
Global Software Development: Are Architectural Rules the Answer?

Viktor Clerc, Patricia Lago, Hans van Vliet
Department of Computer Science

VU University Amsterdam, The Netherlands
{viktor, patricia, hans}@cs.vu.nl

Abstract

Global software development (GSD) faces additional
challenges as compared to single-site software develop-
ment. Some of the better known challenges include tempo-
ral, geographical, and socio-cultural differences. To over-
come these challenges, organizations need to revert to mea-
sures in order to deliver software in time in a distributed
setting. Some of these measures may exist in the form of ar-
chitectural rules: principles and statements on the software
architecture that must be complied with throughout the or-
ganization. From the GSD literature we distilled four main
GSD challenges and seven sub-challenges, or issues. For
each issue, we list possible solutions and observe that so-
lutions to GSD challenges may be obtained by adhering to
architectural rules. We present a study on how two orga-
nizations involved in GSD solve the GSD challenges and
issues. One of the organizations mainly uses rules regulat-
ing the architecture of the product. The other organization
does not emphasize these architectural rules but rather fo-
cuses on the joint team effort in establishing and commit-
ting to measures that mainly pertain to the architecture pro-
cess. We conclude that rules regulating a combination of
both proves valuable in handling GSD challenges.

1. Introduction

Global software development (GSD) faces challenges
additional to those of single-site development. The primary
obvious difference is that software engineering practices are
performed at geographically separate locations. This differ-
ence introduces challenges that have been reported in the
literature [17, 20], such as temporal, strategic, and socio-
cultural challenges [1]. Some promising solutions to ad-
dress these challenges have been identified, e.g. in [18, 23],
but their real contribution cannot yet be fully distilled from
practice because empirical evidence is lacking.

Some of the challenges in GSD originate from the ar-
chitecture of the software. The architecture can induce

dependencies between software engineering tasks such as
managing synchronization and meeting a release schedule
(e.g. [4, 8]). As with single-site development (e.g. [6]), ar-
chitectural rules can help to overcome some of these chal-
lenges in GSD. Architectural rules are principles and state-
ments about the software architecture that must be complied
with throughout the organization [7]. Where architectural
rules concern the architecture as a product, additional mea-
sures pertaining to the processes may be necessary for suc-
cessfully implementing that architecture.

Although using architectural rules seems beneficial for a
distributed setting, we lack detailed insight into what kind
of architectural rules are generally applied in a GSD envi-
ronment. In addition, we do not know in what way these
architectural rules contribute to overcome challenges spe-
cific to GSD.

In this paper, we provide an overview of the major GSD
challenges as mentioned in the literature, and refine them
into seven issues. For each issue, we list possible solu-
tions and describe to what extent these solutions can be ex-
pressed as architectural rules. Next, we use this overview
to study two organizations involved in GSD. We determine
what practices are used to overcome the various issues. Our
study reveals that architectural rules pertaining to the prod-
uct (i.e. the structure of the software) and additional mea-
sures on the process are relevant. For example, allowed de-
pendencies between subsystems may be defined in architec-
tural rules, but so need the processes to verify compliance
with these rules.

This paper is structured as follows. Section 2 provides an
overview of related work in the field of software architec-
ture, architectural rules, and global software development.
Section 3 provides an overview of the challenges that ex-
ist in GSD. This section also addresses possible solutions
to overcome these challenges as identified in the literature.
Section 4 shows two organizations overcome these chal-
lenges in practice. In this discussion, we focus on the con-
tribution of architectural rules to the handling of GSD is-
sues. Finally, Section 5 lists our conclusions and provides
directions for future work.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

2. Related Work

This section provides related work in the field of soft-
ware architecture, the concept of architectural rules, and
general challenges identified in GSD literature.

Recently, software architecture is regarded as the set of
architectural design decisions [21, 22]. Examples of these
decisions include preferred or mandatory standards on com-
munication between layers of the architecture or datastruc-
ture conventions. Those architectural decisions that must
be complied with throughout the organization are defined
as architectural rules [6, 7]. Architectural rules can help to
overcome challenges in software engineering and software
architecture [6]. However, we lack insight into what rules
are necessary to guide GSD.

A software architecture imposes coordination and com-
munication efforts between development teams that are nec-
essary to successfully implement the architecture. To min-
imize these efforts, the software architecture often mimics
the structure of the organization: a certain modular archi-
tectural design is used as the basis to distribute development
work across different teams [8]. With GSD, the challenge
to distribute work becomes even bigger. Development work
is spread across development sites, hence demanding more
coordination and communication efforts [16].

As [7] shows, having a description of the software archi-
tecture and rules on the architecture alone is not enough to
ensure successful compliance in GSD. These rules should
be accompanied by additional process guidelines and activ-
ities to let them sink in properly. These additional guide-
lines and activities pertain to the use and personalization
of architectural rules as opposed to codification that often
receives most emphasis [10].

Substantial work has been done to provide insight in the
problems or challenges that occur when spreading devel-
opment efforts across multiple development sites [14, 18].
Several dimensions of the problem with physical separa-
tion of software engineering practitioners are listed by [17]:
technical problems, project management problems, knowl-
edge management problems, and communication problems.
Socio-cultural, temporal, and geographical issues are fur-
ther exemplified in [1, 20].

Some solutions to overcome the challenges are also ad-
dressed in the literature. Herbsleb and Grinter [14] report
on several solutions to overcome the distance innate with
GSD, such as attending to Conway’s Law [8], travelling at
the start of projects to get to know relevant individuals from
multiple sites up-front, and recording architectural design
decisions including their rationale. Corry et al. [9] describe
a technique in which architects frequently travel between
development sites to engage developers in software archi-
tecture work. Bass [3] proposes an approach in which col-
laborating practitioners first acquire a mental model of the

software engineering task they need to perform ([11]), and
only then pursue completion of the task. The significance
of a shift in perspective is signalled in [3]: project manage-
ment should pay more attention to coordination problems
and applied synchronization efforts. Other work of Bass et
al. ([4]) relates the required communication and coordina-
tion efforts in software engineering ([16]) to the organiza-
tion’s capabilities. Problems occur when the required com-
munication and coordination efforts exceed the organiza-
tion’s capabilities. This results in misalignment between the
architectural design decisions that have been taken and the
organizational structure [4]. Since communication and co-
ordination efforts are more important at an organization in-
volved in GSD, these efforts place additional requirements
to the organization’s capabilities.

3. Challenges in Global Software Development

In this section, we list four GSD challenges we have dis-
tilled from the literature (see sections 3.1 through 3.4). We
took proceedings from relevant conferences and special is-
sues of magazines, both on the topic of GSD, as a basis.
We next identified the issues described in these contribu-
tions and grouped and related them when possible. Figure 1
provides an overview. For some of the challenges, we make
a further subdivision, to finally end up with a list of seven
issues. As the figure shows, challenges can amplify other
challenges. The remainder of this section describes these
challenges, issues and interrelations. For each issue, exam-
ples of possible solutions are given. We primarily focus on
solutions that pertain to the architecture, but mention other
solutions when these are not available.

3.1 Challenge 1: Time Difference and Ge-
ographical Distance

The first challenge in GSD originates from the innate dif-
ference with GSD as compared to single-site software de-
velopment: working at geographical distant sites and the
time difference incurred. Geographical distance and time
difference burden software engineering activities. Soft-
ware engineering activities are knowledge-intensive tasks
and therefore require communication during various phases
in the lifecycle [16]. Time difference leads to delays be-
cause of less overlapping working hours [14]. Furthermore,
geographical distance leads to delays because it increases
the unresponsiveness of practitioners. This challenge am-
plifies that of culture (Challenge 2), as empirically sup-
ported by [16].

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Figure 1. Overview of challenges and their interrelations.

3.2 Challenge 2: Culture

GSD involves software engineers, software architects,
and other practitioners, possibly from all over the globe.
People with different cultural backgrounds are required to
cooperate in order to deliver working software in time. As
shown by [19], people with different cultural backgrounds
behave differently. We have examined literature on cultural
challenges and identified the issue that is regarded as key for
supporting software engineering practices in a GSD setting:

1. Difficulty to initiate contact

Establishing contact between practitioners of different
cultures faces additional challenges as compared to es-
tablishing contact between practitioners of the same cul-
ture [19]. Moreover, the challenge of culture is ampli-
fied when project members located at different development
sites want to initiate contact [14]. Examples of cultural
problems include limitations in the vocabulary of practi-
tioners [20] and difference in communication style: reluc-
tance to ask questions [18], direct versus indirect communi-
cation [15], or giving preference to sending an e-mail over
establishing contact directly by phone [14].

The main solution to overcome this cultural issue may
be to establish face-to-face contact and to get to know “who
is who” in the project [13, 18]. Suggestions that can help
to overcome this issue are 1) establish a directory listing all
practitioners involved in the development of certain parts of
the architecure and 2) start all projects with a kick-off meet-
ing. Establishing contact is easier when practitioners are lo-
cated at the same development site. Once contact has been

initiated, practitioners are more willing to overcome their
cultural differences in order to communicate effectively.

The cultural challenge described in this section influ-
ences or amplifies other GSD challenges, such as commu-
nication challenges, collaboration challenges, and work dis-
tribution challenges.

3.3 Challenge 3: Team Communication
and Collaboration

The nature of GSD results in increased difficulties to
communicate and collaborate within teams and between
teams involved in software development. We distilled the
following issues from literature addressing this challenge:

2. Difficulty to exchange information

3. Difference in sense of urgency

4. Difficulty to build a team

5. No collective ownership

Difficulty to exchange information
Having teams at geographically separated sites results in
a lack of unplanned, informal contact during which seem-
ingly irrelevant but in fact highly valuable information is
exchanged [14, 16]. The information exchanged during un-
planned social meetings is not necessarily architectural in
nature, but can help to more easily obtain architectural in-
formation. Moreover, unplanned social meetings help peo-
ple to build awareness of what will happen before a for-
mal decision is made. In particular, awareness of archi-
tectural design decisions is important, since these decisions

Legend

1. Difficulty to initiate contact

2. Difficulty to exchange
 information

3. Difference in sense of
 urgency

4. Difficulty to build a team

5. No collective ownership

6. Difficulty to align tasks and
 duties

7. No uniform process

Issues

1. Time difference and
geographical distance

2. Culture

3. Team communication
and collaboration

4. Work distributionLeads to

Amplifies

GSD challenges

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

may have a high impact across development sites. In addi-
tion, the difficulty to exchange information arises at an early
stage in the project, because practitioners just do not know
whom to contact at a remote site; they simply don’t know
the practitioners at a remote site (see Challenge 2).

A number of suggestions to lower the threshold to ex-
change information across different development sites have
been provided in the literature. These suggestions include
providing incentives to improve collaboration and knowl-
edge sharing. To improve collaboration, teams of experts or
communities of practice [18], in which gurus can flourish,
can be established. Incentives for architectural knowledge
sharing include the establishment of social ties and knowl-
edge internalization [12]. Other suggestions to address the
difficulty of exchanging information include traveling to
different development sites at an early stage in the project
and meeting various practitioners at these sites. As a re-
sult of the face-to-face contact, practitioners experience that
there actually is “a person behind an e-mail address” [18].
This effect can be achieved by processes and policies reg-
ulating the frequency, location, and participants of the re-
quired inter-site meetings.

Difference in sense of urgency
Multi-site software development can result in a difference
in the sense of urgency across development sites to handle
specific requests. A difference in establishing contact on
a certain topic (e.g. practitioners prefer to send someone
an e-mail over calling that person) influences the sense of
urgency to handle that topic. As with the previous issue,
getting to know practitioners from other sites is key to over-
coming this issue. Once a key individual is already known
to practitioners at another site, these practitioners are more
willing to pose a question to that person. This person can
even become a liaison, or first contact point for practitioners
at the other site [17]. Communication is sped up, activities
are agreed upon, and a collective sense of urgency towards
the activities that need to be performed is achieved. This
collective sense of urgency, in turn, will shorten develop-
ment time. Measures that focus on the development process
can be of value in this case. An architectural rule could
make explicit that every project, site, or subsystem should
have a liaison. Additional information on how, when, and
where to contact this liaison could be provided as well.

Difficulty to build a team
Now that we have seen possible solutions to address the
difficulties of exchanging information and the difference in
sense of urgency, we face another difficulty: it is difficult to
build up a single, virtual team across development sites be-
cause this is hampered by the geographic distance and time
difference [16] (see Challenge 1). A single, virtual team
is characterized by low communication thresholds and high
collaboration possibilities. Not having such a team results
in possible mismatches in terminology and definitions and

consequently, communication overhead and delays [17].
A possible solution to the issue of building a team is

to develop architectural rules that contain conventions and
procedures on collaboration and the use of a single, shared
environment (e.g. when to check in source code, how to
build and name a release). These rules then are dissemi-
nated across the involved development sites.

In order to build a single, virtual team the effectiveness
of communication across development sites should be high.
Two possible approaches to improve effectiveness are dis-
cussed below:

• First, as a preventive measure, it is possible to re-
duce the amount of communication across develop-
ment sites by aligning the organizational structure with
the software architecture [8]. This requires that the ar-
chitecture is fixed (or, sufficiently fixed) to distribute
the work and have development sites operate in paral-
lel. Section 3.4 will further delve into this subject.

• Second, the use of collaboration tooling can help to
create a single, shared environment across develop-
ment sites. A single, shared environment can improve
the efficiency of the communication between different
groups that is anyhow needed, despite possible com-
munication reduction efforts. Such an environment
should form the entry point to revert to when commu-
nication across development teams is required. The
environment should provide an overview of “who is
who” in the teams at the different development sites.
At a minimum, contact information, role and respon-
sibilities, and a mugshot [18] should be included in
the overview. In addition, these tools need to pro-
vide awareness of the availability of practitioners at
other development sites. Collaboration technologies
such as instant messaging, a wiki, or message-boards
can lower the threshold of actually establishing con-
tact and communicating with another site. The most
appropriate tooling for a given situation depends fore-
most on the time difference that exists between devel-
opment sites. The tools should allow architects and
other practitioners to record design decisions [14] in
an easy and accessible way.

One word of warning, though. Although the use of col-
laboration tooling adds value, they are not a panacea.
Face-to-face communication (ad hoc) remains essen-
tial for successful global software development [14].

Architectural rules can help to overcome the challenge of
building a team. First of all, a list of all employees involved
in the project can be provided, along with their responsi-
bility towards parts of the architecture. Second, the archi-
tectural rules can provide conventions on the use of collab-
oration tooling, by addressing what information is stored,

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

where it can be found, and who is responsible for keeping
the information up to date.

No collective ownership
When GSD organizations have dedicated owners of parts of
the source code, this introduces delays in corrective main-
tenance. When it is not possible for practitioners to modify
the source code that is not owned by them, additional (for-
mal) communication with the owner becomes necessary to
acquire a common understanding. In addition, it becomes
necessary that the practitioner is able to transfer the sense
of urgency he has to the owner of the source code.

The problems described above can be addressed by in-
troducing collective ownership of (parts of) the source code
and other documents. Collective ownership of source code
and other documents means that all individuals collaborat-
ing in a software project (and possibly located at multiple
development sites) can work on any model or artifact in
the project [2]. Often, collective ownership is supported by
having one shared configuration management system with
a single source code tree that is accessible [18]. As such,
collective ownership reduces the view of “them against us”
often experienced in multiple teams [16]. For large software
development projects this could lead to collective owner-
ship within sub-teams (consisting of employees of all devel-
opment sites) that work on a designated part of the system.

The possibility of changing source code freely should
be accompanied by communication guidelines, a sound test
set, and frequent builds. Communication guidelines at a
minimum should involve contacting other known users or
developers of the source code and informing them that a
change is being made. The test set ensures that a change
does not introduce bugs in other parts of the source code
or introduces conflicts with architectural rules. Frequent
builds address the possible delay between carrying out a
change and verifying the correct behavior of the resulting
source code [18]. Aforementioned topics need to be com-
municated uniformly across the GSD organization. Archi-
tectural rules can help to do that by defining the mandatory
policy on these topics.

3.4 Challenge 4: Work Distribution

In GSD, different teams from across the globe need to
deliver working software in time. In addition to the commu-
nication challenges experienced by these teams (see Chal-
lenge 2), the organization of the teams itself and the vari-
ety of software development activities they need to perform
play a significant role. We identified the following two is-
sues in the literature:

6. Difficulty to align tasks and duties

7. No uniform process

Difficulty to align tasks and duties
The software architecture serves as a basis for distributing
work. Ambiguities in the software architecture or frequent
replanning of tasks leads to a lack of insight into the inter-
dependence of tasks of the teams involved [23]. In addition,
the distribution of work is hampered when engineering tasks
are not understood. This all results in long discussions that
add up to the delays already experienced in GSD [16]. Fur-
thermore, [16] shows that the amount of discussions gener-
ally does not decrease in the course of the project.

A possible solution to this lack of understanding of tasks
is to distribute tasks and work only when the architecture
is stable enough. Architectural rules could specify when
such is the case. For example, architectural rules could de-
scribe that the architecture description should elucidate how
all ‘must-have’ requirements are addressed and that an in-
dependent verification of the architecture (by the quality as-
surance team) should have taken place.

No uniform process
It is essential to have a uniform strategy towards software
engineering processes and team processes. A development
organization that has different strategies towards these pro-
cesses experiences delays [23]. An example of different
strategies towards software engineering processes can occur
during integration. Different approaches towards this inte-
gration phase exist: 1) a dedicated integration team accepts
all subsystems and is responsible for the integration, or 2)
integration is the responsibility of all teams involved in de-
livering the subsystems that need to be integrated. When an
organization chooses to have a dedicated integration team
that integrates the subsystems, the integration team needs
to assure itself of the correct working of the subsystems
supplied. Furthermore, when issues arise, members of the
development teams should stand by to provide assistance.
Although this solution is less resource-consumptive, it is
hampered by time differences and causes delays because
practitioners located at different sites communicate less ef-
fectively [16]. Especially at integration time, the need is
high for fast-paced interactions to quickly solve bugs once
they are discovered [18]. Consequently, it can prove bene-
ficial to have a dedicated team consisting of representatives
from the different development teams at a single location
integrate the subsystems into the desired release.

The example above shows that it is of paramount im-
portance to have a uniform description of how integration
should occur in projects. A non-uniform description of the
integration process leads to delays because of ambiguity in
task description. Similarly, process guidelines should ex-
ist for other software development processes, such as build
processes and change management processes. Mullick et
al. [23], for instance, make note of broken builds because
of a lack of a uniform configuration management strategy.
Examples on this topic are also given by [14], reporting on

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

problems when not having single-branched [18] distributed
change management across development sites.

Processes are an effective means to organize teams and
their interrelationships and to distribute and communicate
work that needs to be done [14]. Organizations need to
put emphasis on team organization and communication pro-
cesses in addition to software engineering processes. The
team organization and communication processes need to fo-
cus on a communication structure (including a description
of the roles and responsibilities of the various teams) and
interactions between various types of teams (including the
knowledge they exchange, at what stages or milestones in
the development process they interact, and the frequency of
interaction [23]). Especially, the tasks and role of the archi-
tecture team should be exemplified so that all practitioners
understand this pivotal role. Although these process are not
specifically aimed at catering for unplanned and informal
communication, they can provide insight in the responsibil-
ities of teams and the communication strategy across teams.

In conclusion, organizations involved in GSD need to
focus on a set of processes aiding team organization and
work distribution. These processes can have a technical
topic, such as integration, branching, and releasing, as well
as topics like work distribution and communication struc-
ture. Having these processes for software engineering and
team organization and communication alone is not enough,
though. In addition, it is necessary to communicate the pro-
cesses consistently [23] and to ensure that the processes are
understood and followed.

4. Organizations’ Solutions to GSD Issues

Using the list of issues presented in Section 3, we studied
two organizations involved in GSD. The aim of this study
is to see how these organizations use architecture and archi-
tectural rules to overcome the issues. We conducted semi-
structured interviews with two architects at each organiza-
tion to obtain responses to the issues. In addition, we used
the information collected in a previous study [7]. We veri-
fied our interpretation of the answers with the interviewees.
For each organization, we first give a general impression of
that organization. Next, we delve into the seven issues and
show how the organization addresses each issue.

4.1. Organization A

Organization A uses five sites located on separate conti-
nents to develop software for different consumer electron-
ics products. The development of each product is done in a
project, in which a number of subsystems need to be inte-
grated. Each of these subsystems is developed by a subsys-
tem team located at a single development site. The subsys-
tem team owns the source code of that subsystem. Subsys-

tem teams consist of a subsystem architect, a configuration
manager, an event manager, and several software engineers.
Integration of the subsystems into the final product is done
by a dedicated team located at the main development site.
In total, about 300 employees work in the various teams.

The organization uses a product-line architecture to sup-
port various projects in which the consumer electronics
products are developed. The architecture is maintained by
a central architecture team located at a single development
site. The architecture team maintains the architecture, by
a.o. describing architectural rules in small, text-based doc-
uments. These rules only cover issues that exceed the indi-
vidual subsystems. Issues pertaining to individual subsys-
tems need to be addressed by subsystem architects. This
results in a certain degree of freedom for subsystem teams.

1. Difficulty to initiate contact – As a general policy of
Organization A, architects visit the largest remote develop-
ment site one week each month. Other key individuals, such
as senior software engineers and members of the integration
team, do not travel that much. Practitioners indicated that
this travel policy did not overcome the lack of trust as part
of cultural challenges completely. Recently, Organization
A was conducting a transfer of software development activ-
ities to the largest remote development site and retained the
architecting activities at the main development site. This
resulted in a lack of motivation of some of the employees
at the remote development site because they felt this would
decrease their influence on the major design decisions.

2. Difficulty to exchange information – Organization A
uses a collaboration infrastructure that provides a detailed
overview of the teams involved in a software development
project, including the roles, responsibilities, and mugshots
of each team. The collaboration infrastructure is linked with
the configuration management infrastructure: information
on builds, releases, and problems is extracted from the con-
figuration management system and published on each sub-
system team’s website. Together with a description of the
members of the team and the team organization, this web-
site is one of the primary sources of information for other
subsystem teams. Besides using the website to obtain in-
formation, the organization uses e-mail communication and
instant messaging technology regularly to allow discussions
between the subsystem teams and between the architecture
team and subsystem teams. As a matter of fact, Organiza-
tion A regards team composition and team contact details
as the most important information. Aforementioned collab-
oration infrastructure lowers the threshold for exchanging
information at Organization A. However, other issues with
GSD still burden fully effective exchange of information.

3. Difference in sense of urgency – The organization ex-
periences difficulty in maintaining a shared sense of ur-
gency, judging by an example given: “when programming

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

errors or compiler warnings occurred, it was difficult to get
practitioners from the involved development site to react on
this warning. When this succeeded, practitioners from that
development site did nearly everything to just remove the
warning message, hardly paying attention to the actual se-
mantics of the implemented solution. Practitioners from the
main development site actually dug into the warning mes-
sage, tried to understand the root cause of this message,
and removed the root cause.” Although the latter approach
took much time, Organization A was much more confident
that this approach, once used throughout the organization,
would be preferable.

4. Difficulty to build a team – Organization A has a nearly
exact mapping of the organizational structure to the archi-
tecture. For all subsystems defined in the architecture, a
subsystem team exists. In addition, architectural rules are
the responsibility of the architecture team. Some of the ar-
chitectural rules of Organization A define allowed depen-
dencies between subsystems; these dependencies closely
resemble the communication processes in place. In con-
clusion, the architecture determines the team structure so
that the definition of teams is fixed. This leads to increased
formality in the communication between these teams.

5. No collective ownership – The configuration manage-
ment infrastructure in place at Organization A supports
distributed change management. Each subsystem team is
owner of the source code of that subsystem. Consequently,
the ownership of the source code is distributed. Commu-
nication across subsystem teams on source code topics is
structured via change requests and problem reports, and for-
malized in architectural rules. The organization experiences
this as highly formal and inadequate; the major issues were
discussed using other channels than change requests. As a
result, change requests underwent delays and did not always
represent reality.

6. Difficulty to align tasks and duties – Alignment of tasks
and responsibilities is mainly done via the architecture. Re-
quirements are assigned to subsystems, which have dedi-
cated resources assigned. Therefore, it is clear what activ-
ities will be performed by what subsystem teams, even by
what practitioners within those teams. Because these tasks
and responsibilities are defined up-front, it is necessary to
conduct formal verifications to determine whether reality is
in line with the rules. Nevertheless, the tasks performed by
the subsystem teams are not reviewed regularly by the ar-
chitecture team nor the quality assurance team.

7. No uniform process – When we observed the architec-
tural rules at Organization A [7], we noticed that Organi-
zation A has a strong emphasis on architectural rules from
a configuration management perspective: naming conven-
tions, coding guidelines, and process guidelines on releas-
ing, integrating, and deploying source code are regarded as

important by the organization. These guidelines pertain to
the use of a single configuration management system. In
addition, we observed much emphasis on software engi-
neering processes and communication infrastructure. What
lacks, are detailed guidelines on inter-team communication
and collaboration and a sound mechanism to disseminate
the most important architectural decisions. Especially when
unplanned, social contact is hard, it is essential to establish
and announce communication guidelines between teams to
disseminate the essential (architectural) information, such
as the major architectural decisions. This prevents subsys-
tem teams from feeling put aside and trailing on reality, as
was the case at Organization A.

Although Organization A has guidelines pertaining to
the software engineering processes as described above, the
organization often deviated from these guidelines. This re-
sults in e.g. ambiguity on the integration process; the guide-
lines describe that all subsystems were delivered to a ded-
icated integration team, responsible for the full integration
to the final software product. Practice shows a more staged
approach towards integration. Furthermore, the visibility
of the architecture team is decreasing because of a lack of
resources and the perception that the team was trailing on
projects. Verification of compliance with the architectural
rules is not implemented at Organization A. As a result of
this, multiple processes co-exist in practice.

4.2. Organization B

Organization B develops business administration sys-
tems for various customers. Software development occurs
by one development team spread across two sites at differ-
ent continents. Organization B does not have dedicated ar-
chitects – rather, architecting is a joint effort by the com-
plete development team. For over one year, Organization B
uses these two development sites. In total, about 100 em-
ployees work in projects at these two development sites.

Although Organization B acknowledges that the differ-
ences between its customers may result in different archi-
tectural solutions, experiences have led to a certain con-
vergence on the architecture that can be used most often.
The software architecture consists of four layers which are
highly decoupled by using principles like inversion of con-
trol (see e.g. [26]), and is supported by an extensive toolset
aiding Organization’s B development approach.

The development approach of Organization B uses sev-
eral practices from the agile development domain [2].
Examples of these practices include pair programming
and test-driven development. Test-driven development [5]
serves as a good basis for performing integration activities.
Integration is done continuously by running all tests auto-
matically and providing a response to the team.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

1. Difficulty to initiate contact – In setting up the activities
at the remote development site, specific attention was paid
to selecting employees with corresponding work ethics and
attitude. Furthermore, the management of the main devel-
opment site often traveled to the remote site with several key
individuals. This traveling resulted in getting to know the
people at the other site, and establishing a shared approach
using exactly the same methodology and tooling for soft-
ware engineering. Every employee hired at the remote de-
velopment site visits the main development site within two
months. Finally, employees from the remote development
site regularly visit the practitioners at the main development
site to exchange ideas and have face-to-face discussions on
project-specific matters.

2. Difficulty to exchange information – The work of Orga-
nization B is supported by a configuration management sys-
tem and an integrated issue-tracking system. Furthermore,
Organization B uses a wiki as a collaboration tool to cap-
ture discussions, provide documents, and relate information
on configuration management and issue-tracking uniformly.
The use of the wiki started as a shared initiative and now is
an established practice. All important documents are stored
on the wiki and all issues are reported uniformly. All soft-
ware engineers are involved in daily stand-up meetings with
video-conferencing facilities.

3. Difference in sense of urgency – Organization B is not
really bothered by this issue. Frequent traveling across de-
velopment sites (including informal activities) helps to es-
tablished a shared sense of urgency. In addition, all employ-
ees spend time at the main development site to get to know
the customer’s context. This enables the sites to relate com-
munication efforts back to requirements of that customer.

4. Difficulty to build a team – First of all, the sites of
Organization B regard each other fully as “peers”. This
contributes to a shared team understanding. Furthermore,
having highly communicative meetings across the develop-
ment sites throughout the course of the project ensures that
a single, uniform team exists across development sites.

5. No collective ownership – Organization B uses a sin-
gle configuration management system in which all software
engineers are allowed to view and modify all parts of the
source code. Programming occurs in pairs that are often
changed. In addition, no distinction between software engi-
neering tasks is made between the development sites. Con-
sequently, the organization has a high degree of collective
ownership. In case a practitioner makes a change to a part
of the source code that is relative unknown, the practitioner
contacts other software engineers on the change that is to
be made. Correct workout of the change is verified by the
different kinds of tests that run automatically.

6. Difficulty to align tasks and duties – Given the nature
of the projects and the high pressure put on them, Organi-

zation B uses a very light-weight approach for capturing ar-
chitectural knowledge (including architectural design deci-
sions) and making this knowledge explicit. This knowledge
is used to introduce new practitioners into the architecture
and the rules that apply. Since no distinction between soft-
ware engineering tasks is made, all practitioners within the
team use a single task list for dividing the work.

7. No uniform process – Organization B uses SCRUM [25]
as a software development process. As mentioned at Issue
2, frequent communication between practitioners from the
development sites results in common understanding of the
development process. Furthermore, an organization-wide
shared vision on software development gives support for
following that process. Since a while, releases are made
from both the main development site and the remote de-
velopment site, pointing out the similarity in the processes.
Finally, we refer to a quotation of a software engineer of
Organization B: “It does not matter whether I work at the
remote development site or at the main development site.”

5. Conclusions and Future Work

This paper reports on the use of architectural rules to
overcome GSD issues. We have structured the challenges
and solutions as identified in the literature. As a result, we
have defined four challenges in GSD: time difference and
geographical distance, culture, team communication and
collaboration, and work distribution. These challenges can-
not be fully regarded in isolation; they influence each other.

We observe that the solutions that are proposed by liter-
ature pertain to both the product (i.e. the structure of the
software) and the process. Furthermore, we have exempli-
fied how the solutions can be implemented by using archi-
tectural rules or process measures.

We used the list of GSD issues when interviewing two
organizations to identify what solutions the organizations
use to overcome these issues. We learned that some of these
solutions can be described by using principles and state-
ments (i.e. architectural rules) on the software architecture
that must be complied with throughout the organization.

Table 1 summarizes the results of our analysis. Organi-
zation A has a clear focus on software architecture through-
out the organization. Mechanisms such as an architecture
team and architectural rules on different topics exist to re-
main “in control” of the architecture. The organization ad-
heres to a “waterfall” approach in defining and disseminat-
ing architecture throughout the organization. With this type
of approach, it is easier to check and assure that the ar-
chitectural rules are obeyed. In addition, it is possible to
e.g. measure to what extent architectural rules help in GSD.
Nevertheless, this type of approach also requires to verify
backward compliance. However, this verification does not
take place at Organization A. Organization B has a more

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Table 1. Overview of organizations’ solutions to GSD issues. Solutions in the form of architectural
rules are marked with [R]. Process measures are marked [C].

Issue Organization A Organization B
1. Difficulty to Many trips of architects Periodic traveling of management

initiate contact to software engineers [C] and key individuals [C]
Not all key individuals travel [C] Developers travel when hired [C]

2. Difficulty to exchange information Yellow-pages, subsystem website [R] [C] Use of a wiki [C]
Frequent highly communicative
meetings [C]

3. Difference in sense of urgency Local bug fixing [C] Shared view of customer context
across development sites [C]

4. Difficulty to build a team Dedicated subsystem teams, commu- Frequent highly communicative
nication through architecture [R] meetings [C]

5. No collective ownership Distributed code Shared code
responsibility/ownership [R] [C] responsibility/ownership [C]

Frequent builds [C]
6. Difficulty to align tasks and sites Alignment via architecture [R] Joint planning [C]

Formal compliance-checking Frequent communication [C]
needed [C] Informal, continuous

compliance-checking [C]
7. No uniform process CM-tooling is present [R] CM-tooling is present [R]

Clear “official” process, multiple SCRUM development process
“real” processes in practice [C] with test-driven development [C]

agile approach towards architecture. Although the organiza-
tion has several architectural rules in place, the organization
uses a number of practices and measures in the development
process as solutions to overcome the GSD issues.

Architectural rules prove valuable in handling some of
the the issues in GSD. Organization A mainly uses archi-
tectural rules that pertain to the product as well as some ad-
ditional process measures. Sometimes, architectural rules
pertaining to the product are meant to induce the necessary
processes (issues 4 and 6 in Table 1). However, we also ob-
serve that architectural rules pertaining to the product may
induce difficulties to addressing GSD issues for Organiza-
tion A, such as maintaining a uniform process. Organization
B does not so much focus on architectural rules but rather
reverts to measures on the development process to tackle
the issues related to GSD and ensure compliance with ar-
chitectural rules. Organization A, on the other hand, leaves
the teams a certain degree of freedom in these processes and
does not verify compliance with these processes nor the ar-
chitectural rules.

Our study shows that architectural rules are not a solu-
tion for all issues identified: especially cultural challenges
and team collaboration challenges are not addressed by us-
ing architectural rules in the organizations.

Further, we have to take into account the differences be-
tween the two organizations, such as differences in com-

plexity and size [24]. Nevertheless, we feel that a num-
ber of light-weight practices in place at Organization B can
be transferred successfully to Organization A. For exam-
ple, two-way traveling greatly helps in building a team and,
consequently, in having development sites regard each other
fully as “peers”. In addition, to build a collective sense
of urgency, the proportion of architect’s work and devel-
oper’s work (regardless of what development site is their
stand) could be distributed more uniformly across develop-
ment sites. The other way round, Organization B may need
to place more emphasis on architectural rules in addition to
process measures when development scales up.

This study sheds light onto the solutions that organiza-
tions use to overcome GSD challenges. Specifically, it fo-
cuses on the contribution of architectural rules to do so. In
future work, we intend to compare the two organizations to
propose a tailored solution in terms of roles and processes
that are needed. Furthermore, we will try to obtain insight
into what kind of architectural knowledge should be made
explicit to address these GSD challenges.

Acknowledgment

We thank the practitioners from the participating organi-
zations for their valuable input.

This research has been partially sponsored by the Dutch

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

Joint Academic and Commercial Quality Research & De-
velopment (Jacquard) program on Software Engineering
Research via contract 638.001.406 GRIFFIN: a GRId For
inFormatIoN about architectural knowledge.

References

[1] P. J. Ågerfalk, B. Fitzgerald, H. Holmström, B. Lings,
B. Lundell, and E. O. Conchúir. A Framework for Con-
sidering Opportunities and Threats in Distributed Software
Development. In International Workshop on Distributed
Software Development, pages 47–61, Paris, 2005. Austrian
Computer Society.

[2] S. W. Ambler and R. E. Jeffries. Agile Modeling: Effective
Practices for Extreme Programming and the Unified Pro-
cess. John Wiley & Sons, Inc., New York, 1st edition, 2002.

[3] M. Bass. Monitoring GSD Projects via Shared Mental Mod-
els: a Suggested Approach. In GSD ’06: Proceedings of the
2006 International Workshop on Global Software Develop-
ment for the Practitioner, pages 34–37, Shanghai, China,
2006. ACM Press.

[4] M. Bass, V. Mikulovic, L. Bass, J. D. Herbsleb, and
M. Cataldo. Architectural Misalignment: An Experience
Report. In 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2007), Mumbai, India, 2007. IEEE
Computer Society.

[5] K. Beck. Test Driven Development: By Example. Addison-
Wesley Signature Series. Addison-Wesley Professional, 1st
edition, 2002.

[6] M. Boasson. The Artistry of Software Architecture. IEEE
Software, 12(6):13–16, 1995.

[7] V. Clerc, P. Lago, and H. Van Vliet. Assessing a Multi-Site
Development Organization for Architectural Compliance. In
6th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA 2007), Mumbai, India, 2007. IEEE Computer
Society.

[8] M. E. Conway. How Do Committees Invent? Datamation,
14(4):28–31, 1968.

[9] A. V. Corry, K. M. Hansen, and D. Svensson. Traveling Ar-
chitects - A New Way of Herding Cats. In Second Interna-
tional Conference on the Quality of Software Architectures
(QoSA 2006), volume 4214 of Lecture Notes in Computer
Science, pages 111–126, Västerås, Sweden, 2006. Springer
Berlin / Heidelberg.

[10] K. C. Desouza, Y. Awazu, and P. Baloh. Managing Knowl-
edge in Global Software Development Efforts: Issues and
Practices. IEEE Software, 3(5):30–37, 2006.

[11] J. A. Espinoza, R. E. Kraut, S. A. Slaughter, J. F. Lerch,
J. D. Herbsleb, and A. Mockus. Shared Mental Models,
Familiarity, and Coordination: A Multi-Method Study of
Distributed Software Teams. In 23rd International Con-
ference in Information Systems (ICIS’02), pages 425–433,
Barcelona, Spain, 2002.

[12] R. Farenhorst, P. Lago, and H. Van Vliet. Prerequi-
sites for Successful Architectural Knowledge Sharing. In
ASWEC’07: 18th Australian Conference on Software En-
gineering, pages 27–38, Melbourne, Australia, 2007. IEEE
Computer Society.

[13] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The Ge-
ography of Coordination: Dealing with Distance in R&D
Work. In The International ACM SIGGROUP Conference
on Supporting Group Work, pages 306–315, Phoenix, Ari-
zona, United States, 1999. ACM Press.

[14] J. D. Herbsleb and R. E. Grinter. Architectures, Coordi-
nation, and Distance: Conway’s Law and Beyond. IEEE
Software, 16(5):63–70, 1999.

[15] J. D. Herbsleb and R. E. Grinter. Splitting the Organiza-
tion and Integrating the Code: Conway’s Law Revisited. In
ICSE ’99: Proceedings of the 21st International Conference
on Software Engineering, pages 85–95, Los Angeles, Cali-
fornia, United States, 1999. IEEE Computer Society Press.

[16] J. D. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally-Distributed Software De-
velopment. IEEE Transactions on Software Engineering,
29(3):1–14, 2003.

[17] J. D. Herbsleb and D. Moitra. Guest Editors’ Introduction:
Global Software Development. IEEE Software, 18(2):16–
20, 2001.

[18] J. D. Herbsleb, D. J. Paulish, and M. Bass. Global Software
Development at Siemens: Experience from Nine Projects.
In ICSE ’05: Proceedings of the 27th International Confer-
ence on Software Engineering, pages 524–533, St. Louis,
Missouri, USA, 2005. ACM Press.

[19] G. Hofstede. Cultures Consequences: International Differ-
ences in Work-Related Values, second edition. Sage Publi-
cations Inc., 2001.

[20] H. Holmström, E. O. Conchúir, P. J. Ågerfalk, and
B. Fitzgerald. Global Software Development Challenges: A
Case Study on Temporal, Geographical, and Socio-Cultural
Distance. In The IEEE International Conference on Global
Software Engineering (ICGSE’06), pages 3–11, Florianopo-
lis, Brazil, 2006. IEEE Computer Society.

[21] A. Jansen and J. Bosch. Software Architecture as a Set of
Architectural Design Decisions. In 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA’05), pages
109–120, Pittsburgh, Pennsylvania, 2005.

[22] P. Kruchten, P. Lago, and H. Van Vliet. Building up and Rea-
soning about Architectural Knowledge. In Second Interna-
tional Conference on the Quality of Software Architectures
(QoSA 2006), volume 4214 of Lecture Notes in Computer
Science, pages 43–58, Västerås, Sweden, 2006. Springer
Berlin / Heidelberg.

[23] N. Mullick, M. Bass, Z. El Houda, D. J. Paulish, M. Cataldo,
J. D. Herbsleb, R. Sangwan, and L. Bass. Siemens Global
Studio Project: Experiences Adopting an Integrated GSD
Infrastructure. In The IEEE International Conference on
Global Software Engineering (ICGSE’06), pages 203–212,
Florianopolis, Brazil, 2006. IEEE Computer Society.

[24] D. E. Perry and G. E. Kaiser. Models of Software Develop-
ment Environments. IEEE Transactions on Software Engi-
neering, 17(3):283–295, 1991.

[25] K. Schwaber and M. Beedle. Agile Software Development
with SCRUM. Prentice Hall, 1st edition, 2001.

[26] C. Walls and R. Breidenbach. Spring in Action. In Action
Series. Manning Publications Co., 2005.

International Conference on Global Software Engineering(ICGSE 2007)
0-7695-2920-8/07 $25.00 © 2007

