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ABSTRACT
Motivation: Biologically significant information can be reveal-
ed by modeling large-scale protein interaction data using graph
theory based network analysis techniques. However, the meth-
ods that are currently being used draw conclusions about the
global features of the network from local connectivity data. A
more systematic approach would be to define global quantit-
ies that measure (1) how strongly a protein ties with the other
parts of the network and (2) how significantly an interaction
contributes to the integrity of the network, and connect them
with phenotype data from other sources. In this paper, we
introduce such global connectivity measures and develop a
stochastic algorithm based upon percolation in random graphs
to compute them.
Results: We show that, in terms of global connectivities,
the distribution of essential proteins is distinct from the back-
ground. This observation highlights a fundamental difference
between the essential and the non-essential proteins in the
network. We also find that the interaction data obtained from
different experimental methods such as immunoprecipitation
and two-hybrid techniques contribute differently to network
integrities. Such difference between different experimental
methods can provide insight into the systematic bias present
among these techniques.
Supplementary information: The full list of our results can be
found in the supplemental web site http://www.nas.nasa.
gov/Groups/SciTech/nano/msamanta/projects/percolation/
index.php
Contact: cschin@genome.ucsf.edu

1 INTRODUCTION
Recent availability of a large amount of data from high-
throughput experiments (Gavinet al., 2002; Hoet al., 2002;
Ito et al., 2001; Uetzet al., 2000; Zhuet al., 2000) has brought
about a fundamental change in the way we study biological
systems. Unlike the traditional methods which relied on prob-
ing a single or a few proteins to identify important pathways,
it is now becoming possible to describe larger functional
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‘modules’ (Hartwellet al., 1999; Rives and Galitski, 2002)
and even the global properties of the entire proteome (Bader
and Hogue, 2002; Jeonget al., 2001; Maslov and Sneppen,
2002; von Meringet al., 2002). Researchers are attempting
to connect large-scale protein interaction data with informa-
tion from phenotype studies (Jeonget al., 2001; Maslov and
Sneppen, 2002; Saitoet al., 2002, 2003; Samanta and Liang,
2003, http://www.arxiv.org/abs/physics/0303027; Sprinzak
et al., 2003). In one such analysis of data from yeast, Jeong
et al. (2001) observed the connectivities of individual pro-
teins in the network to closely follow a power law distribution.
Similar to other power law networks, positive correlation exis-
ted between a protein’s inviability and its connectivity. In
another study, Maslov and Sneppen (2002) observed inter-
esting patterns in the distribution of the links between the
nearest neighbors in the network and postulated that such
patterns give rise to the specificity and the robustness of the
network.

One of the shortcomings of the previous approaches is
that they drew conclusions about the global nature of the
network from its local connectivity properties. It is unclear
whether such local studies based on individual nodes or
nearest neighbors fully capture the global picture (Vazquez
et al., 2003) of the network. For example, some essential pro-
teins, namely, those for which null mutants produce inviable
strains (Winzeleret al., 1999), may have few numbers of dir-
ect links but still take important roles in the network through
the proteins to which they are connected. Such proteins would
not be correctly identified by just counting the number of links
(Jeonget al., 2001). To properly recognize such cases, it is
necessary to go beyond the nearest neighbor links. However,
it is not clear that the techniques mentioned above can easily
be extended to answer such questions.

In this paper, we introduce a stochastic method inspired
by the percolation model in statistical mechanics (Stauffer
and Aharony, 1994) that overcomes the shortcomings of the
previous approaches. This method allows us to define a quant-
ity that measures the correlation between any two nodes in
the network, taking the topology of the entire network into
account. Biologically, such correlations describe the direct
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and indirect influences of one protein on another through the
protein interaction network. If such correlations indeed carry
biological significance, we expect the essential proteins to be
highly correlated, in general, with the rest of the network. One
of our main results is that most essential proteins do possess
higher correlations between themselves and the rest of the
network. This is consistent with previous results (Jeonget al.,
2001), because in the first order, the correlations computed
by us are proportional to the connectivities of the proteins.
However, we show that it is important to go beyond the first
order. Identifying essential proteins by our method performs
consistently better than just counting links. Additionally, we
observe that the essential proteins interact more tightly with
the other essential proteins, thus forming a ‘network core’.
This directly agrees with large-scale experiments probing
protein networks (Gavinet al., 2002).

Based on our method, we can also quantify the relative
significance of an interaction to the integrity of the network.
We observe that the interaction data from different meas-
urement techniques, such as immunoprecipitation (IP) and
the two-hybrid test, give distinct distributions. This suggests
that various experimental techniques for probing the protein
interactions might explore different regions of the network.

2 METHODS AND MATERIALS

2.1 Bond-percolation on graph
Given any two nodes in a network, the strength of their con-
nectivity can be estimated in different ways. Some of these
measures are local. For example, we can ask whether any
two nodes are directed linked, how many common neigh-
bors they share (Samanta and Liang, 2003) etc. We can also
ask how local properties of a node, such as the degree of
links, associate with its function and its importance in the
network (Jeonget al., 2001). Furthermore, information about
the correlations between nodes involving non-local proper-
ties, such as the length of the shortest path and clustering
structures, can enable us to uncover hidden features buried
within the massive data. Here, we present a generic approach
that extracts useful information about a node beyond its local
connections.

Correlations between two nodes may come from other
numerous short paths rather than just the shortest path. A
reasonable estimate of correlation should take into account the
number and length of different paths between two nodes. One
possible way to estimate such correlation between two nodes
is to repeatedly remove some fractionq of the links in the net-
work chosen randomly and check whether they still remain
connected. Their probability remaining connected is propor-
tional to the number of short paths between them and inversely
proportional to the length of those paths. This probability
provides a good measurement of the correlation between two
nodes that includes the information regarding the non-local
topology of the network. The described process of finding the

correlation between two nodes in a network is equivalent to
the bond-percolation model in statistical mechanics (Stauffer
and Aharony, 1994).

Mathematically, a network is treated in the language of
graph theory, where a node is denoted as a vertex and a link
as an edge. Given a graphG with verticesV and edgesE,
a percolation configuration is realized as follows. Each edge
eij linking verticesi andj is assigned a random numberpij

distributed uniformly from 0 to 1. If this random number is
greater thanp = 1 − q, a given percolation probability, then
the edge is eliminated from the original graph. The final graph
G′ consists of the edge setE′ = E − Ē, whereĒ is the set
of edges withpij > p andE′ consists of those edges with
pij < p. Assuming thatG is connected, the reduced graph
G′ may or may not remain a single connected component
depending onp.

2.2 Susceptibility
The first step in applying the algorithm is to determine the
appropriate value of the probabilityp. If p is near one, then we
only produce totally connected graphs. Ifp is too close to zero,
then the network is split into individual vertices and small
clusters. An intermediate value ofp provides information
about the non-local properties of the network.

The degree of fragmentation in the graphG′ can be quan-
tified by the order parameterm(p), the ratio of the largest
connected component size to the total graph size. It is defined
asm(p) = Nmax/|V |, whereNmax is the number of vertices
of the largest connected component and|V | is the total num-
ber of vertices. For a connected graphG, m(p) varies from
1/|V | to 1 asp changes from 0 to 1. Here,m is a stochastic
variable, whose fluctuation is defined by

χ(p) = 〈(m − 〈m〉)2〉1/2 (1)

The brackets denote the ensemble average, which is the aver-
age over many different realizations ofG′. The curve ofχ(p)

reveals certain aspects of the graph topology. For example, if
G is a regular two dimensional square lattice, thenχ diverges
with a power law behavior as a function ofp − pc, with
pc = 1/2. For other types of regular lattices, like triangular
lattices or higher dimensional lattices,pc and/or the power
law exponent also change. A maximum inχ(p) occurs at the
transition pointpc, indicating a phase transition and critical
behavior (Stauffer and Aharony, 1994). At this critical point,
the distribution of the sizes of the connected clusters decay as
a power law. Choosing a value ofp near this critical value,
we get the most non-local information regarding the network.

2.3 Correlations and the definition of vi

Whether two arbitrary verticesi andj remain connected in
G′ can provide more detailed information aboutG. If two
vertices retain their connection, it means that there exist paths
in E′ from vertexi to vertexj . Defineδij as function of a pair
of verticesi andj such thatδij = 1 if verticesi andj are
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Fig. 1. We applied our algorithm withp = 0.43 on a small graph. The vertices are indexed in the descending order ofv and the parenthesized
numbers indicate the degree of connection. Some vertices, like vertex 3, have few neighbors but are out-ranked in terms ofvi to other vertices
with more neighbors. Vertices with equivalent degree of connectivity might be ranked very differently because they have differing number of
next-nearest neighbors. The edges having largest 18βij are shown in gray and are ranked. If we remove these edges, the graph is severed into
several compact subgraphs. The edges carrying largestβij tend to link different large components. The edges within a clique, like vertices
5, 4, 9, 13 and 14, have the smallestβij .

connected, andδij = 0 otherwise. The percolation correlation
cij is then defined as the ensemble average ofδij ,

cij = 〈δij 〉. (2)

With knowledge of thecij , we are equipped to measure how
strongly a vertexi links to the rest of the network counting
both direct and indirect connections to vertexi. We define the
quantityvi for vertexi,

vi = 1

|V |
∑

j∈V

cij (3)

This value is sensitive not only to the linking degree at each
vertex but also to higher order connections between a vertex
and the rest of the random graph. Thus,vi effectively ranks
the importance of a vertex in the graph. Intuitively,vi may be
interpreted as the fraction of other vertices to which vertexi

remains linked, if each edge is broken with probabilityq =
1 − p in the graphG. In Figure 1, we show the descending
ranking order of thevi ’s for a small graph.

2.4 The definition of βij

Using a similar idea, we can define a quantity that allows
us to check the influence of an edge on the graph integrity.
The elimination of some edges may fundamentally change
the connectivity properties whereas the graph topology may
be relatively unchanged against the deletion of others. For
example, for a small fully connected subgraph, termed a
clique, removal of a certain number of edges between the
vertices of the subgraph tends not to separate the graph into
disconnected pieces. Individual links in the subgraph do not
play crucial roles in supporting the integrity of the subgraph

and the whole graph. We define the quantityβij to monitor
the importance of edgeeij to the integrity of the graph,

βij = 1

|V |2
∑

l,m∈V

[
clm

(
G′ ∪ {eij }

) − clm

(
G′ \ {eij }

)]
.

(4)

The first term in the summation is correlationclm measured
by addingeij in G′ independent ofpij andp. The second
term is clm measured by removingeij is G′. The differ-
ence in measurement ofclm under the presence or absence
of edgeeij allows us to distinguish edges. For example,
if eij bridges two clusters, thenβij will be elevated (note
the edges 1, 2 and 3 in Fig. 1). Suppose edgeeij connects
two disjoint connected componentsA andB with sizesnA

and nB in a realization ofG′. The contribution toβij is
the difference between

∑
l,m∈A∪B δlm = |nA + nB |2 and∑

l,m∈A δlm +∑
l,m∈B δlm = |nA|2 +|nB |2. Namely, the con-

tribution to βij is proportional tonAnB. However, if eij is
embedded within a connected component such that adding or
removingeij does not perturb the component’s connectivity,
then eij is redundant and does not contribute toβij . With
this interpretation,βij measures how welleij succeeds in
connecting different big components or modules.

2.5 Protein interaction data
Here, we apply the described method on the yeast pro-
tein interaction data taken from the Database of Interact-
ing Proteins (DIP) (Deaneet al., 2002). We use the data
files yeast20020901.lst and dip20020616.xin
downloaded from DIP web site http://dip.doe-mbi.ucla.
edu/. The data set contains 14 871 interactions between
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Fig. 2. Susceptibility curve of the parameterm. The curve peaks at
p = 0.07, where the fluctuations ofm are greatest.

4692 proteins and includes interactions measured by differ-
ent experimental methods. We treat the interaction network as
an undirected graph, with the proteins as vertices. If two pro-
teins are interaction partners in the data set, the corresponding
vertices are joined by an edge.

3 RESULTS AND DISCUSSIONS

3.1 Determination of p

As a first step in applying this stochastic method on the pro-
tein interaction network, we need to determine the appropriate
value of p. If p is near one, then we will only produce
totally connected graphs. Ifp is too close to zero, then we
will only obtain information about the small clusters. Some
intermediate value ofp will give us global properties of the
network.

In order to determine the proper value ofp, we need to
compute the curveχ(p). Such a curve for the DIP data is
shown in Figure 2. The curve peaks at aboutp = 0.07, where
the size fluctuations of the largest cluster are maximal. Most
realizations of the percolation graphG′ in the neighborhood
of this peak yield sparse but still predominantly connected
graphs. Accordingly, computingvi andβij around this peak
in χ(p) avoids the finite size effect at smallerp and loss of
resolutions at largerp.

3.2 Distribution of vi

We gathered our data from 105 realizations of the graph atp =
0.07. The distribution of log(vi) for the protein interaction net-
work is shown in Figure 3. We also report the distributions of
a subset composing only the essential proteins. We obtained
the list of essential proteins from the Saccharomyces Genome
Deletion Project (Winzeleret al., 1999) web site (http://
yeastdeletion.stanford.edu/). The distribution ofvi for

Fig. 3. Histogram of log(vi). The distribution ofvi for essential
proteins is skewed toward largerv. This figure can be viewed in
colour as supplementary data atBioinformatics online.

Fig. 4. The percentage of proteins which are essential as a func-
tion of vi .

essential proteins significantly differs from the background
distribution and is biased toward greatervi . A protein with
a greatervi ties to the network more strongly than a pro-
tein possessing a smallervi . Therefore, we would predict
that removing a protein from yeast with a greatervi harms
more biologically important pathways and would thereby be
more likely to destroy viability. The percentage of proteins
having a givenvi which are essential [ (number of essential
proteins of a givenvi)/(number of proteins of the givenvi) ] is
shown in Figure 4. This percentage has strong positive Pearson
coefficient withvi , in agreement with the prediction.

What are the specific connectivity properties that produce a
largevi for a specific protein? To a first-order approximation,
vi is proportional to the degree of connectivity of theith pro-
tein. Since a protein withk interactions is usually connected
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to at leastp · k proteins, in the first-ordervi is proportional
to ki . However, the graph diameter, defined as the maximum
amongst all the shortest paths between all pairs of vertices, of
the protein interaction network is 12 and the average path
length of the path between any two proteins is only 4.23.
The protein interaction network displays small world network
properties. Thus, the correction tovi from higher order con-
nections should be included. For example, if the number of
next-nearest neighbors of a protein is much greater than the
number of nearest neighbors, then the contribution from the
next-nearest neighbors is comparable to that of the nearest
neighbors. In such a case, the proteins with the sameki have a
broad distribution ofvi as in our results. The value ofvi gives
more extensive information about the protein’s connectivity
in the network beyond that of its nearest neighbors.

Our method is advantageous because we can identify
important proteins that might otherwise not be considered
significant because they have lower first-order interaction
degree. Such proteins probably control other essential proteins
through a few critical interactions. To illustrate the power of
this approach compared to merely counting the nearest neigh-
bor degree of interactions, we rank the proteins byvi and
compare the result to the ranking byki (see Table 1). Sixty-
one percent of the proteins in the top 2% ofvi are essential,
whereas only 52% of the proteins in the top 2% ofki are
required for viability. Such a result suggests the essential pro-
teins with highervi not only have more interactions but are
also more likely to interact more frequently with other pro-
teins, which also tend to be essential. A similar observation
has been reported by Gavinet al. (2002), and our independent
evidence supports their experimental observation.

The interaction data we used may contain both false pos-
itives and false negatives. To simulate the effect due to such
false positives and false negatives, we test our algorithm on
data where random interactions are added or removed. We find
that even thoughvi values systematically increase or decrease
respectively when random links are added or removed, the
ranking order ofvi is stable against such perturbations. For
example, in a test run, 496 proteins out of top 500 measured
byvi remain within top 500, even after 5% of the links are ran-
domly added. When 5% of the links are randomly removed,
477 proteins remain in the top 500. The Pearson coefficient
between the perturbedvi and unperturbedvi is very close to
one(>0.995). The difference between the distributions ofvi

for essential and non-essential proteins remain significant in
the perturbed cases.

The proteins with 10 highestvi are listed in Table 2. The full
list of proteins with theirvi can be found in the supplemental
web site. A selection of a few essential proteins with highvi

but lowki is also shown in Table 3.

3.3 Distribution of βij

The interactions in the network can be grouped by the experi-
mental methods used to detect them. We score each interaction

Table 1. The percentage of essential proteins in selected percentiles ranked
by vi and the degree of connectionki

All proteins Essential proteins
percentile byvi (%) byki (%) byvi (randomize) (%)

2% (94) 61 52 53
5% (234) 53 47 50

10% (469) 48 46 48
25% (1173) 39 38 38

In the top 92 proteins ranked byvi , 61% of them are essential while only 52% of
essential proteins are captured when ranked byki . The third column is a control in
which thevi are recalculated for a (quasi-)randomized graph in which edges have
been swapped while retaining the degrees of connection of all vertices in the original
graph. Identifying essential proteins by calculatingvi performs consistently better than
only computingki , demonstrating the significance of non-local structure beyond that of
nearest neighbor relations. If we randomly perturb the global graph structure, the ability
to identify essential proteins drops, even though the degree of connection at each vertex
is unchanged.

Table 2. List of the proteins with 10 highestvi

Protein vi ki Viability

SRP1 0.0623 196 Inviable
TEM1 0.0531 115 Inviable
JSN1 0.0524 282 Viable
YDL213C 0.0516 58 Viable
CKA1 0.0513 65 Viable
NUP116 0.0505 146 Inviable
ERB1 0.0494 55 Inviable
HHF1 0.0486 74 Viable
NOP2 0.0479 48 Inviable
CDC95 0.0475 48 Viable

within the network byβij . The distribution of log(βij ) (Fig. 5)
provides a mechanism to detect differences amongst differ-
ent subsets of interactions obtained by varied experimental
methods. In Figure 5, we compare the distribution of log(βij )

from the whole network to distribution derived from sev-
eral subsets of the network. First, we use the subset, as
the core set, of the interactions that was derived by Deane
et al. (2002). Interactions in the core set are statistically
verified to reduce the false positive rate, yielding 1925 inter-
actions (excluding self-interacting pairs). The distribution of
log(βij ) for the core set is similar to that obtained for the
entire network. However, upon comparing the distribution
of log(βij ) for subsets of those interactions obtained from
different experimental procedures, differences emerge. For
example, interactions measured by IP tends to have a larger
βij , so that the distribution of log(βij ) of this subset shifts to
the right. In contrast, the distribution for the subset of interac-
tions measured with high-throughput two-hybrid tests display
the opposite trend.

2417

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/18/2413/194483 by guest on 16 August 2022



C.-S.Chin and M.P.Samanta

Table 3. A selection of a few essential proteins with highvi but lowki

ki protein vi

3 UTP8 0.0084
YKL088W 0.0081
DYS1 0.0075
TRL1 0.0070
GRS1 0.0068

4 RLP24 0.0115
ROK1 0.0106
SPB4 0.0101
MES1 0.0094
SEC18 0.0087

5 MAK11 0.0127
BMS1 0.0124
YPR144C 0.0117
ACS2 0.0113
DIP2 0.0112

6 NOP14 0.0133
NOC3 0.0131
SEN1 0.0124
YLL034C 0.0123
DIB1 0.0110

Fig. 5. Normalized distributions of log(βij ) for different subsets of
interactions. The solid line represents the distribution for all interac-
tions in the data. The dotted line corresponds to the core set extracted
by Deaneet al. (2002). The short dashed line refers to interactions
obtained by IP, and the long dashed line represents the subset of inter-
actions derived from high-throughput two-hybrid tests. This figure
can be viewed in colour as supplementary data atBioinformatics
online.

If eij is the only edge linking two clusters, the contribution
of a particular realization of the percolation procedure toβij

is proportional to the product of the sizes of the two clusters.
Hence, an edge with a greaterβij has a greater tendency to

link two large modules or clusters in the network. With this
notion in mind, an examination of Figure 5 suggests that the
IP method is possibly more sensitive to interactions between
proteins in different large modules while the two-hybrid tests
are better suited to detecting interactions which tend not to
link larger modules.

The discrepancy in theβij distribution for the IP method
and the two-hybrid test might reflect the underlying bio-
chemical differences between the two methods. Unlike IP,
the two-hybrid test is anin vivo technique and thus it can
detect transient and unstable interactions (von Meringet al.,
2002). False positive rate of two-hybrid method is also high.
Our analysis of the distribution of log(βij ) demonstrates that
the interactions detected by the two-hybrid method generally
contribute less to the integrity of the interaction network. This
phenomenon may result from higher sensitivity of two-hybrid
method towards transient and unstable interactions. It may
also be caused by the bait–prey asymmetry or the higher error
rate of the two-hybrid method.

4 CONCLUSION
We presented a stochastic algorithm that explored the global
connectivity properties of a protein interaction network. This
percolation-based algorithm allowed us to assign weights to
vertices and edges according to non-local topological prop-
erties. We applied the algorithm to the protein interaction
network for yeast and found that the percentage of essential
proteins correlated strongly withvi . Importantly, the val-
ues ofvi , which incorporated the knowledge of connections
beyond the nearest neighbors, could more successfully dis-
criminate essential proteins than a method based solely on
local connections. In addition, the essential proteins with
greatervi not only possessed more interactions with any
other proteins but also displayed more interactions with other
essential proteins. This result suggested that essential pro-
teins along with other proteins having greatervi might form a
‘core network’ with a higher density of interactions within the
‘core network’ than the background network. If this unveri-
fied hypothesis is confirmed, then we would gain significant
insight into the evolution of a protein interaction network. Are
the proteins in this ‘core network’ in general more evolution-
arily conserved than others? Hunteret al. claimed that there is
significant negative correlation between each protein’s degree
of connectivity and protein evolutionary rate, and that evolu-
tionary change may occur largely by coevolution (Fraseret al.,
2002). If this is indeed so, we expect a stronger correlation
betweenvi and protein evolutionary rate, sincevi provides a
better resolution than the degree of connectivity for proteins’
positions in their interaction network.

Theβij scores for interaction could distinguish the differ-
ences between different experimental methods for measuring
protein interactions. Such a quantitative measure of the
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distinction amongst the experimental approaches will aid the
interpretation of the proteomic data.

In principle, cij can be calculated exactly given a percol-
ation probabilityp. However, this would require recursive
iterations over all possible subgraphs. Our stochastic approach
efficiently obtains the approximations to the exact value ofcij ,
vi andβij . In this work, we model the interaction network as
a static graph with uniform weight on each edge. For a bio-
logical system, dynamical aspects need to be incorporated.
Various experimental methods for probing the physical inter-
actions between proteins respond differently to the dynamics
of biological systems. The two-hybrid test is more sensitive to
transient interactions while the IP method is more sensitive to
large and stable protein complexes. The differences might be
addressed from different dynamics aspects in the interaction
network.

With regard to future pursuits, we note that it is also pos-
sible to useβij to cluster vertices within a random graph. The
βij score for a random graph is similar to the edge ‘between-
ness’, defined as the number of shortest paths between all
pairs of vertices passing through a given edge. An edge
with a greaterβij is likely also an edge with a greater edge
‘betweenness’, because such an edge has great tendency to
bridge two different clusters or modules. Clustering utilizing
edge ‘betweenness’ have been successfully applied to certain
types of random networks (Girvan and Newman, 2001). We
expect that results similar to those shown in Figure 1 could
be achieved withβij not only for this small test graph but
more significantly for larger graphs in which the computa-
tional cost of calculating edge ‘betweenness’ is prohibitive.
For the present, however, the idea of percolation on random
networks provides a natural mechanism for revealing dom-
inant cluster structure within a graph. We hope such natural
cluster structure will provide further details about the protein
interaction network.
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