ ) has been successfully established

by De Giorgi techniques in Caffarelli and Vasseur (2010) and a non local maximum
principle verified by the modulus of continuity at time 0 in Kiselev et al. (2007) for
the case n = 2. The situation in the supercritical case ( γ θ replaced by γ (−�)
θ

with 
 < 1
2 ) is only partially understood at the time of writing both the cases n = 2
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and n > 2. Small data global existence results for the dissipative SQG have been
obtained in various functional settings, see Chae and Lee (2003), Chen et al. (2007),
Córdoba and Córdoba (2004), Hmidi et al. (2007), Miura (2006), Wu (2005a, b) for
more details.

The last fluid mechanic model concerned in this paper is the n-dimensional incom-
pressible magnetohydrodynamics system (MHD) with damping which can be written
as follows: ⎧

⎪⎪⎨

⎪⎪⎩

∂t u + (u · ∇)u + κu = −∇ P + (b · ∇)b,

∂t b + (u · ∇)b + λb = (b · ∇)u,

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.4)

where κ ≥ 0 and λ ≥ 0 are real parameters. Here, u = u(x, t) ∈ R
n, P = P(x, t) ∈

R, and b = b(x, t) ∈ R
n denote the velocity vector, scalar pressure, and the magnetic

field of the fluid, respectively. In the case of zero magnetic field, the system (1.4)
reduces to the incompressible damped Euler system (1.2). The system (1.4) becomes
the completely inviscid MHD when κ = λ = 0. Meanwhile, replacing κu and λb by
−κ�u and −λ�b, respectively, the system (1.4) reduces to the viscous MHD.

The MHD system models the complex phenomena in fluid mechanics, such as
the magnetic reconnection in astrophysics and geomagnetic dynamo in geophysics,
plasmas, liquid metals, and salt water, etc. Besides its important physical applications,
the MHD system is also mathematically significant. Furthermore, an important feature
of the MHD system is the induction effect, which brings about the strong coupling of
the magnetic field and the velocity field. As a result of the strong coupling, the MHD
system is considerably more complicated than the system of ordinary hydrodynamics.
The question of whether a solution to the completely inviscid MHD system can develop
a finite time singularity from smooth initial data with finite energy both in 2-dimension
and high dimension is still a challenging open problem. Therefore, it is natural to
examine the MHD system with damped term. The study of MHD has attracted the
interest of many mathematicians (see, e.g., Adhikar et al. 2014; Caflisch et al. 1997;
Cao et al. 2013; Cao and Wu 2011; Cao et al. 2014; Chen et al. 2008; Chen et al. 2010;
Fan et al. 2014; Sermange and Temam 1983; Tran et al. 2013; Wu 2003; Wu 2011; Wu
2008; Ye and Xu 2014; Yamazaki 2014a, b; Zhou 2007 and the references therein).

The global regularity problem for the inviscid incompressible fluid mechanics
appears to be out of reach in spite of the progress on the local well-posedness and
regularity criteria. This work is partially aimed at understanding this difficult problem
by examining how damping affects the regularity of solutions to incompressible fluid
mechanics. Therefore, in the absence of a global well-posedness theory for large ini-
tial data, it is interesting to consider incompressible fluid mechanics with damping. In
this paper, we aim at establishing the global (in time) regularity of classical solutions
provided that the initial data are suitable small.

Finally, the rest of this paper is organized as follows. In Sect. 2, we introduce the
notations, recall materials related to Besov spaces, provide useful lemmas, and state
the main results. The proof of the first main result is given in Sect. 3. Sections 4
and 5 present the proofs of Theorems 2.14 and 2.16, respectively. For the sake of
completeness, we provide the local existence and uniqueness to the system (1.4) in
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the appendix. Also the proofs of two commutator (see Lemmas 2.6 and 2.7 below)
estimates are provided in Appendix.

2 Preliminaries and Main Results

Throughout the paper, C stands for some real positive constant which may be differ-
ent in each occurrence and independent on the initial data. We shall sometimes use
the notation A � B which stands for A ≤ C B. Before we state the main results,
we first explain the notations and conventions used throughout this paper. Here, w

� ∇u − (∇u)T and J � ∇b − (∇b)T (where AT denotes the transpose of A) stand
for the vorticity and the current, respectively. In dimension n = 2, it can be identified
with the scalar function ω = ∂1u2 − ∂2u1, while for n = 3 with the vector field
ω = ∇ × u ≡ (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1)

T. For all Banach space X
and an interval I of R, we denote by C(I ; X), the set of continuous functions on I
with values in X .

In this preparatory section, we recall the Littlewood-Paley operators and their ele-
mentary properties which allow us to define the Besov spaces. Related materials can be
found in several books and many papers (see for example Bahour et al. 2011; Chemin
2009; Miao et al. 2012; Triebel 1992)

Let (χ, ϕ) be a couple of smooth functions with values in [0, 1] such that χ ∈
C∞

0 (Rn) is supported in the ball B � {ξ ∈ R
n, |ξ | ≤ 4

3 }, ϕ ∈ C∞
0 (Rn) is supported

in the annulus C � {ξ ∈ R
n, 3

4 ≤ |ξ | ≤ 8
3 }, and they satisfy

χ(ξ) +
∑

j∈N

ϕ(2− jξ) = 1, ∀ξ ∈ R
n and

∑

j∈Z

ϕ(2− jξ) = 1, ∀ξ ∈ R
n \ {0}.

For every u ∈ S′ (tempered distributions), we define the nonhomogeneous Littlewood-
Paley operators as follows:

� j u = 0, for j ≤ −2; �−1u = χ(D)u; � j u = ϕ(2− j D)u, for j ∈ N.

We shall also use the following low-frequency cutoff:

S j u =
∑

−1≤k≤ j−1

�ku.

Meanwhile, we define the homogeneous dyadic blocks as

�̇ j u = ϕ(2− j D)u ∀ j ∈ Z, and Ṡ j u =
∑

k≤ j−1

�̇ku.

Let us recall the definition of homogeneous and inhomogeneous Besov spaces
through the dyadic decomposition.
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Definition 2.1 Let s ∈ R, (p, r) ∈ [1,+∞]2. The homogeneous Besov space Ḃs
p,r

is defined as a space of f ∈ S′(Rn) such that

Ḃs
p,r = { f ∈ S′(Rn); ‖ f ‖Ḃs

p,r
< ∞},

where

‖ f ‖Ḃs
p,r

=
⎧
⎨

⎩

(∑
j∈Z

2 jrs‖�̇ j f ‖r
L p

) 1
r
, ∀ r < ∞,

sup j∈Z 2 js‖�̇ j f ‖L p , ∀ r = ∞.

Definition 2.2 Let s ∈ R, (p, r) ∈ [1,+∞]2. The inhomogeneous Besov space Bs
p,r

is defined as a space of f ∈ S′(Rn) such that

Bs
p,r = { f ∈ S′(Rn); ‖ f ‖Bs

p,r
< ∞},

where

‖ f ‖Bs
p,r

=
⎧
⎨

⎩

(∑
j≥−1 2 jrs‖� j f ‖r

L p

) 1
r
, ∀ r < ∞,

sup j≥−1 2 js‖� j f ‖L p , ∀ r = ∞.

For s > 0, (p, r) ∈ [1,+∞]2, we define the inhomogeneous Besov space norm Bs
p,r

as

‖ f ‖Bs
p,r

= ‖ f ‖L p + ‖ f ‖Ḃs
p,r

. (2.1)

When p = r = 2, we have Bs
2,2(R

n) = Hs(Rn), where Hs(Rn) = { f ∈
S ′(Rn); ‖ f ‖Hs (Rn) < ∞} is the potential Banach space with the norm

‖ f ‖Hs (Rn) �
(∫

Rn
(1 + |ξ |2)s | f̂ (ξ)|2 dξ

) 1
2

.

For more details about function spaces, we refer to Triebel (1992).
Bernstein inequalities are fundamental in the analysis involving Besov spaces, and

these inequalities trade integrability for derivatives (see for instance Bahour et al.
2011; Chemin 2009).

Lemma 2.3 (Bernstein inequality) Let k ∈ N ∪ {0}, 1 ≤ a ≤ b ≤ ∞. Assume that

supp f̂ ⊂
{
ξ ∈ R

n : |ξ | � 2 j
}

,

for some integer j , then there exists a constant C1 such that

‖∇α f ‖Lb ≤ C1 2 jk+ jn( 1
a − 1

b )‖ f ‖La , k = |α|.
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If f satisfies

supp f̂ ⊂ {
ξ ∈ R

n : |ξ | ≈ 2 j}

for some integer j , then

C1 2 jk‖ f ‖Lb ≤ ‖∇α f ‖Lb ≤ C2 2 jk+ jn( 1
a − 1

b )‖ f ‖La , k = |α|,

where C1 and C2 are constants depending on α, p, and q only.

The following laws of product can be found in the reference Bahour et al. (2011);
thus, we omit its proof here.

Lemma 2.4 Suppose that s > 0, (p, r) ∈ [1,+∞]2, then the followings hold true

‖uv‖Bs
p,r

≤ Cs+1

s
(‖u‖L∞‖v‖Bs

p,r
+ ‖v‖L∞‖u‖Bs

p,r
),

‖uv‖Ḃs
p,r

≤ Cs+1

s
(‖u‖L∞‖v‖Ḃs

p,r
+ ‖v‖L∞‖u‖Ḃs

p,r
).

Next, we recall the well-known Calderon-Zygmund operators, which will be used
to get the control between the gradient of velocity and the vorticity (see reference
Chemin 2009).

Lemma 2.5 (Biot-Savart law) Let u be a smooth divergence-free vector field, then
there exists a universally positive constant C such that for any 1 < p < ∞

‖∇u‖L p ≤ C
p2

p − 1
‖ω‖L p ,

where ω is the vorticity, namely ω � ∇ × u.

In this paper, we need some simple commutator estimates as follows, the detailed
proofs stated in many references, see for example Bahour et al. (2011), Danchin (1993),
Miao et al. (2012). For completeness, we give a little simple proof in the Appendix.

Lemma 2.6 Let s > −1, (p, r) ∈ [1,+∞]2, and u is a divergence-free vector field,
namely ∇ · u = 0; we have the following inequality:

‖2 js‖[� j , u · ∇]v‖L p‖lr
j
≤ C(‖∇u‖L∞‖v‖Bs

p,r
+ ‖∇v‖L∞‖∇u‖Bs−1

p,r
), (2.2)

where

[� j , u · ∇]v = � j (u · ∇v) − u · ∇(� jv).

If we set v = ω � ∇ × u, then (2.2) reduces to

‖2 js‖[� j , u · ∇]ω‖L p‖lr
j
≤ C‖∇u‖L∞‖ω‖Bs

p,r
,∀s > −1. (2.3)
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The following commutator is very useful to handle the field v such that v is in L∞,
but its gradient is not.

Lemma 2.7 Let j ∈ Z be an integer, s > −1, 1 ≤ p ≤ ∞, and u is a divergence-free
vector field, namely ∇ · u = 0. Then

∥
∥2 js‖[�̇ j , u · ∇]v‖L p

∥
∥

lr
j
≤ C‖∇u‖L∞‖v‖Ḃs

p,r
+ C‖v‖L∞‖u‖Ḃs+1

p,r
, (2.4)

∥
∥2 js‖[�̇ j , u · ∇]v‖L p

∥
∥

lr
j
≤ C‖∇u‖L∞‖v‖Ḃs

p,r
+ C‖v‖L∞‖w‖Ḃs

p,r
,

(ω � ∇ × u). (2.5)

Finally, let us now state our first main global well-posedness result with suitable
small initial datum. More precisely, we have the following theorem:

Theorem 2.8 Assume ν > 0 and η > 0. Suppose that (ω0,∇θ0) ∈ Bs
p,r × Bs

p,r for
every 1 < p < ∞ and all s with s = n

p if r =1 and s > n
p if r ∈ (1,∞] obeys one of

the smallness conditions

⎧
⎪⎨

⎪⎩

‖ω0‖Bs
p,r

<
η

2C � B and ‖∇θ0‖Bs
p,r

≤ eη(B−‖ω0‖Bs
p,r

)

2C , ν =η,

‖ω0‖Bs
p,r

< min
{

ν
2C ,

η
2C

}
� B and ‖∇θ0‖Bs

p,r
≤ (B−‖ω0‖Bs

p,r
)

2C

(
νν

ηη

) 1
ν−η

ν �=η,

(2.6)
where C is independent of ν, η, and initial datum. Then the system (1.1) has a unique
global solution (u, θ) satisfying

(u, θ) ∈ L∞([0,∞); L2(Rn)), (ω, ∇θ) ∈ L∞([0,∞); Bs
p,r (R

n)).

Moreover, for any T ≥ 0,

‖∇θ(., T )‖Bs
p,r

≤ ‖∇θ0‖Bs
p,r

e− η
2 T < ∞, ‖ω(., T )‖Bs

p,r
< B.

Remark 2.9 Due to the Besov imbedding, Bs
p,r (R

n) ↪→ L∞ for any s = n
p if r = 1

and s > n
p if r ∈ (1,∞]. For any T > 0, we thus have

∫ T
0 ‖∇θ(. , τ )‖L∞ dτ < ∞.

Applying the well-known blow-up criterion (Chae and Nam 1997; Chae 2004) to the
damped system (1.1), we can obtain that the system (1.1) has a unique global smooth
classical solution (u, θ). Due to the fact that the Calderon–Zygmund operator is not
bounded L p(Rn) for p = 1 or ∞, Theorem 2.8 fails for the limit cases p = 1 and
p = ∞. However, if we replace the Bs

p,r norm by Bs
p,r ∩ Lq norm, Theorem 2.8 is

also true. In fact, it is easy for us to apply the standard Lq -estimate to the vorticity and
temperature equations to obtain the following two elementary estimates:

d

dt
‖ω‖Lq + ν‖ω‖Lq ≤ C‖ω‖Lq ‖∇u‖L∞ + C‖∇θ‖Lq ,

d

dt
‖∇θ‖Lq + η‖∇θ‖Lq ≤ C‖∇u‖L∞ .
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Moreover, we can deduce from the proof of Theorem 2.8 that Theorem 2.8 is also

true in the homogeneous Besov space Ḃ
n
p
p,1 for any 1 ≤ p ≤ ∞ (in fact we just need

the imbedding Ḃ
n
p
p,1 ↪→ L∞ and the boundedness of Calderon-Zygmund operators

between Ḃ
n
p
p,1, namely ‖∇u‖

Ḃ
n
p

p,1

≤ C‖∇ × u‖
Ḃ

n
p

p,1

. However, the limit case Ḃ0∞,1

cannot handle the same as the case Ḃ
n
p
p,1 for any 1 ≤ p < ∞, see Remark 3.1 below

for more details). These Besov spaces, especially the limit case Ḃ0∞,1, seems to be
some very natural functional settings to guarantee the uniqueness of the solutions.

Remark 2.10 It is a simple observation that

lim
ν→η

(νν

ηη

) 1
ν−η = eη

which means that (2.6) makes sense.

Remark 2.11 Inspired by the paper of Adhikar et al. (2014) which states that suffi-
ciently small ‖∇u0‖Ḃ0∞,1

and ‖∇θ0‖Ḃ0∞,1
for case n = 2 can guarantee the uniqueness

and global existence, we impose the initial datum ‖∇ ×u0‖Ḃ0∞,1
and ‖∇θ0‖Ḃ0∞,1

being

suitable small both in dimension n = 2 and n ≥ 3; thus, our results are very similar to
ones in Adhikar et al. (2014) and are even some further improvements. Indeed, by the
boundedness of Calderon-Zygmund operators between homogeneous Besov spaces,
one can show that 1

C ‖∇u0‖Ḃ0∞,1
≤ ‖∇ × u0‖Ḃ0∞,1

≤ ‖∇u0‖Ḃ0∞,1
for some C ≥ 1.

Moreover, we also have obtained similar result in another suitable functional spaces.

For the damped Euler equations (1.2), we are interested in establishing the following
theorem.

Theorem 2.12 Assume that μ > 0. Suppose that initial vorticity ω0 ∈ Bs
p,r with

1 < p < ∞ and s = n
p if r = 1 and s > n

p if r ∈ (1,∞] obeys the smallness
condition

‖ω0‖Bs
p,r

<
μ

2C
,

for a constant C independent of μ. Then (1.2) has a unique global solution u satisfying

u ∈ L∞([0,∞); L2(Rn)), ω ∈ L∞([0,∞); Bs
p,r (R

n)).

Moreover, for any T ≥ 0

‖ω(., T )‖Bs
p,r

<
μ

2C
.

Remark 2.13 One can follow the same arguments used in the proof of Theorem 2.8
to conclude the desired result of Theorem 2.12. Moreover, Theorem 2.12 is a direct
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consequence of Theorem 2.8 provided that we set the temperature θ = 0. For these
reasons, we will not give a separate proof for Theorem 2.12. Meanwhile, Theorem
2.12 holds true for the case p = 1 or p = ∞ if we replace the Bs

p,r norm by Bs
p,r ∩ Lq

norm and in the homogeneous Besov space Ḃ
n
p
p,1 for any 1 ≤ p ≤ ∞.

The next theorem concerns the n-dimensional damped SQG equation.

Theorem 2.14 Assume γ > 0. Suppose that ∇θ0 ∈ Bs
p,r with 1 < p < ∞ and s = n

p

if r = 1 and s > n
p if r ∈ (1,∞] (resp. ‖∇θ0‖ ∈ Ḃ0∞,1) obeys the smallness condition

‖∇θ0‖Bs
p,r

<
γ

2C
, (resp. ‖∇θ‖Ḃ0∞,1

<
γ

2C
)

for a constant C independent of γ . Then the system (1.3) has a unique global solution
u satisfying

θ ∈ L∞([0,∞); L2(Rn)), ∇θ ∈ L∞([0,∞); Bs
p,r (R

n))
(

resp. ∇θ ∈ L∞([0,∞); Ḃ0∞,1(R
n))

)
.

Moreover, for any T ≥ 0

‖∇θ(., T )‖Bs
p,r

<
γ

2C
,

(
resp. ‖∇θ(., T )‖Ḃ0∞,1

<
γ

2C

)
. (2.7)

Remark 2.15 By the Besov imbedding, we immediately have ‖∇θ(., t)‖L∞ <
γ

2C for
any t ≥ 0 which is enough for high regularity as shown in Wu (2002). Consequently,
(2.7) actually implies the smoothness of the solution.

The final result of this paper states that the system (1.4) with sufficiently small
initial datum always possesses a unique global solution. More precisely, we will state
the following theorem to end this section.

Theorem 2.16 Assume κ > 0 and λ > 0. Let s > 1 + n
2 and assume that (u0, b0) ∈

Hs(Rn) × Hs(Rn) obeys the smallness condition

‖u0‖Hs (Rn) + ‖b0‖Hs (Rn) <
min{κ, λ}

2C
, (2.8)

where C independent of κ , λ, and initial datum. Then the system (1.4) admits a unique
global solution (u, b) satisfying

(u, b) ∈ L∞([0,∞); Hs(Rn)).

Furthermore, for any T ≥ 0,

‖u(·, T )‖Hs (Rn) + ‖b(·, T )‖Hs (Rn) <
min{κ, λ}

2C
.
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Remark 2.17 (A remark of conclusion) To conclude, we note that all the system above
is a coupling between transport equations. Hence, preserving the initial regularity
requires the velocity field to be at least locally Lipschitz with respect to the space
variable. As a matter of fact, the classical transport equations have been shown to
be well-posed in any Besov space Bs

p,r embedded in C0,1 a property which holds
provided that (s, p, r) ∈ R × [1,∞] × [1,∞] satisfies

s > 1 + n

p
or s = 1 + n

p
and r = 1.

see Bahour et al. (2011); Chemin (2009) for more details.

3 The Proof of Theorem 2.8

Proof of Theorem 2.8 The existence of local smooth solutions can be obtained without
difficulty, see for example Adhikar et al. (2014), Chae and Nam (1997), Chae (2004),
Majda and Bertozzi (2002). Thus, in order to complete the proof of Theorem 2.8, it is
sufficient to establish some a priori estimates.

Taking the L2 inner product of the equations (1.1)1, (1.1)2 with u and θ , respectively,
and some calculations, we can obtain

‖θ‖L2 ≤ ‖θ0‖L2 e−ηt ,
{

‖u‖L2 ≤ ‖u0‖L2 e−νt + ‖θ0‖L2 te−νt , ν = η,

‖u‖L2 ≤ ‖u0‖L2 e−νt + ‖θ0‖L2
e−ηt −e−νt

ν−η
, ν �= η.

The following inequalities will be used frequently, which are some easy consequences
of Besov space imbedding properties and Lemma 2.5.

‖∇u‖L∞ ≤ C‖∇u‖Bs
p,r

≤ C‖ω‖Bs
p,r

, (3.1)

where index (p, r, s) satisfies the assumption in Theorem 2.8.
We differentiate the temperature equation of system (1.1) in x ; then we get

∂t∇θ + η∇θ + u · ∇(∇θ) + (∇u) · ∇θ = 0. (3.2)

Applying homogeneous blocks �̇ j operator to above equality, we have

∂t�̇ j∇θ + η�̇ j∇θ + u · �̇ j∇(∇θ) = −�̇ j (∇u · ∇θ) − [�̇ j , u · ∇]∇θ,

which, together with L p-norm in space variable, Hölder inequality and incompressible
condition, namely ∇ · u = 0, directly give (C is independent of p )

d

dt
‖�̇ j∇θ‖L p + η‖�̇ j∇θ‖L p ≤ C‖�̇ j (∇u · ∇θ)‖L p + C‖[�̇ j , u · ∇]∇θ‖L p .

(3.3)
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For r ≥ 1, multiply above inequality by 2 jsr‖�̇ j∇θ‖r−1
L p and then sum over j from

−∞ to ∞ to obtain

1

r

d

dt
‖∇θ‖r

Ḃs
p,r

+η‖∇θ‖r
Ḃs

p,r
≤ C

(
‖∇u · ∇θ‖Ḃs

p,r
+∥
∥2 js‖[�̇ j , u · ∇]∇θ‖L p

∥
∥

lr
j

)
‖∇θ‖r−1

Ḃs
p,r

.

Taking advantage of Lemmas 2.4 and 2.7, embedding inequality (3.1) and some com-
putations, we can get

d

dt
‖∇θ‖Ḃs

p,r
+ η‖∇θ‖Ḃs

p,r
≤ C‖∇u‖L∞‖∇θ‖Ḃs

p,r
+ C‖∇θ‖L∞‖u‖Ḃs+1

p,r

+ C‖∇u‖L∞‖∇θ‖Ḃs
p,r

+ C‖∇θ‖L∞‖∇u‖Ḃs
p,r

≤ C‖∇u‖L∞‖∇θ‖Ḃs
p,r

+ C‖∇θ‖L∞‖∇u‖Ḃs
p,r

≤ C‖ω‖Bs
p,r

‖∇θ‖Bs
p,r

, (3.4)

where the following facts are used: ‖u‖Ḃs+1
p,r

≈ ‖∇u‖Ḃs
p,r

and ‖ f ‖Ḃs
p,r

≤ C‖ f ‖Bs
p,r

for any s > 0.
Multiplying (3.2) by |∇θ |p−2∇θ and integrating it over R

n , we immediately derive

d

dt
‖∇θ‖L p + η‖∇θ‖L p ≤ C‖∇u‖L∞‖∇θ‖L p

≤ C‖∇u‖Bs
p,r

‖∇θ‖L p . (3.5)

Combining (3.5) with (3.4), we can get by (2.1) that

d

dt
‖∇θ‖Bs

p,r
+ η‖∇θ‖Bs

p,r
≤ C‖ω‖Bs

p,r
‖∇θ‖Bs

p,r
. (3.6)

Next we move our attention to estimate the velocity field. To do it, we firstly resort to
the vorticity of the fluid which is defined as the skew-symmetric matrix

ω � ∇u − (∇u)T,

and it satisfies the equation

∂tω + νω + u · ∇ω = −ω · ∇u − (∇u)T · ω + ∇(θen) − [∇(θen)]T

For the sake of writing, we set F(θ) � ∇(θen) − [∇(θen)]T.

Applying inhomogeneous blocks � j operator to the vorticity equation, we can get

∂t� jω + ν� jω + u · ∇� jω = −� j (ω · ∇u) − � j ((∇u)T · ω) + � j (F(θ))

− [� j , u · ∇]ω.
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Taking L p-norm and using the Hölder inequality, we can conclude the following
differential inequality:

d

dt
‖� jω‖L p+ν‖� jω‖L p ≤C‖� j (ω · ∇u)‖L p+C‖� j ((∇u)T · ω)‖L p +‖� j F(θ)‖L p

+ C‖[� j , u · ∇]ω‖L p

≤ C‖� j (ω · ∇u)‖L p + C‖� j (∇θ)‖L p

+ C‖[� j , u · ∇]ω‖L p . (3.7)

Multiplying above inequality by 2 jsr‖� jω‖r−1
L p and then summing over j from −1 to

∞, one can show that

1

r

d

dt
‖ω‖r

Bs
p,r

+ ν‖ω‖r
Bs

p,r
≤ C

(
‖ω · ∇u‖Bs

p,r
+ ‖F(θ)‖Bs

p,r

+ ∥
∥2 js‖[� j , u · ∇]ω‖L p

∥
∥

lr
j

)
‖ω‖r−1

Bs
p,r

.

Apply Lemma 2.4, Lemma 2.6, and inequality (3.1) to differential inequality (3.7) to
get

d

dt
‖ω‖Bs

p,r
+ ν‖ω‖Bs

p,r
≤ C‖ω.∇u‖Bs

p,r
+ C‖∇θ‖Bs

p,r
+ C‖∇u‖L∞‖ω‖Bs

p,r

≤ C‖∇u‖L∞‖ω‖Bs
p,r

+ C‖∇θ‖Bs
p,r

+ C‖ω‖L∞‖∇u‖Bs
p,r

≤ C‖ω‖2
Bs

p,r
+ C‖∇θ‖Bs

p,r
. (3.8)

For the sake of clarity of presentation, we denote

X (t) � ‖∇θ‖Bs
p,r

, Y (t) � ‖ω‖Bs
p,r

.

Now we can deduce from differential inequalities (3.6) and (3.8) that

d

dt
X (t) + ηX (t) ≤ C X (t)Y (t), (3.9)

d

dt
Y (t) + νY (t) ≤ CY (t)2 + C X (t). (3.10)

Next we claim that the above two differential inequalities obey the following global
bounds:

X (t) ≤ X (0), (3.11)

Y (t) < B, (3.12)

provided that the smallness conditions (2.6) hold true.
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Now suppose (3.12) is not true, and T0 is the first time such that (3.12) is violated,
namely,

Y (T0) = B; (3.13)

moreover,

Y (t) < B, ∀0 ≤ t < T0.

We can deduce from (3.9) that for any 0 ≤ t ≤ T0,

d

dt
X (t) + η

2
X (t) ≤ 0.

Therefore, by standard differential equation theorem, we have

X (t) ≤ X (0)e− η
2 t ≤ X (0), ∀ 0 ≤ t ≤ T0.

With this bound together with (3.10), we can derive the following differential inequal-
ity:

d

dt
Y (t) + ν

2
Y (t) ≤ C X (0)e− η

2 t , ∀ 0 ≤ t ≤ T0.

Thus, using standard differential equation theory, we arrive at for any 0 ≤ t ≤ T0

Y (t) ≤ Y (0)e− ν
2 t + C X (0)te− ν

2 t , ν = η, (3.14)

Y (t) ≤ Y (0)e− ν
2 t + 2C X (0)

e− η
2 t − e− ν

2 t

ν − η
, ν �= η. (3.15)

Now we define two functions as follows:

F(t) � te− ν
2 t and G(t) � e− η

2 t − e− ν
2 t

ν − η
, ν �= η.

By the standard theory of calculus, it is not difficult to show that for any t ≥ 0

Fmax(t) = F(
2

η
) = 2

ηe
,

Gmax(t) = G
( 2

ν − η
ln(

ν

η
)
)

=
(νν

ηη

) 1
ν−η

.

123



J Nonlinear Sci (2015) 25:157–192 171

Therefore, combining the above two facts with (3.14) and (3.15), we can immediately
show that

Y (T0) ≤ Y (0)e− ν
2 T0 + C X (0)T0e− ν

2 T0 < Y (0) + 2C X (0)

ηe
≤ B,

Y (T0) ≤ Y (0)e− ν
2 T0 + 2C X (0)

e− η
2 T0 − e− ν

2 T0

ν − η
< Y (0) + 2C X (0)

(νν

ηη

) 1
ν−η ≤ B.

Hence, we can get

Y (T0) < B

which contradict with (3.13). This contradiction implies that

‖∇θ(., T )‖Bs
p,r

≤ ‖∇θ0‖Bs
p,r

e− η
2 T < ∞, ‖ω(., T )‖Bs

p,r
< B,

for any T ≥ 0.
With the obtained global bounds on the solutions at disposal, we are ready to show

the uniqueness. In fact, the uniqueness is easy to be proved, since the velocity and
the temperature are both in Lipschitz spaces. Let (u1, θ1, P1) and (u2, θ2, P2) be
two solutions both satisfying the system (1.1) with the same initial datum. It is easy
to check that the difference (̃u, θ̃ , P̃) with

ũ = u1 − u2, θ̃ = θ1 − θ2, P̃ = P1 − P2

satisfies
⎧
⎨

⎩

ũt + (u1 · ∇ )̃u + νũ + (̃u · ∇)u2 + ∇ P̃ = θ̃en,

θ̃t + (u1 · ∇)θ̃ + ηθ̃ + (̃u · ∇)θ2 = 0,

ũ(x, 0) = 0, θ̃ (x, 0) = 0.

(3.16)

It follows from taking the L2 inner product of the equations (3.16)1, (3.16)2 with ũ
and θ̃ , respectively, and adding them up yields

1

2

d

dt
(‖ũ(t)‖2

L2 + ‖θ̃ (t)‖2
L2) + ν‖ũ(t)‖2

L2 + η‖θ̃ (t)‖2
L2

≤ C(1 + ‖∇u2‖L∞ + ‖∇θ2‖L∞)(‖ũ(t)‖2
L2 + ‖θ̃ (t)‖2

L2)

≤ C(1 + ‖∇u2‖Bs
p,r

+ ‖∇θ2‖Bs
p,r

)(‖ũ(t)‖2
L2 + ‖θ̃ (t)‖2

L2). (3.17)

Above, Hölder’s inequality and imbedding Bs
p,r ↪→ L∞ are applied with index

(p, r, s), satisfying the assumption in Theorem 2.8. Then Gronwall inequality implies
that ũ ≡ 0 and θ̃ ≡ 0. Thus, we have completed the proof of Theorem 2.8. ��
Remark 3.1 Let us state the case Ḃ0∞,1. In fact, this case is much involved as Lemma

2.4 does not hold true any more for the case Ḃ0∞,1 which leads to that we cannot get
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the estimates (3.4) and (3.8) as above directly. Now we state the detailed proofs for
the case Ḃ0∞,1.

It follows from the estimate (3.3) that

d

dt
‖�̇ j∇θ‖L p + η‖�̇ j∇θ‖L p ≤ C‖�̇ j (∇u · ∇θ)‖L p + C‖[�̇ j , u · ∇]∇θ‖L p .

We note that C is independent of p. Thus, setting p = ∞ in the above inequality, we
can get

d

dt
‖�̇ j∇θ‖L∞ + η‖�̇ j∇θ‖L∞ ≤ C‖�̇ j (∇u · ∇θ)‖L∞ + C‖[�̇ j , u · ∇]∇θ‖L∞ .

(3.18)

We will handle the first term of the right-hand side of (3.18).

‖�̇ j (∇u · ∇θ)‖L∞

≤ C
∑

|k− j |≤2

‖�̇ j (Ṡk−1∇u · ∇�̇kθ)‖L∞ + C
∑

|k− j |≤2

‖�̇ j (�̇k∇u · ∇ Ṡk−1θ)‖L∞

+ C
∑

k+2≥ j

‖�̇ j∂l(�̇k∇ul · ˜̇�kθ)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C
∑

k+2≥ j

2 j‖�̇ j (�̇k∇ul · ˜̇�kθ)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C
∑

k+2≥ j

2 j‖∇u‖L∞‖�̇kθ‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C‖∇u‖L∞
∑

k+2≥ j

2 j−k‖�̇k∇θ‖L∞ . (3.19)

By plugging (3.19) into (3.18), summing over all integer j , and applying Young
inequality for series convolution, one has

d

dt
‖∇θ‖Ḃ0∞,1

+ η‖∇θ‖Ḃ0∞,1
≤ C‖∇u‖L∞‖∇θ‖Ḃ0∞,1

+ C‖∇θ‖L∞‖∇u‖Ḃ0∞,1

+ C
∥
∥‖[�̇ j , u · ∇]∇θ‖L∞

∥
∥

l1
j

≤ C‖∇u‖L∞‖∇θ‖Ḃ0∞,1
+ C‖∇θ‖L∞‖∇u‖Ḃ0∞,1

≤ C‖ω‖Ḃ0∞,1
‖∇θ‖Ḃ0∞,1

, (3.20)

where commutator estimate (2.4), imbedding inequalities ‖∇θ‖L∞ ≤ C‖∇θ‖Ḃ0∞,1
,

and ‖∇u‖L∞ ≤ C‖∇u‖Ḃ0∞,1
≤ C‖ω‖Ḃ0∞,1

are used.
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For the vorticity equations, we set p = ∞ in (3.7) and replace � j by �̇ j to get

d

dt
‖�̇ jω‖L∞ + ν‖�̇ jω‖L∞ ≤ C‖�̇ j

[
(ω · ∇u) + (∇u)T · ω)

]‖L∞ + ‖�̇ j F(θ)‖L∞

+ C‖[�̇ j , u · ∇]ω‖L∞ . (3.21)

Here, we show only how to bound the term ‖�̇ j [(ω · ∇u)+ (∇u)T ·ω)]‖L∞ as others
can be bounded directly as in the proof of Theorem 2.8. It is remarkable to point out
that when dimension n = 2 and n = 3, this term becomes simple. Thus, we only treat
the case n ≥ 4. The (i, j) component of matrix ω ·∇u + (∇u)T ·ω can be rewritten as

{
ω · ∇u + (∇u)T · ω

}

i, j =
n∑

k=1

(ωi,k∂ku j + ∂kuiωk, j )

=
n∑

k=1

(
(∂i uk − ∂kui )∂ku j + ∂kui (∂ku j − ∂ j uk)

)

=
n∑

k=1

(
∂i uk∂ku j − ∂kui∂ j uk

)

=
n∑

k=1

∂k
(
u j∂i uk − ui∂ j uk

)
, (∇ · u = 0). (3.22)

Therefore,

‖�̇ j (ω · ∇u + (∇u)T · ω)‖L∞

≤ C
∑

|k− j |≤2

‖�̇ j (Ṡk−1∇u · ∇�̇ku)‖L∞ + C
∑

|k− j |≤2

‖�̇ j (�̇k∇u · ∇ Ṡk−1u)‖L∞

+ C
∑

k+2≥ j

n∑

l=1

‖�̇ j∂l(�̇ku j∂i
˜̇�kul − �̇kui∂ j

˜̇�kul
)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇u‖L∞ +
∑

k+2≥ j

2 j‖�̇ j (
˜̇�k∇u · �̇ku)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇u‖L∞ +
∑

k+2≥ j

2 j‖∇u‖L∞‖�̇ku‖L∞

≤ C‖∇u‖L∞‖�̇ j∇u‖L∞ + C‖∇u‖L∞
∑

k+2≥ j

2 j−k‖�̇k∇u‖L∞ . (3.23)

Inserting (3.23) into (3.21), summing over all integer j from −∞ to ∞ and applying
Young inequality for series convolution, we can show

d

dt
‖ω‖Ḃ0∞,1

+ ν‖ω‖Ḃ0∞,1
≤ C‖∇u‖L∞‖∇u‖Ḃ0∞,1

+ C‖∇θ‖Ḃ0∞,1

+ C
∥
∥‖[�̇ j , u · ∇]ω‖L∞

∥
∥

l1
j
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≤ C‖∇u‖L∞‖∇u‖Ḃ0∞,1
+ C‖∇θ‖Ḃ0∞,1

≤ C‖ω‖2
Ḃ0∞,1

+ C‖∇θ‖Ḃ0∞,1
, (3.24)

where the following imbedding inequalities are used

‖∇u‖L∞ ≤ C‖∇u‖Ḃ0∞,1
≤ C‖ω‖Ḃ0∞,1

,
∥
∥‖[�̇ j , u · ∇]ω‖L∞

∥
∥

l1
j
≤ C‖∇u‖L∞‖ω‖Ḃ0∞,1

+ C‖ω‖L∞‖∇u‖Ḃ0∞,1
,

[see (2.4) and (2.5)].
Therefore, we get (3.20) and (3.24) which are corresponding to (3.6) and (3.8),

respectively. The desired results can be obtained the same as the proof of Theorem
2.8.

4 The Proof of Theorem 2.14

Proof of Theorem 2.14 The following inequalities will be used frequently, which are
some easy consequences of Besov space imbedding properties and Boundedness of
Calderon-Zygmund operators on Besov spaces,

‖∇u‖L∞ ≤ C‖∇u‖Bs
p,r

≤ C‖∇θ‖Bs
p,r

(1 < p < ∞), (4.1)

‖∇u‖L∞ ≤ C‖∇u‖Ḃ0∞,1
≤ C‖∇θ‖Ḃ0∞,1

, (4.2)

where index (p, r, s) satisfies the assumption in Theorem 2.14.
Differentiating the temperature equation of system (1.3), we can derive

∂t∇θ + γ∇θ + u · ∇(∇θ) + (∇u) · ∇θ = 0. (4.3)

Applying homogeneous blocks �̇ j operator to above equality, we have

∂t�̇ j∇θ + γ �̇ j∇θ + u · �̇ j∇(∇θ) = −�̇ j (∇u · ∇θ) − [�̇ j , u · ∇]∇θ,

which, together with L p-norm in space variable, Hölder inequality, and incompressible
condition, directly leads

d

dt
‖�̇ j∇θ‖L p + γ ‖�̇ j∇θ‖L p ≤ C‖�̇ j (∇u · ∇θ)‖L p + C‖[�̇ j , u · ∇]∇θ‖L p .

For r ≥ 1, multiply above inequality by 2 jsr‖�̇ j∇θ‖r−1
L p and then sum over j from

−∞ to ∞ to obtain

1

r

d

dt
‖∇θ‖r

Ḃs
p,r

+γ ‖∇θ‖r
Ḃs

p,r
≤ C

(
‖∇u ·∇θ‖Ḃs

p,r
+∥
∥2 js‖[�̇ j , u · ∇]∇θ‖L p

∥
∥

lr
j

)
‖∇θ‖r−1

Ḃs
p,r

.
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Taking advantage of Lemmas 2.4, 2.7, and (4.1) and some calculations give rise to

d

dt
‖∇θ‖Ḃs

p,r
+ γ ‖∇θ‖Ḃs

p,r
≤ C‖∇u‖L∞‖∇θ‖Ḃs

p,r
+ C‖∇θ‖L∞‖u‖Ḃs+1

p,r

+ C‖∇θ.∇u‖Ḃs
p,r

≤ C‖∇u‖L∞‖∇θ‖Ḃs
p,r

+ C‖∇θ‖L∞‖u‖Ḃs+1
p,r

+ C‖∇u‖L∞‖∇θ‖Ḃs
p,r

+ C‖∇θ‖L∞‖∇u‖Ḃs
p,r

≤ C‖∇u‖L∞‖∇θ‖Ḃs
p,r

+ C‖∇θ‖L∞‖∇u‖Ḃs
p,r

≤ C‖∇θ‖Bs
p,r

‖∇θ‖Ḃs
p,r

+ C‖∇θ‖Bs
p,r

‖∇θ‖Ḃs
p,r

≤ C‖∇θ‖2
Bs

p,r
. (4.4)

Here, inequality (4.1), the bound ‖∇u‖Ḃs
p,r

≤ C‖∇θ‖Ḃs
p,r

, and ‖ f ‖Ḃs
p,r

≤ C‖ f ‖Bs
p,r

,

∀s > 0 have been used.
Multiplying (4.3) by |∇θ |p−2∇θ and integrating over R

n , we immediately derive

d

dt
‖∇θ‖L p + γ ‖∇θ‖L p ≤ C‖∇u‖L∞‖∇θ‖L p

≤ C‖∇u‖Bs
p,r

‖∇θ‖L p

≤ C‖∇θ‖2
Bs

p,r
, (4.5)

where (2.1) and (4.1) are applied.
Combining (4.4) with (4.5), we can get the inhomogeneous- type differential

inequality

d

dt
‖∇θ‖Bs

p,r
+ γ ‖∇θ‖Bs

p,r
≤ C‖∇θ‖2

Bs
p,r

. (4.6)

Let us move to the case Ḃ0∞,1. In fact, this case is much involved as Lemma 2.4 does not

hold true any more for the case Ḃ0∞,1 so that we cannot obtain estimate (4.5) directly.

Now we state the detailed proofs for the case Ḃ0∞,1.
From the temperature equation of system (1.3), we can obtain

d

dt
‖�̇ j∇θ‖L∞ + γ ‖�̇ j∇θ‖L∞ ≤ C‖�̇ j (∇u · ∇θ)‖L∞ + C‖[�̇ j , u · ∇]∇θ‖L∞ .

(4.7)

We just handle the first term of the right-hand side of the above inequality differently.

‖�̇ j (∇u · ∇θ)‖L∞

≤ C
∑

|k− j |≤2

‖�̇ j (Ṡk−1∇u · ∇�̇kθ)‖L∞ + C
∑

|k− j |≤2

‖�̇ j (�̇k∇u · ∇ Ṡk−1θ)‖L∞
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+ C
∑

k+2≥ j

‖�̇ j∂l(�̇k∇ul · ˜̇�kθ)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C
∑

k+2≥ j

2 j‖�̇ j (�̇k∇ul · ˜̇�kθ)‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C
∑

k+2≥ j

2 j‖∇u‖L∞‖�̇kθ‖L∞

≤ C‖∇u‖L∞‖�̇ j∇θ‖L∞ + C‖∇θ‖L∞‖�̇ j∇u‖L∞

+ C‖∇u‖L∞
∑

k+2≥ j

2 j−k‖�̇k∇θ‖L∞ . (4.8)

By plugging (4.8) into (4.7), summing over all integer j and applying Young inequality
for series convolution, one has

d

dt
‖∇θ‖Ḃ0∞,1

+ γ ‖∇θ‖Ḃ0∞,1
≤ C‖∇u‖L∞‖∇θ‖Ḃ0∞,1

+ C‖∇θ‖L∞‖∇u‖Ḃ0∞,1

+ C
∥
∥‖[�̇ j , u · ∇]∇θ‖L∞

∥
∥

l1
j

≤ C‖∇u‖L∞‖∇θ‖Ḃ0∞,1
+ C‖∇θ‖L∞‖∇u‖Ḃ0∞,1

≤ C‖∇θ‖2
Ḃ0∞,1

. (4.9)

For the sake of clarity of presentation, we denote

X (t) � ‖∇θ‖Bs
p,r

(
X (t) � ‖∇θ‖Ḃ0∞,1

)
.

Now we can deduce from differential inequality (3.6) or (3.20) that

d

dt
X (t) + γ X (t) ≤ C X2(t). (4.10)

Next we claim that the above differential inequality obeys the following global bounds:

X (t) <
γ

2C
. (4.11)

Now suppose (4.11) is not true and T0 is the first time such that (4.11) is violated,
namely,

X (T0) = γ

2C
; (4.12)

moreover,

X (t) <
γ

2C
, ∀0 ≤ t < T0.
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We can deduce from (4.10) that for any 0 ≤ t ≤ T0,

d

dt
X (t) + γ

2
X (t) ≤ 0.

Therefore,

X (T0) ≤ X (0)e− γ
2 T0 < X (0) <

γ

2C
.

This is a contradiction. Thus, we get the global bound. Now the uniqueness is easy to
prove since the function θ is in Lipschitz spaces. Thus, we have completed the proof
of Theorem 2.14. ��

5 The Proof of the Theorem 2.16

The goal of this section is to present the proof of Theorem 2.16. The existence and
uniqueness of local smooth solutions can be done without any difficulty as in the
case of Euler or Navier–Stokes system, see for example Majda and Bertozzi (2002),
Sermange and Temam (1983); for the sake of completeness, the local theory will be
provided in Appendix. Thus, our efforts are focused on proving global a priori bounds
for (u, b) in the initial functional setting Hs(Rn) with s > 1 + n

2 .

Proof of Theorem 2.14 Testing the equations (1.4)1 and (1.4)2 by u and b, respectively,
and adding them up, we can find

d

dt
(‖u(t)‖2

L2 + ‖b(t)‖2
L2) + κ‖u‖2

L2 + λ‖b‖2
L2 = 0, (5.1)

where we have used the facts

∫

R3
(u · ∇u) · u dx =

∫

R3
(u · ∇b) · b dx = 0

and

∫

R3
(b · ∇b) · u dx +

∫

R3
(b · ∇u) · b dx = 0. (5.2)

To obtain the higher regularity of u and b, we apply the operator �s with s > 1 + n
2

to both sides of equations (1.4)
{

∂t�
su + (u · ∇)�su + κ�su = −∇�s P − [�s, u · ∇]u + [�s , b · ∇]b + (b · ∇)�sb,

∂t�
sb + (u · ∇)�sb + λ�sb = (b · ∇)�su + [�s , b · ∇]u − [�s , u · ∇]b,

(5.3)
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Taking the L2 inner product of above equations (5.3)1 and (5.3)2 with �su and �sb,
respectively, adding them up, we infer that

1

2

d

dt
(‖�su(t)‖2

L2 + ‖�sb(t)‖2
L2) + κ‖�su‖2

L2 + λ‖�sb‖2
L2

= −
∫

Rn
[�s, u · ∇]u · �su dx +

∫

Rn
[�s, b · ∇]b · �su dx

−
∫

Rn
[�s, u · ∇]b · �sb dx +

∫

Rn
[�s, b · ∇]u · �sb dx, (5.4)

where we have used the facts
∫

Rn
(u · ∇�su) · �su dx =

∫

Rn
(u · ∇�sb) · �sb dx = 0

and
∫

Rn
(b · ∇�sb) · �su dx +

∫

Rn
(b · ∇�su) · �sb dx = 0 (5.5)

which can be deduced from the ∇ · u = ∇ · b = 0 and integrating by parts.
To estimate the four terms in the right-hand side of (5.4), we need the commutator

estimate (see, e.g., Kato 1990)

‖[�s, f ]g‖L p ≤ C(‖∇ f ‖L p1 ‖�s−1g‖L p2 + ‖�s f ‖L p3 ‖g‖L p4 ),

where s > 0, p2, p3 ∈ (1,∞) and

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Therefore, by above commutator estimate, we can deduce that

∣
∣
∣

∫

Rn
[�s, u · ∇]u · �su dx

∣
∣
∣ ≤ C‖∇u‖L∞‖�su(t)‖2

L2 ,

∣
∣
∣

∫

Rn
[�s, b · ∇]b · �su dx

∣
∣
∣ ≤ C‖∇b‖L∞‖�sb‖2

L2 ,

∣
∣
∣

∫

Rn
[�s, u · ∇]b · �sb dx

∣
∣
∣ ≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖�su(t)‖2

L2 + ‖�sb‖2
L2),

∣
∣
∣

∫

Rn
[�s, b · ∇]u · �sb dx

∣
∣
∣ ≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖�su(t)‖2

L2 + ‖�sb‖2
L2).

Therefore,

d

dt
(‖�su(t)‖2

L2 + ‖�sb(t)‖2
L2) + κ‖�su‖2

L2 + λ‖�sb‖2
L2

≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖�su(t)‖2
L2 + ‖�sb‖2

L2). (5.6)
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Combining above estimates (5.1) and (5.6), using the equivalent definition (2.1), we
can show

d

dt
(‖u(t)‖2

Hs + ‖b(t)‖2
Hs ) + κ‖u‖2

Hs + λ‖b‖2
Hs

≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖u(t)‖2
Hs + ‖b‖2

Hs )

≤ C(‖u(t)‖Hs + ‖b(t)‖Hs )(‖u(t)‖2
Hs + ‖b‖2

Hs ), (5.7)

where in the last inequality, we have used the fact Hs(Rn) ↪→ L∞(Rn) due to
s > 1 + n

2 .
As a consequence, one has

d

dt
(‖u(t)‖2

Hs + ‖b(t)‖2
Hs ) + κ‖u‖2

Hs + λ‖b‖2
Hs

≤ C(‖u(t)‖Hs + ‖b(t)‖Hs )(‖u(t)‖2
Hs + ‖b‖2

Hs ), (5.8)

For notational convenience, we set

H(t) �
√

‖u(t)‖2
Hs + ‖b(t)‖2

Hs .

Consequently,

d

dt
H(t) + min{κ, λ}H(t) ≤ C H(t)2.

An argument similar to that used in the proof of Theorem 2.14 yields the desired global
bounds. Hence, we have completed the proof of Theorem 2.16. ��

Remark 5.1 We do not know whether Theorem 2.16 still holds true if we replace the
space Hs by more general space Bs

p,r . The key reason is that the a priori estimates
heavily rely on the L2 cancelation relations (5.2) and (5.5). If one considers the vorticity
w � ∇u−(∇u)T and the current J � ∇b−(∇b)T equations, then the difficulty comes
from the nonlinear terms b · ∇ J and b · ∇ω. In fact, the following two cancelations
are not true for q �= 2:

∫

R3
(b · ∇)J · (|ω|q−2ω) dx +

∫

R3
(b · ∇)ω · (|J |q−2 J ) dx = 0,

∫

R3
b · ∇�̇ j J · (|�̇ jω|q−2�̇ jω) dx +

∫

R3
b · ∇�̇ jω · (|�̇ j J |q−2�̇ j J ) dx = 0.
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6 Appendix: Local Existence and Uniqueness Theory to Damped MHD

For sake of completeness, we provide the local existence and uniqueness to the system
(1.4) with initial data (u0, b0) ∈ Hs(Rn) × Hs(Rn) with s > 1 + n

2 . The local
existence and uniqueness results to the system (1.1), (1.2), and (1.3) can be obtained
by the method similar to Chapter 3 in Majda and Bertozzi (2002). More precisely, we
state the following local result.

Proposition 6.1 Let initial datum (u0, b0) ∈ Hs(Rn) × Hs(Rn) with s > 1 + n
2 .

Assume that ∇ · u0 = 0, ∇ · b0 = 0. There exists a positive time T depending on
‖u0‖Hs and ‖b0‖Hs such that the system (1.4) admits a unique solution (u, b) in
C([0, T ]; Hs(Rn) × Hs(Rn)).

To prove Proposition 6.1, the main step is to modify the system (1.4) in order to easily
produce a family of global smooth solutions. In order to do this, we may, for instance,
make use of the Friedrichs method. Now we define the spectral cutoff as follows:

ĴN f (ξ) = χB(0,N )(ξ) f̂ (ξ),

where N > 0, B(0, N ) = {ξ ∈ R
n| |ξ | ≤ N }, χB(0,N ) is the characteristic function

on B(0, N ). Also we define

L2
N �

{
f ∈ L2(Rn)| supp f̂ ⊂ B(0, N )

}
.

It is easy for us to show the following properties (here the proof will be omitted) which
will be used frequently later.

Lemma 6.2 Let N > 0 and for any f ∈ Hs(Rn), the followings hold true

‖JN f ‖L2(Rn) ≤ ‖ f ‖L2(Rn), ‖∇kJN f ‖Hs (Rn) ≤ C N k‖ f ‖Hs (Rn), (6.1)

‖JN f − f ‖Hs (Rn) → 0, as N → ∞, (6.2)

‖∇kJN f ‖L∞(Rn) ≤ C N k+ n
2 ‖ f ‖L2(Rn), (6.3)

∫

Rn
JN f gdx =

∫

Rn
f JN gdx,

∫

P f · g dx =
∫

f · Pg dx, (6.4)

‖JN f ‖Hs (Rn) ≤ C N s‖ f ‖L2(Rn), ‖P f ‖Hs (Rn) ≤ ‖ f ‖Hs (Rn) (6.5)

where P denotes the Leray projection onto divergence-free vector fields.

Proof of Proposition 6.1 The first step is to establish a smooth solution (uN , bN ) in
space L2

N satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∂t uN + PJN ((PJN uN · ∇)PJN uN ) + κPJN uN = PJN ((JN bN · ∇)JN bN ),

∂t bN + JN ((PJN uN · ∇)JN bN ) + λJN bN = JN ((JN bN · ∇)PJN uN ),

∇ · uN = 0, ∇ · bN = 0,

uN (x, 0) = JN u0(x), bN (x, 0) = JN b0(x).

(6.6)
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Claim 1: For any fixed N > 0, approximate system (6.6) has a unique global (in
time) smooth solution (uN , bN ) satisfying

(uN , bN ) ∈ C([0, ∞); Hs̄(Rn)), for any s̄ ≥ 0.

Now we give the outline to prove the above claim. First, applying the L2 estimate to
(6.6) tells us that for any 0 ≤ t ≤ T with any T ≥ 0

‖uN (., t)‖2
L2 + ‖bN (., t)‖2

L2 + 2
∫ T

0
(κ‖JN uN (., s)‖2

L2 + λ‖JN bN (., s)‖2
L2) dt

≤ ‖u0‖2
L2 + ‖b0‖2

L2 . (6.7)

We write

d

dt

(
uN

bN

)

=
[−PJN ((PJN uN · ∇)PJN uN ) − κPJN uN + PJN ((JN bN · ∇)JN bN )

−JN ((PJN uN · ∇)JN bN ) − λJN bN + JN ((JN bN · ∇)PJN uN )

]

.

For convenience of notation, we denote the right-hand side of the above differential
equations as F(uN , bN ).

It is not difficult to show that F satisfies the local Lipschitz condition for any fixed
N . That is, the difference ‖F(uN , bN ) − F (̃uN , b̃N )‖Hs̄ satisfies

‖F(uN , bN ) − F (̃uN , b̃N )‖Hs̄ ≤ C̃‖(uN , bN ) − (̃uN , b̃N )‖Hs̄ ,

where C̃ = C max(N s̄+1+ n
2 , κ, λ, ‖u0‖L2 + ‖b0‖L2).

Taking advantage of the Cauchy-Lipschitz theorem (Picard’s Theorem, see Majda
and Bertozzi 2002), we can find that for any fixed N , there exists the unique solution
(uN , bN ) in in C([0, TN ); Hs̄(Rn) × Hs̄(Rn)) with TN = T (N , u0, b0). In fact, it is
not hard to extend the local solution to the global solution based on the above estimates.
In fact, we just set ũN = b̃N = 0, then we can obtain immediately that

d

dt
(‖uN ‖Hs̄ +‖bN ‖Hs̄ )≤ C max(N s̄+1+n

2 ,κ,λ, ‖u0‖L2 +‖b0‖L2)(‖uN ‖Hs̄ +‖bN ‖Hs̄ ).

Gronwall inequality yields for any T ≥ 0

‖uN (., T )‖Hs̄ + ‖bN (., T )‖Hs̄ ≤ eC max(N s̄+1+ n
2 ,κ,λ,‖u0‖L2 +‖b0‖L2 )T .

Thus, we have proved Claim 1.
Due to J 2

N = JN , P2 = P , and PJN = JN P , we can discover that (PuN , bN )

and (JN uN , JN bN ) are also solutions to approximate system (6.6) with the same
initial datum. Thanks to the uniqueness, we thus find

PuN = uN , JN uN = uN and JN bN = bN .
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Consequently, approximate system (6.6) reduces to

⎧
⎪⎪⎨

⎪⎪⎩

∂t uN + PJN ((uN · ∇)uN ) + κuN = PJN (bN · ∇)bN ,

∂t bN + JN ((uN · ∇)bN ) + λbN = JN ((bN · ∇)uN ),

∇ · uN = 0, ∇ · bN = 0,

uN (x, 0) = JN u0(x), bN (x, 0) = JN b0(x).

(6.8)

The same argument to that used in obtaining (5.8) together with the fact (6.4), we can
also get the nonhomogeneous Hs bound as follows:

1

2

d

dt
(‖uN (t)‖2

Hs + ‖bN (t)‖2
Hs ) + κ‖uN ‖2

Hs + λ‖bN ‖2
Hs

≤ C(‖∇uN ‖L∞ + ‖∇bN ‖L∞)(‖uN (t)‖2
Hs + ‖bN ‖2

Hs )

≤ C(‖uN ‖Hs + ‖bN ‖Hs )(‖uN (t)‖2
Hs + ‖bN ‖2

Hs ). (6.9)

For the convenience of notation, we also denote

X (t) =
√

‖uN (t)‖2
Hs + ‖bN ‖2

Hs .

Consequently, (6.9) becomes

d

dt
X (t) + min{κ, λ}X (t) ≤ C X (t)2.

Standard calculations show that for all N

sup
0≤t≤T

(

√

‖uN (t)‖2
Hs + ‖bN ‖2

Hs ) ≤
√

‖u0‖2
Hs + ‖b0‖2

Hs

1 − CT
√

‖u0‖2
Hs + ‖b0‖2

Hs

. (6.10)

Thus, the family (uN , bN ) is uniformly bounded in C([0, T ]; Hs) with s > 1 + n
2 ,

provided that T <
(

C(‖u0‖2
Hs + ‖b0‖2

Hs )
)− 1

2
.

Therefore, one can conclude from (6.7) and (6.10) that

• (uN , bN )N∈N is bounded in L∞([0, T ]; L2(Rn)),

• (uN , bN )N∈N is bounded in L∞([0, T ]; Hs(Rn)) for some s > 1 + n
2 .

This is enough to pass to the limit (up to extraction) in (6.8). In fact, we have

‖PJN ((uN uN )‖L2 ≤ C‖uN ‖2
L4 ≤ C, ‖PJN ((bN bN )‖L2 ≤ C‖bN ‖2

L4 ≤ C,

‖PJN ((uN bN )‖L2 ≤ C‖uN ‖L4‖bN ‖L4 ≤ C,
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where we have used the following interpolation:

‖ f ‖L4 ≤ C‖ f ‖
4s−n

4s
L2 ‖ f ‖

n
4s
Hs , s ≥ n

4
.

Note that

∂t u
N = −PJN ((uN · ∇)uN ) − κuN + PJN (bN · ∇)bN ,

∂t b
N = −JN ((uN · ∇)bN ) − λbN + JN ((bN · ∇)uN ).

Thus, it is not hard to see that

∂t u
N , ∂t b

N ∈ L∞
t ([0, T ]); H−σ

x (Rn) for any σ ≥ 1.

Consequently, we assume that

∂t u
N , ∂t b

N ∈ L4
Loc([0, T ]); H−2

x (Rn).

Since the embedding L2 ↪→ H−2 is locally compact, the well-known Aubin-Lions
argument (see e.g., Constantin and Foias 1988; Temam 2002) allows us to conclude
that, up to extraction, subsequence (uN , bN )N∈N satisfies

‖uN − uN ′ ‖L2 , ‖bN − bN ′ ‖L2 → 0, as N , N ′ → ∞.

By the interpolation (‖u‖Hs′ ≤ C‖u‖1− s′
s

L2 ‖u‖
s′
s
Hs for any s′ < s), we can show that

‖uN − uN ′ ‖Hs′ , ‖bN − bN ′ ‖Hs′ → 0, as N , N ′ → ∞, for any s′ < s,

which imply that we have strong convergence limit (u, b) in C([0, T ]; Hs′
) (see Claim

2 below for detailed proof) with any s′ < s. Therefore, it is enough for us to show that
up to extraction, sequence (uN , bN )N∈N has a limit (u, b) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + P((u · ∇)u) + κu = P((b · ∇)b),

∂t b + (u · ∇)b + λb = (b · ∇)u,

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x).

(6.11)

Claim 2: (u, b) ∈ L∞([0, T ]; Hs(Rn) × Hs(Rn)) and (u, b) ∈Lip([0, T ]; Hs−1

(Rn) × Hs−1(Rn)). Moreover, (u, b) ∈ C([0, T ]; Hs(Rn) × Hs(Rn)).
From the above argument, it is easy to show that

sup
0≤t≤T

‖(uN , bN )‖Hs ≤ M1 < ∞, (6.12)

sup
0≤t≤T

‖(∂t u
N , ∂t b

N )‖Hs−1 ≤ M2 < ∞. (6.13)

123



184 J Nonlinear Sci (2015) 25:157–192

Therefore, (uN , bN ) is uniformly bounded in the Hilbert space L2([0, T ]; Hs(Rn) ×
Hs(Rn)) such that there exists a subsequence that converges weakly to

(u, b) ∈ L2([0, T ]; Hs(Rn) × Hs(Rn)). (6.14)

For the fixed t ∈ [0, T ], the sequence (uN (., t), bN (., t)) is uniformly bounded
in Hs(Rn) × Hs(Rn), so that it also has a subsequence that converges weakly to
(u(t), b(t)) ∈ Hs(Rn) × Hs(Rn). Consequently, ‖(u, b)‖Hs is bounded for any
t ∈ [0, T ] which together with (6.14) implies that (u, b) ∈ L∞([0, T ]; Hs(Rn)

× Hs(Rn)). Applying the same arguments and (6.13), we can show that (u, b)

∈ Lip([0, T ]; Hs−1(Rn) × Hs−1(Rn)).
In fact, we can get from the local existence theorem that

(uN , bN ) ∈ C1([0, T ]; Hs(Rn) × Hs(Rn)), (6.15)

and

(uN , bN ) → (u, b) ∈ L∞([0, T ]; Hs′
(Rn) × Hs′

(Rn)) for any s′ ≤ s. (6.16)

Now we will show that (u, b) is strongly continuous in Hs(Rn) × Hs(Rn) in time. It
suffices to consider u ∈ C([0, T ]; Hs(Rn) as the same fashion can be applied to b to
obtain the desired result.

By the equivalent norm, it yields

‖u(t1) − u(t2)‖Hs =
{( ∑

j<N

+
∑

j≥N

)
(2 js‖� j u(t1) − � j u(t2)‖L2)2

} 1
2
. (6.17)

Let ε > 0 be arbitrarily small. Due to u ∈ L∞([0, T ]; Hs(Rn)), there exists a integer
N > 0 such that

{ ∑

j≥N

(2 js‖� j u(t1) − � j u(t2)‖L2)2
} 1

2
<

ε

2
. (6.18)

Recalling the system (6.11)1, we obtain

� j u(t1) − � j u(t2) =
∫ t2

t1

d

dτ
� j u(τ ) dτ

=
∫ t2

t1
� jP[(b · ∇)b − (u · ∇)u − κu](τ ) dτ . (6.19)

Therefore, we can get

∑

j<N

22 js‖� j u(t1) − � j u(t2)‖2
L2
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=
∑

j<N

22 js
(∥
∥
∥

∫ t2

t1
� jP[(b · ∇)b − (u · ∇)u − κu](τ ) dτ

∥
∥
∥

L2

)2

≤
∑

j<N

22 js
( ∫ t2

t1
‖� j [(b · ∇)b − (u · ∇)u − κu]‖L2(τ ) dτ

)2

≤
∑

j<N

22 js
( ∫ t2

t1
[‖� j (b · ∇)b‖L2 + ‖(u · ∇)u‖L2 + κ‖u‖L2 ](τ ) dτ

)2

=
∑

j<N

22 j
(∫ t2

t1
[2 j (s−1)‖� j (b· ∇)b‖L2 +2 j (s−1)‖(u ·∇)u‖L2 +κ2 j (s−1)‖u‖L2 ](τ ) dτ

)2

≤ C
∑

j<N

22 j
(
‖(b · ∇)b‖2

Hs−1 |t1−t2|+‖(u · ∇)u‖2
Hs−1 |t1 − t2|+κ‖u‖2

Hs−1 |t1−t2|
)

≤ C
∑

j<N

22 j |t1 − t2|
(
‖b‖2

L∞‖∇b‖2
Hs−1 + ‖∇b‖2

L∞‖b‖2
Hs−1 + ‖u‖2

L∞‖∇u‖2
Hs−1

+ ‖∇u‖2
L∞‖u‖2

Hs−1 + κ‖u‖2
Hs−1

)

≤ C22N |t1 − t2|
(
‖b‖2

Hs ‖b‖2
Hs + ‖u‖2

Hs ‖u‖2
Hs + κ‖u‖2

Hs

)
, (6.20)

where the Sobolev imbeddings Hs(Rn) ↪→ Hs−1(Rn) and Hs−1(Rn) ↪→ L∞(Rn)

with s > 1 + n
2 are used several times in the last inequality.

Thus, the following holds true

{ ∑

j<N

(2 js‖� j u(t1) − � j u(t2)‖L2)2
} 1

2
<

ε

2
(6.21)

provided |t1 − t2| small enough.
Combining (6.18) with (6.21) implies u ∈ C([0, T ]; Hs(Rn). Consequently, the
Claim 2 holds true. The uniqueness can be easily obtained as the velocity field and
magnetic field are both in Lipschitz space. Therefore, the proof of Proposition 6.1 is
completed. ��

Now we will state the following fundamental commutator estimates which have
been used repeatedly in the proofs of Lemmas 2.6 and 2.7.

Lemma 6.3 (See Bahour et al. 2011) Let θ be a C1 function on R
n such that |x |θ̌ (x)

∈ L1. There exists a constant C such that for any Lipschitz function a with gradient
in L p and any function b in Lq , we have, for any positive λ,

‖[θ(λ−1 D), a]b‖Lr ≤ Cλ−1‖∇a‖L p ‖b‖Lq wi th
1

p
+ 1

q
= 1

r
, (p, q) ∈ [1,∞]2.

With the aid of above Lemma, we will prove the commutator (2.3) and Lemma 2.7.
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Proof of Commutator 2.3 The proof of (2.2) follows the general line of presentation
in Bahour et al. (2011), Miao et al. (2012) and is standard; thus, we omit it. Now our
efforts focus on the commutator (2.3). Using the notion of para-products, we write

[� j , u · ∇]ω = K1 + K2 + K3

where

K1 =
∑

|k− j |≤2

[� j , Sk−1u · ∇]�kω, K2 =
∑

|k− j |≤2

[� j ,�ku · ∇]Sk−1ω,

K3 =
∑

k+1≥ j

[� j ,�ku · ∇]�̃kω and �̃k = �k−1 + �k + �k+1.

By using Bernstein inequality and Lemma 6.3 above, we arrive at

‖K1‖L p ≤ C
n∑

i=1

∑

|k− j |≤2

2− j‖∇Sk−1ui‖L∞‖∂i�kω‖L p

≤ C
∑

|k− j |≤2

2k− j‖∇Sk−1u‖L∞‖�kω‖L p

≤ C‖∇u‖L∞
∑

|k− j |≤2

2k− j‖�kω‖L p .

We can bound K2 (k ≥ 1 otherwise K2 ≡ 0) similar to K1 as follows:

‖K2‖L p ≤ C
n∑

i=1

∑

|k− j |≤2

2− j‖∇�kui‖L p‖∂i Sk−1ω‖L∞

≤ C
∑

|k− j |≤2

2− j‖∇�ku‖L p 2k‖ Sk−1ω‖L∞

≤ C
∑

|k− j |≤2

2− j‖�k∇u‖L p 2k‖Sk−1ω‖L∞

≤ C
∑

|k− j |≤2

2k− j‖�k∇u‖L p‖ω‖L∞

≤ C‖∇u‖L∞
∑

|k− j |≤2

2k− j‖�kω‖L p ,

where ‖ω‖L∞ ≤ C‖∇u‖L∞ and ‖�k∇u‖L p ≤ C‖�kω‖L p for any k ≥ 0 are applied
(in fact, k ≥ 0 is only needed when p = 1 or p = ∞).

We decompose K3 into the following two parts:

K3 =
∑

j−1≤k≤ j

[� j ,�ku · ∇]�̃kω +
∑

k> j

[� j ,�ku · ∇]�̃kω � K 1
3 + K 2

3 .
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For K 1
3 , making use of Lemma 6.3 above, we have

‖K 1
3‖L p ≤ C

∑

j−1≤k≤ j

‖[� j ,�ku · ∇]�̃kω‖L p

≤ C
∑

j−1≤k≤ j

2− j‖∇�ku‖L∞‖∇�̃kω‖L p

≤ C‖∇u‖L∞
∑

j−1≤k≤ j

2k− j‖�̃kω‖L p

≤ C‖∇u‖L∞
∑

j−1≤k≤ j

2k− j‖�kω‖L p .

For the term K 2
3 , we do not need to use the structure of the commutator. Thanks to

divergence-free condition, we can rewrite K 2
3 as follows:

K 2
3 =

∑

k> j

� j∂l(�kul�̃kω) +
∑

|k− j |≤3,k> j

�kul� j∂l�̃kω.

By using Bernstein inequality, we can obtain (bearing in mind k > j ⇒ k ≥ 0)

‖K 2
3 ‖L p ≤ C

∑

k> j

‖� j∂l(�kul�̃kω)‖L p + C
∑

|k− j |≤3,k> j

‖�kul� j∂l�̃kω‖L p

≤C
∑

k> j

2 j−k‖∇�ku‖L∞‖�̃kω‖L p +C
∑

|k− j |≤3,k> j

2 j−k‖∇�ku‖L∞‖�̃kω‖L p

≤ C‖∇u‖L∞
∑

k> j

2 j−k‖�kω‖L p .

Plugging all the obtained estimates together, we have

‖[� j , u ·∇]ω‖L p ≤ C‖∇u‖L∞
∑

|k− j |≤2

2k− j‖�kω‖L p + C‖∇u‖L∞
∑

j−1≤k≤ j

2k− j‖�kω‖L p

+ C‖∇u‖L∞
∑

k> j

2 j−k‖�kω‖L p .

Multiplying above inequality by 2 js , taking lr
j then applying the discrete Young

inequality, we can show that

∥
∥2 js‖[� j , u · ∇]w‖L p

∥
∥

lr
j
≤ C‖∇u‖L∞

∥
∥

∑

|k− j |≤2

2( j−k)(s−1)2ks‖�kω‖L p
∥
∥

lr
j

+ C‖∇u‖L∞
∥
∥

∑

j−1≤k≤ j

2( j−k)(s−1)2ks‖�kω‖L p
∥
∥

lr
j

+ C‖∇u‖L∞
∥
∥
∑

k> j

2( j−k)(s+1)2ks‖�kω‖L p
∥
∥

lr
j
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≤ C‖∇u‖L∞‖ω‖Bs
p,r

,

where s + 1 > 0 can guarantee that

∥
∥
∑

k> j

2( j−k)(s+1)2ks‖�kω‖L p
∥
∥

lr
j
≤ C‖ω‖Bs

p,r
.

Therefore, the commutator (2.3) is then proved. ��
Proof of Lemma 2.7 Using the notion of para-products, we write

[�̇ j , u · ∇]v = J1 + J2 + J3

where

J1 =
∑

|k− j |≤2

[�̇ j , Ṡk−1u · ∇]�̇kv, J2 =
∑

|k− j |≤2

[�̇ j , �̇ku · ∇]Ṡk−1v,

J3 =
∑

k+1≥ j

[�̇ j , �̇ku · ∇]˜̇�kv and ˜̇�k = �̇k−1 + �̇k + �̇k+1.

Since the summation above is for k satisfying | j − k| ≤ 2 and can be replaced by a
constant multiple of the representative term with k = j , then it follows from Bernstein
inequality and Lemma 6.3 above that

‖J1‖L p ≤ C
n∑

i=1

∑

|k− j |≤2

2− j‖∇ Ṡk−1ui‖L∞‖∇�̇kv‖L p

≤ C
∑

|k− j |≤2

2k− j‖∇ Ṡk−1u‖L∞‖�̇kv‖L p

≤ C‖∇u‖L∞‖�̇ jv‖L p .

Similarly, we can deal with J2 as follows

‖J2‖L p ≤ C
n∑

i=1

∑

|k− j |≤2

2− j‖∇�̇kui‖L p‖∇ Ṡk−1v‖L∞

≤ C
∑

|k− j |≤2

2− j‖∇�̇ku‖L p‖∇ Ṡk−1v‖L∞

≤ C
∑

|k− j |≤2

2− j 2k‖�̇ku‖L p 2k‖Ṡk−1v‖L∞

≤ C
∑

|k− j |≤2

22k−2 j‖�̇ku‖L p 2 j‖v‖L∞

≤ C2 j‖v‖L∞‖�̇ j u‖L p .
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It is much more involved to handle the remainder term J3. We split it into two terms:
high frequencies and low frequencies:

J3 =
∑

k≥ j−1

�̇ j [�̇ku · ∇˜̇�kv] +
∑

|k− j |≤3

�̇ku · ∇�̇ j
˜̇�kv � J 1

3 + J 2
3 .

For the first term we do not need to use the structure of the commutator. We estimate
separately each term of the commutator by using Bernstein inequalities: Thanks to
divergence-free condition, we can rewrite J 1

3 as follows:

J 1
3 =

∑

k≥ j−1

n∑

l=1

�̇ j∂l [�̇kul
˜̇�kv].

Hence,

‖J 1
3 ‖L p ≤ C

∑

k≥ j−1

2 j‖�̇ku˜̇�kv‖L p

≤ C
∑

k≥ j−1

2 j−k‖�̇k∇u‖L∞‖˜̇�kv‖L p

≤ C
∑

k≥ j−1

2 j−k‖∇u‖L∞‖�̇kv‖L p

≤ C‖∇u‖L∞
∑

k≥ j−1

2 j−k‖�̇kv‖L p .

For the second term, we use Bernstein inequalities to obtain

‖J 2
3 ‖L p ≤ C

∑

|k− j |≤3

‖�̇ku · ∇�̇ j
˜̇�kv‖L p

≤ C2 j‖v‖L∞‖�̇ j u‖L p .

Putting all the above estimates together, we have

‖[�̇ j , u · ∇]v‖L p ≤ C‖∇u‖L∞‖�̇ jv‖L p + C2 j‖v‖L∞‖�̇ j u‖L p

+ C‖∇u‖L∞
∑

k≥ j−1

2 j−k‖�̇kv‖L p .

Multiplying above inequality by 2 js then taking lr
j yields

∥
∥2 js‖[�̇ j , u · ∇]v‖L p

∥
∥

lr
j
≤ C‖∇u‖L∞‖v‖Ḃs

p,r
+ C‖v‖L∞‖u‖Ḃs+1

p,r

+ C‖∇u‖L∞
∥
∥

∑

k≥ j−1

2( j−k)(s+1)2ks‖�̇kv‖L p
∥
∥

lr
j
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≤ C‖∇u‖L∞‖v‖Ḃs
p,r

+ C‖v‖L∞‖u‖Ḃs+1
p,r

+ ‖Ck � Dm( j)‖lr
j

≤ C‖∇u‖L∞‖v‖Ḃs
p,r

+ C‖v‖L∞‖u‖Ḃs+1
p,r

,

where Ck = χ[k≤1]2(s+1)k and Dm = 2ms‖�̇mv‖L p . Here, the discrete Young inequal-
ity has been applied. Note the following fact

‖u‖Ḃs+1
p,r

≈ ‖∇u‖Ḃs
p,r

≈ ‖ω‖Ḃs
p,r

;

thus, the desired inequalities can be obtained immediately. Therefore, we have com-
pleted the proof Lemma 2.7. ��

References

Abidi, H., HmidI, T.: On the global well-posedness for Boussinesq system. J. Differ. Equ. 233(1), 199–220
(2007)

Adhikar, D., Cao, C., Wu, J., Xu, X.: Small global solutions to the damped two-dimensional Boussinesq
equations. J. Differ. Equ. 256, 3594–3613 (2014)

Bahour, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations,
Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

Beale, J., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations.
Commun. Math. Phys. 94, 61–66 (1984)

Caffarelli, L., Vasseur, A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic
equation. Ann. Math. 171, 1903–1930 (2010)

Caflisch, R., Klapper, I., Steele, G.: Remarks on singularities, dimension and energy dissipation for ideal
hydrodynamics and MHD. Commun. Math. Phys. 184, 443–455 (1997)

Cannone, M., Chen, Q., Miao, C.: A losing estimate for the Ideal MHD equations with application to
Blow-up criterion. SIAM J. Math. Anal. 38, 1847–1859 (2007)

Cao, C., Regmi, D., Wu, J.: The 2D MHD equations with horizontal dissipation and horizontal magnetic
diffusion. J. Differ. Equ. 254, 2661–2681 (2013)

Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale
ocean and atmosphere dynamics. Ann. Math. 166, 245–267 (2007)

Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic
diffusion. Adv. Math. 226, 1803–1822 (2011)

Cao, C., Wu, J.: Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation.
Arch. Ration. Mech. Anal. 208, 985–1004 (2013)

Cao, C., Wu, J., Yuan, B.: The 2D incompressible magnetohydrodynamics equations with only magnetic
diffusion. SIAM J. Math. Anal. 46, 588–602 (2014)

Chae, D.: Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot.
Anal. 38, 339–358 (2004)

Chae, D.: Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. 203,
497–513 (2006)

Chae, D.: On the continuation principles for the Euler equations and the quasi-geostrophic equation. J.
Differ. Equ. 227, 640–651 (2006)

Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations
with singular velocities. Commun. Pure Appl. Math. 65, 1037–1066 (2012)

Chae, D.: Constantin, Wu, J.: Inviscid models generalizing the 2D Euler and the surface quasi-geostrophic
equations. Arch. Ration. Mech. Anal. 202, 35–62 (2011)

Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasigeostrophic equations. Com-
mun. Math. Phys. 233, 297–311 (2003)

Chae, D., Nam, H.: Local existence and blow-up criterion for the boussinesq equations. Proc. R. Soc.
Edinburgh Sect. A. 127, 935–946 (1997)

Chae, D., Wu, J.: The 2D Boussinesq equations with logarithmically supercritical velocities. Adv. Math.
230, 1618–1645 (2012)

123



J Nonlinear Sci (2015) 25:157–192 191

Chemin, C.: Perfect Incompressible Fluids. Oxford University Press, New York (2009)
Chen, Q., Miao, C., Zhang, Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic

equation. Commun. Math. Phys. 271, 821–838 (2007)
Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magneto-

hydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008)
Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin

spaces. Arch. Ration. Mech. Anal. 195, 561–578 (2010)
Constantin, P.: Geometric statistics in turbulence. SIAM Rev. 36, 73–98 (1994)
Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44, 603–621 (2007)
Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ.

Math. J. 50, 97–107 (2001)
Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the

3-D Euler equations. Commun. Partial Differ. Equ. 21, 559–571 (1996)
Constantin, P., Foias, C.: Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago

Press, Chicago (1988)
Constantin, P., Tarfulea, A., Vicol, V.: Absence of anomalous dissipation of energy in forced two dimensional

fluid equations. Arch. Ration. Mech. Anal. 212, 875–903 (2014)
Constantin, P., Vicol, V.: Nonlinear maximum principles for dissipative linear nonlocal operators and appli-

cations. Geom. Funct. Anal. 22, 1289–1321 (2012)
Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30,

937–948 (1999)
Constantin, P., Wu, J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic

equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 1103–1110 (2008)
Constantin, P., Wu, J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport

equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 159–180 (2009)
Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math.

Phys. 249, 511–528 (2004)
Danchin, R.: Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics.

Proc. Am. Math. Soc. 141, 1979–1993 (2013)
Danchin, R., Paicu, M.: Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s

type data. Commun. Math. Phys. 290, 1–14 (2009)
Danchin, R., Paicu, M.: Global existence results for the anisotropic Boussinesq system in dimension two.

Math. Models Methods Appl. Sci. 21, 421–457 (2011)
Dong, H., Li, D.: Spatial analyticity of the solutions to the subcritical dissipative quasigeostrophic equations.

Arch. Ration. Mech. Anal. 189, 131–158 (2008)
Fan, J., Malaikah, H., Monaquel, S., Nakamura, G., Zhou, Y.: Global Cauchy problem of 2D generalized

MHD equations. Monatsh. Math. 175, 127–131 (2014)
Gancedo, F.: Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217,

2569–2598 (2008)
Hmidi, T., Keraani, S.: Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in

Besov spaces. Adv. Math. 214, 618–638 (2007)
Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for a Boussinesq–Navier–Stokes system with

critical dissipation. J. Differ. Equ. 249, 2147–2174 (2010)
Hmidi, T., Keraani, S., Rousset, F.: Global well-posedness for Euler–Boussinesq system with critical dis-

sipation. Commun. Partial Differ. Equ. 36, 420–445 (2011)
Hou, T.Y., Li, C.: Global well-posedness of the viscous Boussinesq equations. Discret. Contin. Dyn. Syst.

12, 1–12 (2005)
Kato, T.: Nonstationary flows of viscous and ideal fluids in R

3. J. Funct. Anal. 9, 296–305 (1972)
Kato, T.: Liapunov Functions and Monotonicity in the Euler and Navier–Stokes Equations, Lecture Notes

in Mathematics, vol. 1450. Springer, Berlin (1990)
Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with application to the Euler

equations. Commun. Math. Phys. 214, 191–200 (2000)
Kiselev, A.: Nonlocal maximum principles for active scalars. Adv. Math. 227, 1806–1826 (2011)
Kiselev, A., Nazarov, F., Volberg, A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic

equation. Invent. Math. 167, 445–453 (2007)

123



192 J Nonlinear Sci (2015) 25:157–192

Larios, A., Lunasin, E., Titi, E.: Global well-posedness for the 2D Boussinesq system without heat diffusion
and with either anisotropic viscosity or inviscid Voigt-α regularization, arXiv:1010.5024v1 [math.AP]
25 Oct 2010.

Li, D., Rodrigo, J.: Blow up for the generalized surface quasi-geostrophic equation with supercritical
dissipation. Commun. Math. Phys. 286, 111–124 (2009)

Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)
Miao, C., Wu, J., Zhang, Z.: Littlewood–Paley Theory and its Applications in Partial Differential Equations

of Fluid Dynamics. Science Press, Beijing (2012). (in Chinese)
Miao, C., Xue, L.: On the global well-posedness of a class of Boussinesq–Navier–Stokes systems. NoDEA

Nonlinear Differ. Equ. Appl. 18, 707–735 (2011)
Miao, C., Xue, L.: On the regularity of a class of generalized quasi-geostrophic equations. J. Differ. Equ.

251, 2789–2821 (2011)
Miura, H.: Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space. Com-

mun. Math. Phys. 267, 141–157 (2006)
Pak, H., Park, Y.: Existence of solution for the Euler equations in a critical Besov space B1∞,1(Rd ). Commun.

Partial Differ. Equ. 29, 1149–1166 (2004)
Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)
Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure

Appl. Math. 36, 635–664 (1983)
Sideris, T., Thomases, B., Wang, D.: Long time behavior of solutions to the 3D compressible Euler equations

with damping. Commun. Partial Differ. Equ. 28, 795–816 (2003)
Shu, E.W., Shu, C.-W.: Small-scale structures in Boussinesq convection. Phys. Fluids 6, 49–58 (1994)
Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Provi-

dence, RI, 2001, reprint of the 1984 edition, MR 1846644 (2002j:76001).
Tran, C.V., Yu, X., Zhai, Z.: On global regularity of 2D generalized magnetohydrodynamics equations. J.

Differ. Equ. 254, 4194–4216 (2013)
Triebel, H.: Theory of Function Spaces II. Birkhauser, Basel (1992)
Wu, J.: The quasi-geostrophic equation and its two regularizations. Commun. Partial Differ. Equ. 27, 1161–

1181 (2002)
Wu, J.: The generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)
Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math.

Anal. 36, 1014–1030 (2005)
Wu, J.: The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation. Nonlin-

earity 18, 139–154 (2005)
Wu, J.: Regularity criteria for the generalized MHD equations. Commun. Partial Differ. Equ. 33, 285–306

(2008)
Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech.

13, 295–305 (2011)
Xu, X.: Global regularity of solutions of 2D Boussinesq equations with fractional diffusion. Nonlinear Anal.

72, 677–681 (2010)
Xu, X., Ye, Z.: The lifespan of solutions to the inviscid 3D Boussinesq system. Appl. Math. Lett. 26,

854–859 (2013)
Yamazaki, K.: On the global regularity of two-dimensional generalized magnetohydrodynamics system. J.

Math. Anal. Appl. 416, 99–111 (2014)
Yamazaki, K.: Remarks on the global regularity of the two-dimensional magnetohydrodynamics system

with zero dissipation. Nonlinear Anal. 94, 194–205 (2014)
Ye, Z.: Blow-up criterion of smooth solutions for the Boussinesq equations. Nonlinear Anal. 110, 97–103

(2014)
Ye, Z., Xu, X.: Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics

system. Nonlinear Anal. 100, 86–96 (2014)
Zhang, Z., Liu, X.: On the blow-up criterion of smooth solutions to the 3D ideal MHD equations. Acta

Math. Appl. Sinica E 20, 695–700 (2004)
Zhou, Y.: Regularity criteria for the generalized viscous MHD equations. Ann. Inst. H. Poincar Anal. Non

Linaire 24, 491–505 (2007)

123

http://arxiv.org/abs/1010.5024v1

	Global Smooth Solutions to the n-Dimensional Damped Models of Incompressible Fluid Mechanics with Small Initial Datum
	Abstract
	1 Introduction
	2 Preliminaries and Main Results
	3 The Proof of Theorem 2.8
	4 The Proof of Theorem 2.14
	5 The Proof of the Theorem 2.16
	Acknowledgments
	6 Appendix: Local Existence and Uniqueness Theory to Damped MHD
	References


