

Global Software Development at Siemens:
Experience from Nine Projects

James D. Herbsleb
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA, USA 15213

+1 412 268 8933
jdh@cs.cmu.edu

Daniel J. Paulish, Matthew Bass
Siemens Corporate Research

755 College Road East
Princeton, NJ, USA 08540

+1 609 734 6500
daniel.paulish,Matthew.Bass@siemens.com

ABSTRACT
We report on the experiences of Siemens Corporation in
nine globally-distributed software development projects.
These projects represent a range of collaboration models,
from co-development to outsourcing of components to
outsourcing the software for an entire project. We report
experience and lessons in issues of project management,
division of labor, ongoing coordination of technical work,
and communication. We include lessons learned, and
conclude the paper with suggestions about important open
research issues in this area.

Categories and Subject Descriptors
D.2.9 [Management]: Life cycle, Productivity,
Programming teams.

General Terms
Management, Design, Economics.

Keywords
Geographically distributed development, global
development, multi-site development, outsourcing.

1. INTRODUCTION
Geographically-distributed development presents enormous
promise and enormous challenges. Numerous pressures
have converged to vastly increase the extent of multi-site
and outsourced software development projects [1]. These
pressures include cost factors, increased capacity, and
tailoring of products for particular geographically-defined
markets. Geographic and organizational decisions about
software development are typically made in the context of
supply chain management [4].

Previous research has identified a number of important
problems that must be overcome in multi-site and
outsourced software development. The most pervasive
problem seems to be the greatly reduced communication in
multi-site projects as compared to single-site projects [10].
The technical work needed for a given project does not
change just because the work is done by individuals
separated by distance. Rather, distance reveals, by its
absence and the resulting disruption, the subtle role that
frequent planned and unplanned communication play in
coordinating the work of software projects [6, 12].
In this paper, we present an experience report capturing the
results of a multiple-case study of 9 software development
projects in a large, geographically-distributed corporation.
We examine both multi-site and outsourced projects, and
include some that were judged successful and others that
were not. Our purpose is to provide a deeper understanding
of the ways in which software projects can coordinate their
work. We conclude with lessons learned, and also identify
research questions we hope to see addressed in future work.

2. EMPIRICAL METHODS
Our primary data collection technique was semi-structured
interviews. In the remainder of this section, we describe the
selection of interviewees, the interview process, the
projects, and our analysis techniques.

2.1 Interviewees
We conducted 18 interviews at three Siemens sites. In
order to ensure that we had several relevant perspectives
represented among the interviewees, we included eleven
people who were assigned project management or technical
leadership responsibilities, five who had various middle
management positions, and two with executive or senior
management roles. Included among the interviewees was
one who had recently transferred from a European site, and
whose experience of a multi-site project was primarily from
this perspective. We also interviewed one project manager
who was nearing the end of a stay of several months at an
Indian site.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. to copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’05, May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

524

2.2 Interview Process
All interviews but one were one hour in length, and
conducted individually, face to face. They were semi-
structured, meaning that the interviewer had a list of topics
to be covered, but did not use a verbatim script. The
questions were open-ended, giving the interviewees an
opportunity to report what they had observed and
experienced. The one exception to this face to face
procedure was an interviewee who was located in India.
Because of technical difficulties, after a brief phone
conversation, the interview was conducted via e-mail. All
other interviews were tape recorded, and the interviewer
took detailed notes during the interview itself.
Interview topics included:

• role and responsibilities, project descriptions
• how the development work was divided among

sites;
• how the work was managed;
• how the sites were kept in synch;
• processes and tools;
• cross-site relationships;
• communication practices; and
• problems, issues, and best practices.

2.3 Projects
The interviewees were able to report their direct
observations on nine projects. Most of the interviewees had
experience on two or three projects, so for all but two of
these projects, we had at least two sources of information.
In the remainder of this section, we provide a brief
description of each project. In order to preserve
confidentiality, we do not use the real project names. Our
descriptions are necessarily brief, both because of space
constraints and confidentiality issues. Our main objective is
to try to be as clear as we can about the extent and variety
of experiences on which this report is based.
Project alpha was a co-development effort between two
sites, one in the US and one in Japan, involving two
different companies. Neither site had complete control over
the development; functionality was determined in a process
of negotiation. The project developed basic, “foundational”
embedded software for a new hardware product built by
Siemens. The collaboration was undertaken because both
companies marketed the Siemens product, and neither had
the development capacity to produce the needed software in
the desired time frame. While the companies would
eventually become competitors, to some extent, and wanted
eventually to build software features that would distinguish
their version of the product, this project focused on basic
software that was required to make the product function.

The Siemens site focused on developing the code that was
“closest” to the hardware, since they had greater expertise
in this area. The Japanese site focused on building
functionality on top of this. Siemens staff peaked at about
55 people, the Japanese site peaked at about 12.
Project beta created case management software for a
particular type of medical case. It included a number of
different “workspaces,” including one for physician
planning, one for therapy planning, and one that provided
simulations based on patient data. An Indian firm was
engaged to actually write the software because of their
specific expertise with the Siemens infrastructure software,
acquired while working with other Siemens divisions.
Program management was done at Siemens, who also
arranged for all subject matter expertise, and did the final
build.
Gamma was a project to design and build a new graphical
user interface (GUI) for a medical application. Siemens did
the concept, most of the architecture work, high level
design, and graphical design. Detailed design and coding
of components was outsourced to an organization in India.
In parallel with this implementation, Siemens designed UI
screens that used the components. The US site had a
maximum of 9 people, while the Indian site peaked at 5
staff.
The delta project created a development environment for
use by Siemens product groups and Siemens customers. It
supported the writing of scripts for new analyses of medical
data, and provided a framework that applications could be
plugged into. The environment was a customization of a
commercially-acquired development environment. The
project also included providing a run-time component for
the applications developed in the environment.
The project included six Siemens staff, and three
developers in an Indian organization. The Siemens staff
made changes to the run-time component and the
environment. The Indian staff wrote a wrapper for the run-
time component so it could be integrated into the
development environment.
Epsilon was an integration project, in which one
specialized type of building management system developed
by one Siemens division was integrated into a suite of
building management software built by another Siemens
division. The work focused primarily on a foreign system
interface (FSI) that was used by the application suite to
interact with the specialized system. The “suite” site
developed a protocol stack that would communicate
through the FSI, while the “specialized system” site had
four staff augmenting the FSI in order to support all of the
desired functionality.
Project zeta was a viewer and editor that provided about a
dozen applications for a variety of views of building
systems, and which allowed the user to alter configurations.

525

The US site built a platform on which the applications
would run, as well as building some applications that were
primarily targeted at the US market. A group in
Switzerland built applications (to run on the US-built
platform) that were targeted primarily at European markets.
The project involved about 30 US staff, and 17 Swiss staff.
Eta was a project in which GUIs for three existing
products, originally written in Visual Basic, were rewritten
in Java. The plan was for all of the software to be written
entirely by an Indian organization, with the US organization
providing the Visual Basic code, documentation, training,
and expertise as needed to answer questions, etc. There
was a project manager and technical lead at the US site, and
five developers and a project manager at the Indian site.
The theta and iota projects are parts of one very large,
multi-year project involving about 8 sites around the world.
Theta and iota are relatively separable parts of this very
large project, and are largely unrelated to each other. They
were designed and managed fairly independently, except for
a high-level architecture. For these reasons, we consider
them as separate projects.
Theta is a project to build a network component that
collects data and assists with maintenance of many
functions of the network. The US site has one project
manager, and all design and development work is done by
another organization in Eastern Europe. The US project
manager also performs some technical oversight, e.g., by
participating in all reviews, and building analysis models.
There are 9-10 staff assigned to the project at the eastern
European site.
The iota project designed and built tools to help with
system layout and ordering, helping the user go from system
requirements to preliminary layout to ordering components.
It had substantial interfaces with other systems, e.g., for
design and inventory. The US site has 5 people involved in
technical leadership and project management roles, and was
responsible for the initial architecture and specifications, as
well as oversight responsibilities. The architecture and
specifications were handed off to an Indian site, which did
about 80% of the coding. The US site retained a few
modules where they had more expertise. The Indian site
had a project manager, technical lead, and eleven
developers.

2.4 Data Analysis
Data analysis followed standard protocols for the handling
of qualitative data (e.g., [13]). Interview preparation
involved examination of previous literature, and started
with protocols that had been used in previous research on
globally-distributed development [9]. We also examined
available artifacts, such as product materials and design
documents. After the interviews were complete, the
interview notes were examined for common themes, and

tentative conclusions were cross-checked with other
interview material. Additional questions were sent by e-mail
to the interviewees, who provided clarification and
additional information. The interview findings were
organized with respect to the emerging themes.

3. RESULTS
3.1 Management and Control
3.1.1 Business and personal incentives
Among the early, key decisions in creating a multi-site,
multi-organizational arrangement are those that affect the
incentives of the participants. At the business level,
collaborating organizations may also be competitors in
some areas. This happened in several ways that we
observed, for example, when integrating a product into a
suite, the suite was viewed as something of a competitor by
the unit that developed the standalone product. It was not
always clear that the revenue consequences would be
favorable for this organization or the people involved in the
development. In other cases, a cooperative development
may gradually become more competitive over time when
the organizations are selling products independently. In
such cases, it may not be clear to all parties that cooperation
is in their best interests.
Similar tensions were perhaps even more troublesome
where developers were concerned that multi-site
arrangements are a prelude to job cuts. Cooperation and
open communication in such cases may be seen as making
oneself more easily replaced.
Misalignment of interests can also divide along lines of the
product structure. We observed several cases where there
was considerable ambiguity about where particular
functionality should reside. In one case, developers of
different components both wanted to lay claim to the
functionality because it was particularly critical or
“glamorous.” In another case, developers wanted to avoid
it because it was potentially troublesome. Decision-making
occasionally had a negative impact on the product structure,
since decisions were made for personal or political reasons,
rather than technical considerations.

3.1.2 Project planning and tracking
We saw several cases in which differences in project
planning and tracking discipline caused substantial
problems. In some cases, it seemed that project
management inexperience on the part of the service
provider resulted in a plan that was late, lacking in detail,
and ultimately unrealistic. While this could be a problem in
any context, it seems much harder to address across
organizational and geographic boundaries. There is little
opportunity to interact informally, to express doubts, to
assist with revision, and generate a better plan. The
arrangements are confined to more formal forms of
communication, typically comments on documents. This is

526

a very impoverished and slow-paced form of
communication. One contracting organization place a
person at the service provider site for an extended time, just
in the hope that they could gain insight into project status
by talking to the staff.
In addition, in a fixed-price contract, telling a service
provider that a plan is unrealistic amounts to telling them
they should charge more. This sort of communication may
be optimal in an established, ongoing relationship, but it is
likely to seem inappropriate before such a relationship is
established.
A related issue arose in two projects where the contracting
organization was unhappy with the skill and experience
level of the developers working on the project. Unlike
developers in one’s own organization, one often has little
control over who gets assigned to the project, other than
requiring certain skills. And even if one has some choice,
as one manager pointed out, it’s very difficult to judge the
quality and skill of technical staff at another site.
Inability to gain visibility into project status was a major
source of frustration on two of the projects. Project leads
and managers were very concerned that things would not be
delivered in a timely way, and in fact the concerns were
justified. In both cases, the projects represented initial
collaborations with the distant sites.
Tracking information was particularly important in projects
where code was actually being developed at both sites and
needed to be integrated on a phased schedule. Late
deliveries, especially when unanticipated, resulted in
developers at the other site with little to do, and caused
considerable frustration. Again, since information has
relatively few pathways to cross sites, without explicit
communication it is difficult to know what to expect. On
the other hand, the lack of detailed tracking data was not
always a problem, especially on small projects where there
was frequent communication and good relationships.

3.1.3 Process compatibility
Surprisingly, process compatibility did not seem to be a
major issue in any of the projects we looked at, in spite of
the fact that in many cases the projects were the first
instance of two sites working together. As one manager
said, they didn’t need any “big process synch-up.” In many
cases, the service providing organization adjusted their
process by adopting the templates of the contracting
organization, particularly for medical systems where there
were often certification concerns.
The projects were not completely free of concerns about
process compatibility, however. One complaint voiced by
one manager was that time was wasted translating
information into the forms required by two different quality
control organizations, and there could have been significant
savings of effort had processes been shared. There were

also occasional comments from several projects about some
initial difficulties in communication that turned out to have
their origin in different processes with different
terminology.
There was also occasional confusion about roles, such as
project manager, that had very different meaning in
different organizations. In some organizations, for
example, project managers had hands-on responsibility for
keeping the project on track, making decisions about
resources, and exerting substantial control over the project.
In one of the service provider organizations, project
managers were assigned several projects, and had primarily
an information-gathering and reporting function, with no
substantial line management responsibilities. Such
differences sometimes caused confusion and frustration
until project managers at the contracting organization
figured out they needed to talk to technical leads, not
project managers, at the service provider organization.
In spite of these issues with process compatibility, it was
not considered by any interviewee to be among the major
problems. These issues were overcome fairly quickly, as
people learned a bit about how things operate “over there.”
This was facilitated in many cases by frequent cross-site
visits, as we discuss below.
Related to process incompatibility is what could be called
issues of engineering culture or style. There was a glaring
difference, on several projects, between US and European
engineers on how they approached engineering problems.
The tendency in the European organizations was to do
much more up front design work, and begin implementation
only when the design work had reached a level of
completion acceptable to them. The US teams, in contrast,
wanted to begin implementation much sooner. Several
interviewees reported that this difference created some
frustrations, with the Europeans viewing the American
teams as leaping ahead injudiciously, and with the
Americans feeling the Europeans would never get around to
implementation. As one interviewee put it, however, it was
"not really a big deal, but a definite difference." This was
pretty typical of the interviewee comments, everyone
reporting that after some initial frustration and confusion,
both sides were able to understand and adjust to the
differences.

3.1.4 Process maturity
The experiences of the interviewees with respect to process
maturity were fairly complex. One contracting organization
boasted a very high process maturity level, but the
experiences with teams from that organization were not
uniformly satisfactory. In fact, some teams seemed to have
extremely immature processes, to the surprise and
disappointment of those in the contracting organization.
Process maturity around the planning and tracking of
projects created serious problems in projects that were not

527

going particularly well. Where the service provider was
meeting deadlines, had reasonable levels of quality, and
informed the contracting organization of problems early, the
issue of project management visibility did not arise. It is
not clear what level of detail could or would have been
provided by the service provider if asked. On the other
hand, where deliveries were late, or of poor quality (these
tended to co-occur in our sample of projects), the
contracting organization was generally unable to get any
detailed information about project status, and was quite
frustrated about this. The interviewees had the strong
impression that this information was not being withheld,
rather it simply seemed not to exist.
One interviewee summarized fairly well the impressions of
several interviewees on questions of process, lauding a
service provider for being “process-oriented but flexible.”
He appreciated that he could always understand what the
service provider was doing, and where the project stood, yet
the organization was willing to make minor exceptions as
needed to streamline the process. In a similar vein, one
interviewee stressed the good results of a policy of allowing
technical staff to make decisions, in direct consultation with
technical staff in the service provider organization, on all
matters not affecting schedule or functionality. Pushing
decision-making down to the lowest appropriate level
appeared to save considerable time and effort.

3.2 Development Environment and Tools
3.2.1 Development environment
In those projects where actual code development was being
done at multiple sites, most used commercial tools that
provided some support for a distributed code base and
change management system. One project initially set up
separate code branches at each site, but concluded this was
a serious mistake when integration became extremely
difficult. They quickly moved over to a single branch for
both sites. Most projects also had build capabilities at both
sites, and the ones that didn’t regarded this as something
they definitely wanted in the future.
One significant problem that one project encountered
stemmed from the fact that one site did not have a complete
hardware configuration, including hardware, firmware,
connectivity, etc., that would allow them to duplicate errors
discovered at the other site. They had been reluctant to
spend the money, and eventually concluded this was a false
economy.
In answer to a question about the most important lesson
learned in distributed development environments, one
project manager who was located in India responded,
“Connection speed, connection speed, connection speed!”
and went on to discuss how this slowed the work. None of
the European or US interviewees mentioned this, and,

interestingly, none seemed to have any idea it was such a
big problem for their Indian colleagues.

3.2.2 Collaboration technology
All teams made use of basic collaboration technology such
as telephone and e-mail, and many made use of application
sharing to share documents and presentation slides, and
even to show a service provider team live demonstrations of
their code running on laboratory machines in the
contracting organization’s location. One team also used a
change management system as an asynchronous
communication medium, to pose questions that others could
answer. This seemed to work particularly well to make it
easier for people to ask questions who otherwise seemed
reluctant to do so, and the perception was that it drastically
reduced the amount of e-mail.
While it may not be a conventional form of collaboration
technology, two projects set up a photo gallery to help
people get a sense of those they were collaborating with. In
one project, these photo galleries were printed and put up in
almost every cubicle, while in the other a photo-annotated
organization chart was created and posted. Both projects
thought that having these photos continuously made a
substantial difference in creating a sense that “it really is a
person over there.”

3.3 Clarity About Who Does What Where
Communicating clearly to a service provider organization
exactly what is desired was a difficult problem, resolved
with varying degrees of success, and through various
means, in the projects we observed.

3.3.1 Communicating what is desired.
Different projects used different artifacts and different
communication regimes in order to convey what was
desired. In the Eta project, the idea of which was to rewrite
a user interface in a different language, the contracting
organization gave the service provider the original source
code, the operator’s manual, a configuration manual, and
training on the product. In addition, they had three
technical leads available for answering questions both at the
outset and as the work progressed. The service provider
organization sent a project manager, two engineers, and a
quality control manager to the contracting organization’s
site for several weeks. The original idea was to have the
project manager stay at the site for the duration of the
project, but this did not work out for reasons largely
unrelated to the project. Beyond this, there was no formal
communication regimen established beyond deliveries and
reports in the contract. There was, however, significant
informal communication, largely through e-mail.
This project was clearly the least successful of those we
studied, and problems in communicating what was desired
was identified as a primary reason for this. The code,
documentation, and training were not sufficient. The

528

developers were new to the domain, and relatively
inexperienced generally, and had difficulty grasping the
functionality well enough to reproduce the UI. None of the
documentation was specifically designed to convey this
information.
Fairly early on, the parties agreed that a functional
specification, which did not exist, would be very helpful in
providing needed guidance. The initial plan was for the
service provider organization to write the functional
specification, but after several late, incomplete, and defect-
ridden attempts, the contracting organization took over this
task, and assigned six engineers full time for three weeks to
create the document. The resources were pulled from
development work on the next release, at considerable cost
to that project.
The communication regimen presented another problem.
The service provider organization wanted to manage
communication very tightly, funneling it all through their
project manager. In order to ask a technical question or to
get detailed status information, all communication had to go
through this bottleneck, which introduced much delay, and
proved very frustrating for the contracting organization.
In stark contrast to this experience, the Theta project used
UML analysis models -- built precisely to serve this
purpose -- as the primary artifact in communicating with the
contracting organization. The communication regime
included weekly status calls, and technical consultation
about every other day. Someone, usually the US-based
project manager, traveled to the other site approximately
every other month. There have been relatively few
difficulties in conveying what was to be built, and the
deliveries have been of good quality. This project had
many advantages, however, including service provider
domain knowledge and small project size. One interviewee
attributed the success primarily to the use of the analysis
models, which eliminated much of the ambiguity that would
have been unavoidable in natural language.
The Gamma project made use of an architecture and high-
level design, graphical designs as the primary artifacts for
communicating a new graphical interface to be built by the
service provider. In addition, they required that it be built
as extensions to a particular set of foundation classes. The
communication regime included approximately weekly
reviews as the service provider created the detailed design.
These reviews proved fairly difficult, and much revision
was necessary. The US-based technical lead reported that
in retrospect, he should have specified a bit more detail,
down to indicating which methods were to be used in the
implementation. Overall, however, the project was
considered successful.
Two projects, Epsilon and Zeta, used evolving interface
specifications as a primary artifact. Epsilon used a foreign
system interface that was being augmented to support

additional functionality as the project progressed, while
Zeta adopted a layered architecture in which one site
designed and built a platform that provided services to
applications designed and built at another site. Both of
these projects proved very difficult, and understanding
exactly what was to be built was a major difficulty. In each
case, there were issues about where functionality should
reside, what form the interface should take, and about the
timing of the development so that testing could be done in a
timely way. The communication regime in Epsilon
included weekly status meetings and some informal
communication, although one site complained bitterly about
unresponsiveness on the part of the other. In Zeta,
communication included weekly status meetings and
occasional lateral communication among developers. One
of the two projects was eventually successful, while the
other was not (for a variety of reasons). But in both cases,
communication about what to build, and how the pieces at
the different sites would work together, was considered to
be very difficult.

3.3.2 Communication about requirements
Other important issues also emerged from our data. One
was that in the context of a service provider arrangement,
particularly with service provider organizations that have
relatively little domain expertise, there can be frequent
disagreements about whether a particular communication
about the requirements is correctly characterized as a
clarification (hence, describes work covered by the original
contract) or a change (requiring renegotiation of dates and
remuneration). There is always the opportunity for some
gamesmanship on this question, but there is also
considerable room for misunderstanding.
If requirements are not clearly conveyed, issues may not
begin to surface until integration, as the sites realized that
their interpretations differed. In Alpha, for example, the
Japanese and US markets differed considerably in the
details of how doctors interact with patients, and these
differences led to substantial differences in interpreting
requirements about what information should be available to
users. It did not occur to them until fairly late in the game
that their domain expertise was leading them to different
interpretations of the product requirements.
The beta project also did not recognize significant
mismatches until relatively late in the game. The service
provider had considerable expertise in an important
infrastructure technology, but, as the US-based project
manger said, "We missed that it had to live in a bigger
environment." Since this had not been adequately
communicated, it was difficult to integrate the application
into real settings because it had not been built with this in
mind.

529

3.3.3 Architecture design
Finally, we note that architecture design across sites seemed
to have very different characteristics than the co-
development and service provider relationships that were
the focus of most of our data collection. In our interview
with the technical lead and overall architect of a very large
project, there were relatively few artifacts that could be
usefully shared across sites. The architect summarized his
experience: "e-mail and documents are no good for this
kind of work."
Rather than trying to work in more distributed fashion, the
multi-site architecture work occurred mostly in a series of
week-long workshops, held about once every other month,
at a single site. Each was focused on a particular topic: the
first was on business goals, and other topics included sunny
day scenarios, error handling, a key protocol, and
visualization. A modeling tool was used extensively to
capture the content developed at the workshop. Each
workshop was structured so that all the important decisions
were made by the last day of the workshop, with all the key
players physically present. This was regarded as critical,
since reaching a decision using e-mail or teleconferencing is
notoriously difficult.

3.4 Communication
3.4.1 Face to face communication
One of the most consistent comments made spontaneously
by almost every interviewee concerned the importance of
meeting people face to face and spending some time with
them. A typical remark from one technical lead: “I can’t
emphasize too much how important this is -- something
about understanding each other’s worlds -- it makes things
much easier later on.” Another typical comment is, “don’t
rely on e-mail, communicate face to face as much as
possible.”
One of the views consistently expressed is that face to face
contact was essential in avoiding and overcoming cross-
cultural misunderstandings, and for developing
relationships and trust with people at other sites. Two
interviewees emphasized that travel was essential, even
when there wasn’t a specific immediate need. As one
project manager put it, “drink a few beers together -- it
makes a big difference.” Relationships built in this way
were seen as a very valuable resource, especially when
problems arose.
Face to face communication across widely-separated sites is
extremely expensive, of course, in both time and money.
Nevertheless, every project decided to have at least one
person travel at least every other month, and most funded
much more travel than this. When issues arose, travel
increased dramatically, sometimes involving either a
member of the contracting or service provider organization
relocating for extended periods of week or months. One

manager, who had just had an unsuccessful experience, said
that in the future, for all multi-site projects he would have
someone from his own organization, who understands the
business and the requirements, relocate to the other site “for
the duration of the project.”
From the other side of the relationship, a project manager
who relocated from a contracting organization in the US to
a service provider in India for an extended period, said in
an e-mail to the authors, “I have an uphill task of creating
an understanding and appreciation for the unique conditions
under which the supplier operates.” He pointed out that the
contracting organization realizes that new team members in
their own organization need considerable support, but often
don’t realize the need is perhaps even greater when bringing
service provider employees at a remote site into a project.
Another insight about face to face contact is that it provides
by far the fastest “pace” of interaction, compared with other
modes of communication. During final integration on one
project, for example, the contracting organization decided
that issues requiring the service provider’s expertise were
arising so often that they had to have someone on site to
respond immediately, rather than waiting potentially a day
for each one. This issue of the pace of different forms of
interaction arose frequently, and a slow pace was often a
source of frustration. Face to face was clearly superior in
this regard, especially when work hours at different sites
have little overlap.

3.4.2 Communication and culture
Subtle cultural differences often complicate
communication, and can lead to frustration and
misunderstandings. “Culture” has many meanings, of
course, and it was often difficult for our interviewees to
determine if the differences they pointed out were due to
corporate, technical, or national culture, but all three
seemed to play a role.
An example of corporate culture was seen in a co-
development project between two US sites, one of which
was recently acquired from another company. Staff at the
new site tended not to respond quickly, or at all, to e-mails
from their colleagues at the other site. This was seen as
rude, and even obstructionist by two interviewees. One said
that he realized they were understaffed, but “still, it violated
etiquette.” Another example of conflicting corporate
cultures was reported by an interviewee who regarded his
own organization as having very open communication, but
was working with a service provider that apparently had a
culture in which people were extremely reluctant to admit
problems. The interviewee was very frustrated by his
inability to get accurate information.
Differences in technical culture affected communication as
well. In the larger project of which the Theta and Iota
projects are parts, several companies were participating in
technology development. The technical lead responsible

530

for designing the architecture noted that the different
companies had different “philosophies” about moving
material, but that these differences did not show up in the
early discussions. The participants assumed their own
interpretations for the vocabulary used in the high level
technical discussions, but when they actually got down to
the details, “everything exploded.” They finally realized, as
the technical lead put it, that “this isn’t how we do things!”
At the least, the difference in technical cultures postponed
the discovery of differing assumptions, and at worst caused
people to think they had been mislead.
National culture also appeared to pose something of a
barrier to communication. In particular, many interviewees
reported a difference in Asian culture, as compared to
European and American culture, with respect to expressing
agreement and disagreement, and asking questions.
Acknowledgement was sometimes mistaken for agreement,
and the Europeans and Americans thought they had a
commitment, when their Asian colleagues were merely
trying to be polite. One American interviewee also reported
that he had worked out ways of trying to ensure that his
Asian colleagues actually understood him, because he felt
that they were reluctant to ask questions, at least as
compared to his American colleagues. One interviewee
stressed the importance of a culturally diverse team at each
site “so that people are accustomed to being among and
communicating with people who are different.”

3.4.3 Time zones
Working across a large number of time zones was an
enormous issue, of course. This makes it very difficult to
schedule meetings, as every time is inconvenient for some
one. In general, it seems that time zones were a particular
problem when there was a need for fast-paced interactions.
One interviewee noted that multiple time zones caused a
particular problem for projects with lots of reviews, which
in that organization were all performed synchronously.
Other interviewees noted that multiple time zones made it
particularly difficult to get information in order to fix bugs,
both during integration and during post-release technical
support. In both cases, it is frequently necessary to get
information about how the code written at the other site
works, and it was very difficult and time-consuming to
acquire this information with e-mails and phone calls.

3.5 Strategic Considerations
Many of the experiences of our interviewees suggest that
there are a number of important considerations that that
span particular projects. All the interviewees who
addressed this issue stressed the importance of establishing
and maintaining long-term relationships with service
provider organizations.

3.5.1 Domain knowledge
As one interviewee noted, it is important for the service
provider to get to know the contracting organization’s
products, projects, and technology. We observed several
projects in which the lack of such knowledge seemed to be
a major cause of problems. Developing this sort of domain
knowledge takes time. In two of the projects we observed,
the contracting organization had delivered training of the
sort that would be given new employees to members of the
service provider organization, and found that this level of
instruction was insufficient.
In project beta, on the other hand, domain knowledge about
a particular proprietary infrastructure of the contracting
organization was the primary reason for engaging the
service provider, and key to their success. As this example
suggests, selecting a service provider organization is a
strategic decision, because the payoff may increase over
time as the learning curve is overcome. There are clearly
other important strategic considerations -- such as
determining which technologies embody core competencies
that should be kept in-house -- that are beyond the scope of
this paper.
Several technical leads and managers mentioned the issue
of maintaining the product or the part of the product
developed by a service provider organization. Particularly
where the service provider does all of the development
work, the contracting organization may not have the
technical expertise in the product to maintain it effectively.
One manager suggested that at least one technical staff from
the contracting organization should be involved in the
details of the work, to form a core of technical expertise for
in-house maintenance.

3.5.2 Establishing trust
Another important characteristic that takes time to establish
is trust, which several interviewees identified as important.
The contracting organization needed to trust that deliveries
would be on time and up to quality standards, and that any
problems would be communicated quickly. The service
provider needed to trust the contracting organization to “be
reasonable” about problems if they were communicated
honestly.
Finally, establishing trust over time was judged by one
executive as an important key to success because of the
extreme difficulty of judging talent at a distance. When
someone is on-site, with frequent interactions, one can
much more quickly judge the person’s capabilities and
expertise in various areas.

4. DISCUSSION
4.1 Lessons Learned
While it is always difficult to boil the rich and varied
experiences of many projects to a few key ideas, we attempt
here to draw out the lessons that seem most general and

531

compelling. Several of these lessons, particularly about
communication and environments, are similar to lessons
found in validation [7] and maintenance [2] activities.

4.1.1 Communicating the work to be done
Communicating what is desired of the service provider is
likely to be more difficult, often much more difficult, than
anticipated. The contracting organization is so immersed in
its own products and technology that it is hard to realize
how much knowledge they take for granted, and how many
subtleties will need to be made explicit and communicated.
Several things can be done to improve the situation. One is
to do a better job of anticipating the extent of the problem if
the service provider has not been engaged before. Does the
service provider have domain expertise? How experienced
are the developers in general? In order to avoid inflated
claims, examine the resumes of developers who will be
assigned to the project. Domain knowledge and experience
will make it much easier to convey what is desired.
If there is relatively little domain knowledge, then be
prepared to provide extremely detailed direction.
Successful projects we observed provide such things as
UML analysis models, or guidance about what foundation
classes to use, and even what methods in those classes to
modify. Documentation developed for other purposes is
generally inadequate.
Finally, develop ways of testing the service provider’s
understanding. Especially when schedules and plans seem
optimistic, dig into the details, make sure the service
provider really understands what is required.

4.1.2 Project management
Be prepared to be intimately involved in project
management of staff at the service provider organization.
Either from the outset, or at the first sign of trouble, manage
them as you manage your own staff, being aware of what
they are doing on a day-to-day basis. Do not assume that
the project management will be adequate until the service
provider has a track record. Agree on the “management
infrastructure” of detailed milestones, tracking metrics, and
reporting up front.

4.1.3 Communication
It is very important that technical staff at all sites interact
directly. They need to know, or be able to find out, who to
contact about what, and there must be some shared
expectations that attempts to communicate will be
responded to quickly. Do not permit communication
bottlenecks to develop, such as funneling all
communication through a project manager. While a central
contact may be useful until the technical staff learn “who’s
who” at the other sites, if it becomes a bottleneck, it will
slow the work, perhaps dramatically.

Collaboration tools like chat and IM have proved useful in a
variety of settings in software development [8] and
elsewhere [3, 5, 11]. Such tools have properties very
different from e-mail, including, importantly, a potentially
faster pace of interaction as well as support for
asynchronous multi-party conversations. Given the
importance of these characteristics in the projects we
examined, we think such tools hold considerable promise,
and we particularly encourage projects to try out tools that
support asynchronous collaboration (e.g., wikis, discussion
boards) to help overcome time zone differences.

4.1.4 Travel
Spend the travel budget early. Once people have met, and
worked together for a few days or weeks, everything else
works better. Projects typically underestimate the need for
travel, and the value of face-to-face contact. In order to
start to overcome cultural differences, develop trust, and
enhance all other means of communication, it is hard to
overstate the importance of spending time at other sites.

4.1.5 Development environment
Try to set up a single “virtual site” to the extent it is
possible. If code is being developed at multiple sites, use
tools that allow you to maintain a single branch. Share a
change management system, so both sides can get a detailed
understanding of the number and the nature of outstanding
problems. Have build capability at both sites, and do
frequent, preferably daily, builds so that problems can be
identified and solved quickly.

4.1.6 Communities of practice
Bringing a new employee “up to speed” is a difficult
process [14] that even with considerable training seems to
require much interaction with more seasoned employees in
order to “learn the ropes” (see, e.g., [15]). The struggles of
the technical staff of service providers to understand the
business, applications, processes, and culture of the
contracting organization are reminiscent of those that new
employees experience, and overcome only through rich
interactions with a community of practice, i.e., experienced
co-workers who know how to deal with the messy reality of
the job, including handling exceptions, applying rules to
real cases, and interpreting the environment. Finding ways
to establish distributed communities of practice should be a
top priority. Where does a service provider employee go to
get questions answered?

4.2 Dimensions of Coordination
It seems clear there is no single “right” model of successful
collaboration across sites. We find it useful to think about
the possibilities in terms of “dimensions” of coordination.
There are many ways to coordinate work, including shared
processes; shared, detailed, project management; modular
product structure; shared past experience; background
knowledge, e.g., of the domain; and finally, planned

532

communication regimes, including status meetings and
technical reviews.
To the extent that these are effective, a project can avoid
being overwhelmed by the need for unplanned
communication. If unanticipated problems arise, the
consequence is always a sudden need for unplanned
communication in order to resolve issues and renegotiate
the current arrangements. Since unplanned communication
is the “coordination technique of last resort,” one could
think of the volume of unplanned communication as a
measure of how well the other means of coordination are
working. We would like to see research on how these
“dimensions” of coordination play together, the extent they
can be traded off against each other, and principled ways of
understanding, for any given project, how to use them to
best advantage.

5. ACKNOWLEDGEMENTS
This work was supported by the Siemens Software
Initiative, which encourages best practice sharing among
Siemens software engineers. We also gratefully
acknowledge the support of the Software Industry Center at
Carnegie Mellon University and its sponsors, especially the
Alfred P. Sloan Foundation.

6. REFERENCES
1. Arora, A. and A. Gambardella, The Globalization of

the Software Industry: Perspectives and Opportunities
for Developed and Developing Countries. 2004,
National Bureau of Economic Research: Washington,
DC.

2. Bianchi, A., et al. An Empirical Study of Distributed
Software Maintenance. in International Conference on
Software Maintenance. 2002. Montreal, Canada.

3. Bradner, E., W.A. Kellogg, and T. Erickson. The
adoption and use of "Babble": A field studyof chat in
the workplace. in European Conference on Computer-
Supported Cooperative Work. 1999. Copenhagen,
Denmark: Kluwer.

4. Brereton, P., The Software Customer/Supplier
Relationship. Communications of the ACM, 2004.
47(2): p. 77-81.

5. Churchill, E.F. and S. Bly. It's all in the words:
Supporting work activities with lightweight tools. in
GROUP '99. 1999. Phoenix, AZ.

6. Damian, D.E. and D. Zowghi, Requirements
Engineering challenges in multi-site software
development organizations. Requirements Engineering
Journal, 2003. 8: p. 149-160.

7. Ebert, C., et al. Improving validation activities in a
global software development. in International
Conference on Software Engineering. 2001. Toronto,
Canada.

8. Handel, M. and J.D. Herbsleb. What is Chat Doing in
the Workplace? in Conference on Computer-Supported
Cooperative Work. 2002. New Orleans, LA.

9. Herbsleb, J.D. and R.E. Grinter. Splitting the
Organization and Integrating the Code: Conway’s
Law Revisited. in 21st International Conference on
Software Engineering (ICSE 99). 1999. Los Angeles,
CA: ACM Press.

10. Herbsleb, J.D. and A. Mockus, An Empirical Study of
Speed and Communication in Globally-Distributed
Software Development. IEEE Transactions on Software
Engineering, 2003. 29(3): p. 1-14.

11. Isaacs, E., et al. The character, functions, and styles of
instant messaging in the workplace. in ACM
conference on Computer supported cooperative work.
2002. New Orleans, LA.

12. Kraut, R.E. and L.A. Streeter, Coordination in
Software Development. Communications of the ACM,
1995. 38(3): p. 69-81.

13. Miles, M.B. and A.M. Huberman, Qualitative Data
Analysis: An Expanded Sourcebook. 2nd ed. 1994,
Thousand Oaks, California: Sage Publications, Inc.

14. Sim, S.E. and R.C. Holt. The ramp-up problem in
software projects: a case study of how software
immigrants naturalize. in International Conference on
Software Engineering. 1998. Kyoto, Japan.

15. Wenger, E., Communities of practice: Learning,
meaning, and identity. 1998, London, UK: Cambridge
University Press.

533

	INTRODUCTION
	EMPIRICAL METHODS
	Interviewees
	Interview Process
	Projects
	Data Analysis

	RESULTS
	Management and Control
	3.1.1 Business and personal incentives
	3.1.2 Project planning and tracking
	3.1.3 Process compatibility
	3.1.4 Process maturity

	Development Environment and Tools
	3.2.1 Development environment
	3.2.2 Collaboration technology

	Clarity About Who Does What Where
	3.3.1 Communicating what is desired.
	3.3.2 Communication about requirements
	3.3.3 Architecture design

	Communication
	3.4.1 Face to face communication
	3.4.2 Communication and culture
	3.4.3 Time zones

	Strategic Considerations
	3.5.1 Domain knowledge
	3.5.2 Establishing trust

	DISCUSSION
	Lessons Learned
	4.1.1 Communicating the work to be done
	4.1.2 Project management
	4.1.3 Communication
	4.1.4 Travel
	4.1.5 Development environment
	4.1.6 Communities of practice

	Dimensions of Coordination

	ACKNOWLEDGEMENTS
	REFERENCES

