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ABSTRACT

Motivation: Biologically significant information can be reveal-
ed by modeling large-scale protein interaction data using graph
theory based network analysis techniques. However, the meth-
ods that are currently being used draw conclusions about the
global features of the network from local connectivity data. A
more systematic approach would be to define global quantit-
ies that measure (1) how strongly a protein ties with the other
parts of the network and (2) how significantly an interaction
contributes to the integrity of the network, and connect them
with phenotype data from other sources. In this paper, we
introduce such global connectivity measures and develop a
stochastic algorithm based upon percolation in random graphs
to compute them.

Results: We show that, in terms of global connectivities,
the distribution of essential proteins is distinct from the back-
ground. This observation highlights a fundamental difference
between the essential and the non-essential proteins in the
network. We also find that the interaction data obtained from
different experimental methods such as immunoprecipitation
and two-hybrid techniques contribute differently to network
integrities. Such difference between different experimental
methods can provide insight into the systematic bias present
among these techniques.

Supplementary information: The full list of our results can be
found in the supplemental web site http://www.nas.nasa.
gov/Groups/SciTech/nano/msamanta/projects/percolation/
index.php

Contact: cschin@genome.ucsf.edu

1 INTRODUCTION

‘modules’ (Hartwellet al., 1999; Rives and Galitski, 2002)
and even the global properties of the entire proteome (Bade
and Hogue, 2002; Jeorg al., 2001; Maslov and Sneppen,
2002; von Meringet al., 2002). Researchers are attempting
to connect large-scale protein interaction data with informa-
tion from phenotype studies (Jeosdal., 2001; Maslov and
Sneppen, 2002; Sait al., 2002, 2003; Samanta and Liang,
2003, http://lwww.arxiv.org/abs/physics/0303027; Sprinzak
et al., 2003). In one such analysis of data from yeast, Jeong
et al. (2001) observed the connectivities of individual pro-
teins in the network to closely follow a power law distribution.
Similar to other power law networks, positive correlation exis-
ted between a protein’s inviability and its connectivity. In
another study, Maslov and Sneppen (2002) observed inter-
esting patterns in the distribution of the links between the
nearest neighbors in the network and postulated that such
patterns give rise to the specificity and the robustness of the
network.

One of the shortcomings of the previous approaches is
that they drew conclusions about the global nature of the
network from its local connectivity properties. It is unclear
whether such local studies based on individual nodes or &
nearest neighbors fully capture the global picture (Vazquezg
etal., 2003) of the network. For example, some essential pro-
teins, namely, those for which null mutants produce inviable Z
strains (Winzeleet al., 1999), may have few numbers of dir-
ect links but still take important roles in the network through >
the proteins to which they are connected. Such proteins wouldcé
not be correctly identified by just counting the number of links
(Jeonget al., 2001). To properly recognize such cases, it is
necessary to go beyond the nearest neighbor links. However,
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Recent availability of a large amount of data from high-itis not clear that the techniques mentioned above can easily

throughput experiments (Gaveh al., 2002; Hoet al., 2002;

ltoetal.,2001; Uetzt al., 2000; Zhwet al., 2000) has brought

be extended to answer such questions.
In this paper, we introduce a stochastic method inspired

about a fundamental change in the way we study biologicaby the percolation model in statistical mechanics (Stauffer

systems. Unlike the traditional methods which relied on proband Aharony, 1994) that overcomes the shortcomings of the
ing a single or a few proteins to identify important pathways,previous approaches. This method allows us to define a quant-
it is now becoming possible to describe larger functionality that measures the correlation between any two nodes in

*To whom correspondence should be addressed.

the network, taking the topology of the entire network into
account. Biologically, such correlations describe the direct
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and indirect influences of one protein on another through theorrelation between two nodes in a network is equivalent to
protein interaction network. If such correlations indeed carrythe bond-percolation model in statistical mechanics (Stauffer
biological significance, we expect the essential proteins to band Aharony, 1994).
highly correlated, in general, with the rest of the network. One Mathematically, a network is treated in the language of
of our main results is that most essential proteins do possesggaph theory, where a node is denoted as a vertex and a link
higher correlations between themselves and the rest of thas an edge. Given a gragh with verticesV and edge<,
network. This is consistent with previous results (Jeetrad.,  a percolation configuration is realized as follows. Each edge
2001), because in the first order, the correlations computee; linking verticesi andj is assigned a random numbg;
by us are proportional to the connectivities of the proteinsdistributed uniformly from 0 to 1. If this random number is
However, we show that it is important to go beyond the firstgreater tharp = 1 — ¢, a given percolation probability, then
order. ldentifying essential proteins by our method performghe edge is eliminated from the original graph. The final graph
consistently better than just counting links. Additionally, we G’ consists of the edge sé&f = E — E, whereE is the set
observe that the essential proteins interact more tightly wittof edges withp;; > p and E’ consists of those edges with
the other essential proteins, thus forming a ‘network core’.p;; < p. Assuming thaiG is connected, the reduced graph
This directly agrees with large-scale experiments probings’ may or may not remain a single connected component
protein networks (Gaviet al., 2002). depending omp.
_Bg;ed on our method, ‘we can a_Iso ql_Jant|fy the relatlvez_2 Susceptibility
significance of an interaction to the integrity of the network.
We observe that the interaction data from different measThe first step in applying the algorithm is to determine the
urement techniques, such as immunoprecipitation (IP) an@Ppropriate value of the probabilipy I pis near one, then we
the two-hybrid test, give distinct distributions. This suggestsenly produce totally connected graphspfs too close to zero,
that various experimental techniques for probing the proteirﬁhen the network is split into individual vertices and small

interactions might explore different regions of the network. Cclusters. An intermediate value gf provides information
about the non-local properties of the network.

The degree of fragmentation in the grahcan be quan-
2 METHODS AND MATERIALS tified by the order parametet(p), the ratio of the largest
2.1 Bond-percolation on graph connected component size to the total graph size. Itis define

Given any two nodes in a network, the strength of their con@S7(p) = Nmax/|V |, whereNmax is the number of vertices
nectivity can be estimated in different ways. Some of thes®f the largest connected component g¥dis the total num-

measures are local. For example, we can ask whether afgr of vertices. For a connected graphm(p) varies from

two nodes are directed linked, how many common neighd/|V|to 1 asp changes from 0 to 1. Here is a stochastic
bors they share (Samanta and Liang, 2003) etc. We can al@riable, whose fluctuation is defined by

ask how local properties of a node, such as the degree of 2.1/2

links, associate with its function and its importance in the x(p) = (m — ()Y (1)

network (Jeongt al., 2001). Furthermore, information about The prackets denote the ensemble average, which is the ave
the correlations between nodes involving non-local properage over many different realizations@f. The curve ofy (p)
ties, such as the length of the shortest path and clusteringyeals certain aspects of the graph topology. For example, i
structures, can enable us to uncover hidden features buried is a regular two dimensional square lattice, thetiverges
within the massive data. Here, we present a generic approacith a power law behavior as a function of — p¢, with
that extracts useful information about a node beyond its local, . — 1/2. For other types of regular lattices, like triangular
connections. lattices or higher dimensional latticepe and/or the power
Correlations between two nodes may come from othefay exponent also change. A maximunyip) occurs at the
numerous short paths rather than just the shortest path. fiansition pointpe, indicating a phase transition and critical
reasonable estimate of correlation should take into account thgshavior (Stauffer and Aharony, 1994). At this critical point,
number and length of different paths between two nodes. Onhe distribution of the sizes of the connected clusters decay as
possible way to estimate such correlation between two nodeg power law. Choosing a value pfnear this critical value,

is to repeatedly remove some fractipnf the links in the net- \ye get the most non-local information regarding the network.
work chosen randomly and check whether they still remain

connected. Their probability remaining connected is propor2-3  Correlations and the definition of v;

tional to the number of short paths between them and inverseWhether two arbitrary verticesand j remain connected in
proportional to the length of those paths. This probabilityG’ can provide more detailed information abatit If two
provides a good measurement of the correlation between tweertices retain their connection, it means that there exist paths
nodes that includes the information regarding the non-locain E’ from vertex: to vertex;. Defines;; as function of a pair
topology of the network. The described process of finding theof verticesi and j such tha;; = 1 if verticesi and j are
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Fig. 1. We applied our algorithm witlp = 0.43 on a small graph. The vertices are indexed in the descending ordandfthe parenthesized
numbers indicate the degree of connection. Some vertices, like vertex 3, have few neighbors but are out-ranked i} terothef vertices
with more neighbors. Vertices with equivalent degree of connectivity might be ranked very differently because they have differing numbet of
next-nearest neighbors. The edges having largegt;lde shown in gray and are ranked. If we remove these edges, the graph is severed ingo
several compact subgraphs. The edges carrying lafigestnd to link different large components. The edges within a clique, like vertices &
5,4, 9, 13 and 14, have the smallgst
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connected, and}; = 0 otherwise. The percolation correlation and the whole graph. We define the quanfify to monitor

cij is then defined as the ensemble averagg;of the importance of edgeg; to the integrity of the graph,
Cij = 5," . 2 1
;=) @ py= 7 Xl (6'Ute) = (G )]
With knowledge of the; ;, we are equipped to measure how LmeV
strongly a vertex links to the rest of the network counting (4)

both direct and indirect connections to verte¥Ve define the

quantityu; for vertexi The first term in the summation is correlatiof), measured
1 1

by addinge;; in G’ independent op;; and p. The second
1 3 term is ¢;,, measured by removing;; is G'. The differ-
Vi = i ZC“ ®) ence in measurement of,, under the presence or absence
of edgee;; allows us to distinguish edges. For example,
This value is sensitive not only to the linking degree at eachf e;; bridges two clusters, thefi; will be elevated (note
vertex but also to higher order connections between a vertetoe edges 1, 2 and 3 in Fig. 1). Suppose edgeonnects
and the rest of the random graph. Thuseffectively ranks  two disjoint connected componentsand B with sizesna
the importance of a vertex in the graph. Intuitivalymay be ~ andng in a realization ofG’. The contribution tog;; is
interpreted as the fraction of other vertices to which veitex the difference betwee®”,,,coup 8im = Ina + npl? and
remains linked, if each edge is broken with probabiity=" >, 4 8im + 2 cp 8im = Inal?+ |np|?. Namely, the con-
1 — pin the graphG. In Figure 1, we show the descending tribution to 8;; is proportional tonang. However, ife;; is
ranking order of the;’s for a small graph. embedded within a connected component such that adding o
. removinge;; does not perturb the component’s connectivity,
24 Thedefinition of £, thene;; is ;edundant and does not contribute4g. With

Using a similar idea, we can define a quantity that allowsthis interpretation,s;; measures how welt;; succeeds in
The elimination of some edges may fundamentally change

the connectivity properties whereas the graph topology mag->  Protein interaction data

be relatively unchanged against the deletion of others. Fardere, we apply the described method on the yeast pro-
example, for a small fully connected subgraph, termed dein interaction data taken from the Database of Interact-
cligue, removal of a certain number of edges between théng Proteins (DIP) (Deanet al., 2002). We use the data
vertices of the subgraph tends not to separate the graph infies yeast 20020901. | st and di p20020616. xi n
disconnected pieces. Individual links in the subgraph do notlownloaded from DIP web site http://dip.doe-mbi.ucla.
play crucial roles in supporting the integrity of the subgraphedu/. The data set contains 14871 interactions between
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Fig. 2. Susceptibility curve of the parameter The curve peaks at Fig. 3. Histogram of logv;). The distribution ofv; for essential

p = 0.07, where the fluctuations ef are greatest.

colour as supplementary dataBibinformatics online.

4692 proteins and includes interactions measured by differ-

proteins is skewed toward larger This figure can be viewed in

ent experimental methods. We treat the interaction network as

an undirected graph, with the proteins as vertices. If two pro- 80f

teins are interaction partners in the data set, the correspondin
vertices are joined by an edge.

i((v]

3 RESULTS AND DISCUSSIONS

3.1 Determination of p

As a first step in applying this stochastic method on the pro-£
tein interaction network, we need to determine the appropriat@l’ )

ge of Essential Prote

totally connected graphs. J is too close to zero, then we
will only obtain information about the small clusters. Some

tO
value of p. If p is near one, then we will only produce = OF

60

40

intermediate value op will give us global properties of the 0
network.

In order to determine the proper value pf we need to
compute the curve (p). Such a curve for the DIP data is
shown in Figure 2. The curve peaks at abput 0.07, where
the size fluctuations of the largest cluster are maximal. Most
realizations of the percolation gragH in the neighborhood
of this peak yield sparse but still predominantly connecte
graphs. Accordingly, computing andg;; around this peak
in x (p) avoids the finite size effect at smallgrand loss of
resolutions at largep.

L " 1
0.04 0.05

Fig. 4. The percentage of proteins which are essential
tion of v;.

0.06

as a func

essential proteins significantly differs from the background
0distribution and is biased toward greaiger A protein with

a greatery; ties to the network more strongly than a pro-
tein possessing a smalley. Therefore, we would predict
that removing a protein from yeast with a greatetharms
more biologically important pathways and would thereby be

more likely to destroy viability. The percentage of proteins

3.2 Distribution of v;

having a giverv; which are essential [ (number of essential

We gathered our data from Afealizations of the graph at= proteins of a givem;)/(number of proteins of the givan) ] is
0.07. The distribution of log; ) for the proteininteraction net- shownin Figure 4. This percentage has strong positive Pearson

work is shown in Figure 3. We also report the distributions ofcoefficient withv;, in agreement with the prediction.
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a subset composing only the essential proteins. We obtainedWhat are the specific connectivity properties that produce a
the list of essential proteins from the Saccharomyces Genomlargev; for a specific protein? To a first-order approximation,
Deletion Project (Winzeleet al., 1999) web site (http:// v; is proportional to the degree of connectivity of tile pro-
yeastdeletion.stanford.edu/). The distribution of for  tein. Since a protein witk interactions is usually connected
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to at leastp - k proteins, in the first-ordew; is proportional  Tablel. The percentage of essential proteins in selected percentiles ranked
to k;. However, the graph diameter, defined as the maximunRY vi @nd the degree of connectién
amongst all the shortest paths between all pairs of vertices, of

the protein interaction network is 12 and the average pathil proteins Essential proteins

length of the path between any two proteins is only 4.23percentile byv; (%) by ki (%) by v; (randomize) (%)
The protein interaction network displays small world network

properties. Thus, the correction #pfrom higher order con- 2% (94) 61 52 53

nections should be included. For example, if the number oflgf ((izg)) iz j; ig
(]
next-nearest neighbors of a protein is much greater than thg, (1173) 39 38 38
number of nearest neighbors, then the contribution from the
next-nearest neighbors is comparable to that of the nearegtthe top 92 proteins ranked by, 61% of them are essential while only 52% of
neighbors_ Insuch a case, the proteins with the gamave a essential proteins are captured when ranked;byThe third column is a control in
P . . . which thev; are recalculated for a (quasi-)randomized graph in which edges have
broad distribution Of) asin our results. The value O‘fglves been swapped while retaining the degrees of connection of all vertices in the original
more extensive information about the protein’s connectivitygraph. identifying essential proteins by calculatingerforms consistently better than
in the network beyond that of its nearest ne|ghbors. only computing;, demonstrating the significance of non-local structure beyond that of
. . . fiearest neighbor relations. If we randomly perturb the global graph structure, the ability
Our method is advantageous because we can Idemlfoldentlfyessentlal proteins drops, even though the degree of connection at each vertex=
important proteins that might otherwise not be considereck unchanged.
significant because they have lower first-order interaction
degree. Such proteins probably control other essential proteins
through a few critical interactions. To illustrate the power of Taple2. List of the proteins with 10 highest
this approach compared to merely counting the nearest neigh-

bor degree of interactions, we rank the proteinsvpyand

. . Protein i ki Viabili

compare the result to the ranking by(see Table 1). Sixty- " b
one percent of the proteins in th_e to_p 2%wpfare essential, SRP1 0.0623 196 Inviable
whereas only 52% of the proteins in the top 2%#kpfare  tem1 0.0531 115 Inviable

required for viability. Such a result suggests the essential prazsni 0.0524 282 Viable

teins with higher; not only have more interactions but are YDL213C 0.0516 58 Viable

also more likely to interact more frequently with other pro- CKAL 0.0513 65 Viable
teins, which also tend to be essential. A similar observatio uPlle 0.0505 146 Inviable
'ERB1 0.0494 55 Inviable

has been reported by Gawéhal. (2002), and our independent ppep 0.0486 74 Viable
evidence supports their experimental observation. NOP2 0.0479 48 Inviable

The interaction data we used may contain both false pos=DC95 0.0475 48 Viable

itives and false negatives. To simulate the effect due to such
false positives and false negatives, we test our algorithm on

datawhere random interactions are added or removed. We find

that even though; values systematically increase or decreasawithin the network byg;;. The distribution of logg; ;) (Fig. 5)
respectively when random links are added or removed, thprovides a mechanism to detect differences amongst differ- 5
ranking order ofy; is stable against such perturbations. Forent subsets of interactions obtained by varied experlmental
example, in a test run, 496 proteins out of top 500 measurechethods. In Figure 5, we compare the distribution of fg)

by v; remain within top 500, even after 5% of the links are ran-from the whole network to distribution derived from sev-
domly added. When 5% of the links are randomly removedgral subsets of the network. First, we use the subset, asy
477 proteins remain in the top 500. The Pearson coefficierthe core set, of the interactions that was derived by Deane@
between the perturbeg and unperturbed; is very close to et al. (2002). Interactions in the core set are statistically &

Aq €876 1/S1+2/81/6 |/8101HE/SBLLIOJUIOIG/WO2 dNO-0lWapeoe)/:sdn{ Wwoly papeojumod
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N
one(> 0.995. The difference between the distributionspf  verified to reduce the false positive rate, yielding 1925 inter- E
for essential and non-essential proteins remain significant iactions (excluding self-interacting pairs). The distribution of
the perturbed cases. log(B;;) for the core set is similar to that obtained for the
The proteins with 10 highest are listed in Table 2. The full  entire network. However, upon comparing the distribution
list of proteins with theiw; can be found in the supplemental of log(g;;) for subsets of those interactions obtained from
web site. A selection of a few essential proteins with high  different experimental procedures, differences emerge. For
but lowk; is also shown in Table 3. example, interactions measured by IP tends to have a larger
S Bij, so that the distribution of lag; ;) of this subset shifts to
3.3 Distribution of f;; the right. In contrast, the distribution for the subset of interac-

The interactions in the network can be grouped by the experitions measured with high-throughput two-hybrid tests display
mental methods used to detectthem. We score each interactitime opposite trend.
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Table 3. A selection of a few essential proteins with highbut low k; link two large modules or clusters in the network. With this
notion in mind, an examination of Figure 5 suggests that the
IP method is possibly more sensitive to interactions between

i protein K proteins in different large modules while the two-hybrid tests
3 UTPS 0.0084 are better suited to detecting interactions which tend not to
YKLO88W 0.0081 link larger modules.
DYS1 0.0075 The discrepancy in thg;; distribution for the IP method
TRL1 0.0070  and the two-hybrid test might reflect the underlying bio-
GRS1 00068 chemical differences between the two methods. Unlike IP,
4 RLP24 0.0115 the two-hybrid test is amn vivo technique and thus it can
ROK1 0.0106  getect transient and unstable interactions (von Megtra., o
328541 g'gégi 2002). False positive rate of two-hybrid method is also high. %
SEC18 00o0g7 Our analysis of the distribution of lgg;;) demonstrates that g
the interactions detected by the two-hybrid method generally g
5 MAK11 0.0127 ; : : : : g
BMS1 0.0124 contribute less to the integrity of the mtera_c'qqn network. Th_|s 3
YPR144C 00117 Phenomenon may result from higher sensitivity of two-hybrid 3
ACS?2 0.0113 method towards transient and unstable interactions. It may=
DIP2 0.0112  also be caused by the bait—prey asymmetry or the higher erro%
6 NOP14 00133 rate of the two-hybrid method. §
NOC3 0.0131 g
SEN1 0.0124 &
YLLO34C 0.0123 2
DIB1 00110 4 CONCLUSION 3
We presented a stochastic algorithm that explored the globa%
05 — connectivity properties of a protein interaction network. This gi
— Al | percolation-based algorithm allowed us to assign weights tog
by vertices and edges according to non-local topological prop-z.
04 . erties. We applied the algorithm to the protein interaction &
network for yeast and found that the percentage of essentiaE
proteins correlated strongly with;. Importantly, the val- @
03 7 ues ofv;, which incorporated the knowledge of connections ©

beyond the nearest neighbors, could more successfully dis%
criminate essential proteins than a method based solely org
local connections. In addition, the essential proteins with =
greaterv; not only possessed more interactions with any £
other proteins but also displayed more interactions with other
essential proteins. This result suggested that essential pro-g
teins along with other proteins having greatemight form a
‘ ‘ ‘ ‘ P ‘core network’ with a higher density of interactions within the
N > B o) B - ’ ‘core network’ than the background network. If this unveri-
fied hypothesis is confirmed, then we would gain significant
Fig. 5. Normalized distributions of log;;) for different subsets of  insightinto the evolution of a protein interaction network. Are
interactions. The solid line represents the distribution for all interacthe proteins in this ‘core network’ in general more evolution-
tions in the data. The dotted line corresponds to the core set extractegtily conserved than others? Hunéeal. claimed that there is
by Deaneet al. (2002). The short dashed line refers to interactionsgignificant negative correlation between each protein’s degree
obt_ained by_IP, andthe _Iong dashedline represe_nts the subs_,et _ofintq;f connectivity and protein evolutionary rate, and that evolu-
actions d_erlved _from high-throughput two-hybrid tests. Th|§ f'guretionary change may occur largely by coevolution (Fraset.,
giﬂnze viewed in colour as supplementary dat&iatnformatics 2002). If this is indeed so, we expect a stronger correlation
' betweerw; and protein evolutionary rate, sinogprovides a
better resolution than the degree of connectivity for proteins’
If ¢;; is the only edge linking two clusters, the contribution positions in their interaction network.
of a particular realization of the percolation procedurgito The g;; scores for interaction could distinguish the differ-
is proportional to the product of the sizes of the two clustersences between different experimental methods for measuring
Hence, an edge with a greaigt has a greater tendency to protein interactions. Such a quantitative measure of the

Probability Density
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distinction amongst the experimental approaches will aid th&avin,A.C., Bosche,M., Krause,R., Grandi,P., Marzioch,M.,
interpretation of the proteomic data. Bauer,A., Schultz,J., Rick,J.M., Michon,A.M., Cruciat,C.M.
In principle, ¢;; can be calculated exactly given a percol- € a. (2002) Functional organization of the yeast proteome
ation probability p. However, this would require recursive Py Systematic analysis of protein complexdsature, 415,
iterations over all possible subgraphs. Our stochastic approach 141-147. ) )
efficiently obtains the approximations to the exactvalugof ~ V@M. and Newman,M.E.J. (2001) Community structure in

v; andg;;. In this work, we model the interaction network as ?g;'fl_?gg;'mog'cal networkgroc. Natl Acad. Si. USA, 99,

a static graph with uniform weight on each edge. For a bio'HartweII,L.H., Hopfield,J.J., Liebler,S. and Murray,A.W. (1999)

logical system, dynamical aspects need to be incorporated. From molecular to modular cell biologyNature, 402,
Various experimental methods for probing the physical inter- c47-c52.

actions between proteins respond differently to the dynamicsio,Y., Gruhler,A., Heilbut,A., Bader,G.D., Moore,L., Adams,S.L., ©
of biological systems. The two-hybrid test is more sensitive to  Millar,A., Taylor,P., Bennett,K., Boutilier,Ket al. (2002) Sys- %
transient interactions while the IP method is more sensitive to tematic identification of protein complexes Baccharomyces 9
large and stable protein complexes. The differences might be cerevisiae by mass spectroscopyature, 415, 180-183. g
addressed from different dynamics aspects in the interactiofio.T- Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y. =
network. (2001) A comprehensive two-hybrid analysis to explore the yeast 3
; ; o _protein interactomeProc. Natl Acad. Sci. USA, 98, 4569-4574. =
e 0 B0 aing . Mo B L and O .01 L &
L o o ality and centrality in protein networkBlature, 411, 41-42. oy

pi; score fPr arandom graph is similar to the edge betWeenl\/laslov,s. and Sneppen,K. (2002) Specificity and stability in topo- 5’;
ness’, defined as the number of shortest paths between all logy of protein networksScience, 296, 910. e
pairs of vertices passing through a given edge. An edg®ives,A.W. and Galitski, T. (2002) Modular organization of cellular o
with a greaterg;; is likely also an edge with a greater edge  networks Proc. Natl Acad. Sci. USA, 100, 1128-1133. 5
‘betweenness’, because such an edge has great tendencySiito,R., Suzuki,H. and Hayashizaki,Y. (2002) Interaction general- 3
bridge two different clusters or modules. Clustering utilizing ity, a measurement to assess the reliability of a protein—protein %

edge ‘betweenness’ have been successfully applied to certaininteraction.Nucleic Acids Res,, 30, 1163-1168.
types of random networks (Girvan and Newman, 2001). Weaito,R., Suzuki,H. and Hayashizaki,Y. (2003) Construction of reli-
expect that results similar to those shown in Figure 1 could able protein—protein interaction networks with a new interaction

; i ; generality measurdioinformatics, 19, 756-763.
be aChI.eV?q withp;; not only for thls'smal! test graph but Samanta,M.P. and Liang,S. (2003) Redundancies in large-scale
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