
James D. Herbsleb is an Associate Professor of Computer Science
and the Director of the Software Industry Center at Carnegie Mellon
University. His research interests are in globally-distributed and open
source software engineering, as well as coordination in collaborative
work more generally. Prior to joining the faculty of Carnegie Mellon
University, he initiated the Bell Labs Collaboratory project, leading a
research team which designed, implemented, and deployed solutions
for global development, including tools, practices, and organizational
models. He has also published papers describing how open source
software development actually works, its limitations, and the extent to
which open source practices can be applied in industrial settings.

Global Software Engineering:

The Future of Socio-technical Coordination
James D. Herbsleb

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Global Software Engineering: The Future of Socio-technical Coordination

James D. Herbsleb
School of Computer Science
Carnegie Mellon University

jdh@cs.cmu.edu

Abstract

Globally-distributed projects are rapidly becoming

the norm for large software systems, even as it
becomes clear that global distribution of a project
seriously impairs critical coordination mechanisms. In
this paper, I describe a desired future for global
development and the problems that stand in the way of
achieving that vision. I review research and lay out
research challenges in four critical areas: software
architecture, eliciting and communicating
requirements, environments and tools, and
orchestrating global development. I conclude by
noting the need for a systematic understanding of what
drives the need to coordinate and effective mechanisms
for bringing it about.

1. Introduction

It is no longer unusual for a large software project
to have teams in more than one location, often on more
than one continent. Many forces have conspired to
bring about this situation, including concern for cost,
the need to tap global pools to acquire highly skilled
resources, finding an appropriate mix of expertise for a
project, satisfying investment requirements imposed by
governments in foreign markets, and mergers and
acquisitions. There is little reason to expect these
factors to diminish in the future. Rather, it appears that
we face increasing globalization of markets and
production, increasing the pressure to distribute
projects globally. In this paper, I assume that this
direction will continue or even accelerate.

While global software development (GSD) is
becoming a way of life, such work takes much longer
than co-located work [39], and suffers from a wide
range of problems (see, e.g., [53]). At the same time,
we have accumulated considerable knowledge and
experience, which is beginning to appear in the form of
comprehensive practitioner-oriented books [10, 60],

and several special sections or special issues on this
topic [22, 40].

The vision of the desired future of global
development, shared by many, would to be to have the
following capabilities. For any given project, be able
to

• use available resources independently of
geographic location

• plan practices and technology to support the
level of coordination accurately anticipated to
be required among sites

• achieve shared understanding of requirements
• measure the “fit” of a software architecture

with the organization that will build the
system, and have a set of known, effective
tactics for improving the fit

• effectively manage change
The structure of this paper is to identify the

problems that stand in the way of achieving this vision,
and for each problem, review the current state of
research and future challenges.

1.1 Scope

The paper is focused on technical coordination in

geographically distributed projects. By coordination, I
mean managing dependencies among tasks [47]. If
tasks carried out at different sites shared no
dependencies, global projects would not pose
significant challenges. People at any given site would
not need to communicate with or even know of the
existence of other sites. Thus, the key phenomenon of
GSD is coordination over distance. This paper focuses
on those features of software projects that influence the
need to coordinate, and activities designed to achieve
technical coordination, which includes communication,
tools, processes, and practices.

The paper does not consider a number of other
related questions, such as business decisions about
whether to outsource, legal arrangements among
collaborating organizations, or evaluation of providers

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

of outsourcing services. Nor does it consider
collaboration in software engineering more generally
(see [68]). These issues, though important, are beyond
the scope of this paper.

To keep the number of citations tractable, I chose to
focus on conference and journal papers rather than
workshop papers, and to give preference to more recent
work. I also gave preference to work that focuses
specifically on software engineering, and to work that
appears in software engineering or computer science
publications, although I make occasional citations to
other literature as appropriate.

In the remainder of this introduction, I present a
view of global development which will serve to
identify the problem areas.

1.2 What is different about global
development?

In a (highly idealized) traditional, co-located

project, teams with a history of working together have
naturally built up a number of ways of coordinating
their work. They have a shared view of how the work
will proceed, either because of a shared, defined
process or just by acquiring a common set of habits
and vocabulary over time. Through frequent
interactions, both formal and informal, team members
have a clear idea of who has what sort of expertise and
how responsibilities are allocated. Information flows
freely through the network during the many informal
interactions that happen in the hallway, over meals,
before and after formal meetings. There is relatively
little miscommunication as teams share a common
native language as well as national and corporate
culture. People are generally aware of what others are
working on, know if and how their work affects other
people, and know day to day the level of urgency and
stress experienced across the project. Prior
collaborations have produced long-standing
professional and social relationships that provide a
context and history within which problems and
misunderstandings can be resolved.

The fundamental problem of GSD is that many of
the mechanisms that function to coordinate the work in
a co-located setting are absent or disrupted in a
distributed project. Geographic distance profoundly
affects the ability to collaborate [53]. Even relatively
small distances can have major effects. Evidence
indicates, for example, that spontaneous
communication and collaboration declines as a
function of distance between offices, and the
asymptote is near a surprisingly short distance of about
30 meters [1]. Radical co-location, i.e., putting whole
teams in a shared area rather than individual offices,

can have a surprisingly large effect on development
speed and efficiency [67].

As geographic and temporal distance increases, a
wide variety of impediments to coordination are
introduced (see generally [10, 12, 22, 40, 41, 53].
GSD projects are diverse, of course, and experience
various disruptions to different degrees. But the
following are among the more common ways in which
coordination mechanisms are disrupted:

Much less communication, less effective
communication. In GSD projects, people communicate
with many fewer people at distant sites that at their
own site, and the communication is much less frequent
[39]. There are many reasons for this difference [11,
43], including temporal distance (different time zones),
socio-cultural distance (language and culture), and
geographic distance (making travel difficult). Even the
communication that occurs is less effective [53]. Few
overlapping hours means replies often don’t come until
the next day. These communication issues have many
effects, including a lack of information about who is
expert in what, and who is responsible for what.

Lack of awareness. Because people at different
sites share relatively little context, they tend to have
little knowledge of what people at other sites are doing
day to day, if they are available for communication,
and what their immediate concerns are. This lack of
contextual information makes it difficult to initiate
contact, and often leads to misunderstandings of
communication content and motivations. Perhaps most
importantly, it hinders a project’s ability to keep track
of the effects of change as they propagate across sites.

Incompatibilities. Sites often differ in development
tools, processes, practices, informal work habits,
corporate culture, and in many other ways. These
differences may often be incompatible, leading to a
wide variety of problems, such as errors found at one
site that cannot be duplicated elsewhere, different
processes lead to confusion and misunderstandings
about how the work is done and its current status,
habits like freely sharing bad news that may not be
appreciated or understood correctly elsewhere.

In the sections that follow, I focus on four areas of
research that have made substantial progress in
addressing these issues, and describe the most
significant obstacles that remain.

2. Software architecture

As with most types of complex systems, software is
generally designed as sets of interacting components
[58, 63]. Software architectures not only influence
quality attributes of software, but they are also an
important means of coordinating software projects.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Adopting an architecture tends to guide developers
toward compatible decisions, assuming there is
effective communication and a common understanding
of what the architecture actually is [37, 54].

2.1 Research summary

It is widely believed that the extent and nature of

task dependencies in development work are a product
of dependencies in the software architecture. Conway
[16] observed that the structure of a product tends to
resemble the structure of the organization that designed
it. The reason is that once interfaces have been
specified, the components themselves can be designed
relatively independently of one another [4, 57]. The
underlying assumption is that modularity in product
structure (i.e., relatively few, and well-specified
interactions among components) results in modularity
in subsequent design tasks (i.e., relatively few
dependencies between design decisions concerning
different components). Thus, if development of each
component is assigned to a single team, there is
relatively little need for coordination across teams. As
Conway [16] pointed out, this is likely to result in a
homomorphic relation between the architecture and the
organization, i.e., each component is assigned to
exactly one team, although one team may build more
than one component.

Research has also revealed some of the mechanisms
by means of which organizations adjust to the
coordination needs imposed by product architecture. It
is reflected in communication patterns, in the ways in
which people choose what information to pay attention
to, and in collaborative problems-solving strategies
[36]. The particular ways in which the components
interact tends to dictate the precise decisions on which
the teams to which the components have been assigned
must coordinate. Software architects, therefore, design
not just the structure of the software, but also have a
major role in shaping the task dependencies among the
teams designing and building the system.

A study of how application programmer interfaces
(APIs) are used in development organizations show not
only the advantages of these architectural constructs in
enhancing coordination among groups, but also their
tendency to promote isolation and reduce information
sharing [65]. This can be a disadvantage if
coordination becomes necessary among groups, as can
happen when interfaces are unstable [38, 54, 65], or if
there are important semantic dependencies.

Interestingly, software architects are aware of the
organizational consequences of their technical work,
and spend considerable time trying to ensure their
designs have favorable organizational outcomes [29].
Currently, research provides very little guidance for

architects struggling with the organizational
implications of architectural decisions. One exception
is the work of Mockus and Weiss [50], who developed
ways of using change histories to identify what parts of
the code can be maintained at separate sites,
heuristically minimizing the need for cross-site
interaction. Cataldo and colleagues [13], also using
change history data, developed a way of computing
coordination requirements, i.e., who needs to
coordinate with whom in order to accomplish a unit of
development work. They found that when
coordination behaviors were congruent with these
requirements, code changes were accomplished more
quickly.

2.2 Research challenges

Unraveling the complex relationship between

software dependencies and task dependencies. It is
generally assumed that creating modular software, i.e.,
minimizing the dependencies among static modules
and among run-time components, will have the effect
of reducing the dependencies among the tasks involved
in designing and constructing the components. While
there is little reason to doubt that this is generally true,
we need to know much more about the relationship of
software dependencies and task dependencies in order
to design software architectures that are better suited to
GSD. Decoupling components, e.g., by adding an
intermediary, may or may not decouple tasks. Adding
an intermediary where the most difficult dependencies
are semantic rather than syntactic may in fact make the
task coordination problem harder. Understanding task
coupling would, for example, let us predict if the need
for coordination is so intense that teams need to be co-
located. Is it important that we only assign a pair of
components to teams that have a shared work history?
We know very little at this point about the coordination
requirements that architectural decisions impose on
teams.

Measuring architectural/organizational fit. Beyond
just understanding how architectural decisions impose
task dependencies, we need to be able to determine
how well equipped a given organization is to carry out
the design and implementation of a system with a
particular architecture. With the exception of informal
and ad hoc attempts by software architects to
accommodate the development organization, we do not
know yet how to assess the fit of architecture and
organization proactively. It is especially important to
do so early in the project, so appropriate and timely
adjustments can be made.

The functional dependencies in the software are
certainly not the whole story. For example, stringent
nonfunctional requirements like performance, security,

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

or reliability have the tendency to bind development
tasks together more tightly around these global
properties, since decisions within a module may have
far-reaching effects. Similarly, stability of an
interface, i.e., the extent to which the initial design will
hold up, may be as important or more important than
the precise nature of the technical dependency.

Tactics for improving architecture/organization fit.
Even if we can assess the fit of an architecture and a
development organization, in order to act effectively
on this information, we need a set of tactics that will
allow us to better adjust the organization to the
architecture, or the architecture to the organization. If
we determine that the need for coordination between
two distributed teams designing two components will
exceed their ability to coordinate, what do we do?

It is likely that we will develop both organizational
and architectural tactics. Organizational tactics might
include such measures as increasing communication,
providing additional communication technology, or
reassigning work to co-located groups. Technical
tactics might favor solutions that sacrifice some cost or
quality attribute in order to reduce the need to
coordinate. To provide a real world example, two
groups at different locations used a single shared
memory chip. Chip size and therefore cost could be
reduced by being very clever about memory use, but
this would likely require substantial coordination
between teams. Alternatively, the memory could
simply be partitioned, with each team allocated
sufficient space for its needs. This will be less efficient
and more costly, but reduces inter-team coordination
needs. We need a broad collection of effective tactics,
along with the knowledge of how to choose which to
use.

3. Eliciting, communicating requirements

Getting the requirements right, and dealing with

unstable requirements, are notoriously difficult
problems (e.g., [19]). By “requirements” in this case, I
mean not just end user requirements, but anything that
specifies what a team should deliver. In the global
development context, the inherent difficulty of
achieving a shared understanding of the requirements
is amplified, both because of loss of context and loss of
communication bandwidth.

3.1 Research summary

Requirements elicitation and communication

presents several specific challenges in the GSD context
[21, 23] – indeed, Cheng and Atlee consider
globalization to be one of the major research

challenges in requirements engineering [14]. A global
context makes it more difficult to seek out and to
integrate the necessary knowledge. Process
mismatches, differing technical and domain
vocabularies, incompatible environments, and
conflicting assumptions can be particularly problematic
in a GSD context [8]. Cultural differences can pose
formidable challenges for achieving a shared
understanding of the requirements [44].

Recommended practices include ways of improving
communication, easing mismatches with frequent
deliveries, and making organizational responsibilities
more transparent [21]. Other authors have suggested a
number of practices in each dimension of people,
process, and technology, for addressing GSD problems
[8]. While we are still a long way from a clear
understanding of what kinds of requirements elicitation
techniques are most likely to succeed in what
circumstances, some researchers have begun to
approach these questions of “fit” [3].

 In some cases, it is possible to use more formal
approaches to ensure that what is built satisfies its
requirements. An excellent illustrative example of the
successful application of a formal approach is the
SLAM toolkit developed by Microsoft Research to
ensure that writers of device drivers did not violate the
complex kernel API [6]. While not usually considered
in the context of requirements or GSD, this sort of
analysis has in fact been effective in conveying a very
complex API to a number of vendors in different
organizations. This, of course, requires a particular
kind of analysis tool, i.e., one that needs no input and
has an acceptably low rate of false positives [5].

3.2 Research challenges

Much of the research in requirements engineering

focuses on the requirements themselves, how to elicit
them, analyze them, manage them, and to recognize
and resolve conflicts. For effective requirements
engineering in GSD, we need to tackle additional
issues that take on increased urgency. In particular, we
need significantly to improve our ability to support the
ongoing negotiation processes that are prevalent
throughout the project lifecycle [19, 23]. Negotiation is
much more difficult in a GSD context, because of the
diversity of backgrounds, communication problems,
and the difficulty of responding to change [21].

Anticipating the need to support negotiation. Just
as we need to understand how characteristics of
software architectures drive task dependencies in
software design and construction, we need to
understand the trade-offs that lead to the need for
negotiation in the requirements engineering process.
Can we predict, for example, how unstable the

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

requirements will be for a given project? What are the
economic, social and organizational factors that make
the search for a single unified view of requirements
particularly difficult? Which are the relevant
stakeholders that need to be involved for effective
expectation management? This would go a long way
toward understanding the intensity of negotiation and
information exchange that will be required. Can we
provide novel views or notification services linked
with the evolving requirements that will effectively
alert distributed stakeholders to changes that affect
their interests? This could allow misunderstandings
and diversity of interests to be revealed earlier, before
options for resolving such conflicts become more
limited. Can we build in more effective reviews and
synchronization points to ensure that the stakeholders
are moving toward a genuine common understanding?

Media for requirements communication. While
there is now some research on the effects of various
communication media involved in the requirements
elicitation and negotiation process [26], we are still a
long way from understanding in a detailed way what
media are suitable for all of the different kinds of
communication among all the business stakeholders,
analysts and developers. Most development
organizations seem to be placing large bets that the
correct configuration is to have an analyst and
marketing group physically near the customer, but are
also willing to locate one or more development groups
remotely. As yet we have litte evidence of the
effectiveness of this arrangement. It would also be very
useful to have a careful analysis of the communication
needs for various kinds of interactions around
requirements in terms of communication media
affordances for things like common ground [16].

4. Environments and tools

Software engineering has long focused on
developing and deploying tools to assist with
coordination of large software projects. Version
control and change management are largely taken for
granted, and integrated development environments
with extensible framework architectures are becoming
quite common. GSD research on environments and
tools often focuses on extending these coordination
capabilities, building on the functionality or actually
integrating with, these standard tools.

4.1 Research summary

Many of the tools commonly used for co-located
development lend themselves quite well, perhaps with
some enhancements, to global projects. Standard tools

for version control and change management can be
used in distributed fashion, with a single centralized
server, and as long as the wide area network is
sufficiently reliable and sufficient bandwidth is
available, there is little difference in a co-located and
distributed tools. Where networks are not adequate for
a central server, commercial tools with replicated
databases and automated synchronization are available.

Since tool-building has been such a focus in GSD,
there is a large volume of research to try to summarize.
I will organize this section under two subtopics: tools
for awareness and communication, and for exploring
project memories.

4.1.1 Awareness and communication. Given the
reduced level of communication in GSD, the problem
of understanding what other project members are
doing, in order to coordinate effectively with them, is
much more difficult. In addition to providing
awareness and communication capabilities, many tools
exploit the advantages of integrating collaborative
features into the development environment. For
example, this approach takes advantage of capabilities
and data already in tools such as version control
systems, it allows easy pasting and linking of other
development artifacts into messages, and permits the
remote sharing of existing screens in the integrated
development environment (IDE) [15].

Several studies have introduced chat capabilities
into development environments to explore their utility.
Handel et al [34] found that while use varied
considerably, many teams made use of a stand-alone
chat tool, and used it primarily for work-related
discussions, with a smattering of non-work use.
Fitzpatrick and colleagues [27] integrated chat and
notification services into a version management tool,
and studied how these facilities were used. The
findings again were rather positive, noting the utility of
chat for e.g., generating discussion and supplementing
information contained in the logs.

Several research projects have explored
incorporating diverse awareness and collaboration
tools into the Eclipse IDE. The Jazz project (e.g., [15])
has incorporated IM capabilities, including the ability
to observe who is currently logged in, discussion
forums, audio (VOIP) capabilities, and awareness
icons that allow developers to see what other
developers are editing in their local environments.
Sarma et al [61] built a tool called Palantir, which
provides developers with a visualization of who is
changing what artifacts in their local environments,
and provides a measure of the severity of the changes.
They have also considered how to use information
abstraction and analysis approaches to provide

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

awareness at the larger, global project level, rather than
just the team-oriented facilities of Palintir [62].

Other work has focused on trying to provide
collaborative facilities for specific parts of the life
cycle. Sinha et al [64] built a tool for collaborative
requirements engineering on top of the jazz
environment, including collaborative functionality
designed to address common requirements engineering
issues such as resolving requirements ambiguities and
managing and notifying stakeholders about
requirements changes. In order to support the kind of
intensive communication required to support planning
for an agile-style development in a distributed context,
Morgan and Maurer [51] designed a tool to support
intense interaction needed for agile-style planning in a
GSD context, using a tabletop and virtual note card
metaphor. Spanjers et al [66] built a specialized tool
for GSD build and test, which allows remote sites to
observe execution, access reports and work products,
and makes the test procedures available and visible.
Lanubile et al [46] designed a tool to support
distributed, largely asynchronous inspections.

4.1.3. Exploring project memory. Typical software
development tools tend to create a potentially very rich
“project memory” [17] with versioned files, change
histories, and documents, some small fraction of which
are highly relevant to current work. Such histories
have especially great potential in communication-
starved contexts like GSD.

Open source development provides a specialized
example of use of tools for global development. Such
environments typically include relatively simple tools
such as version control, change management, and
mailing lists, and sometimes chat. Dinkelacker et al
[24] report on the successful use of open source style
tools in an industrial setting. Gutwin et al [32] focused
on understanding how open source developers use
these tools to maintain both a broad awareness of the
people and activities on the project as well as find
specific information such as experts on a given topic.

Two research projects in Murphy’s research group
have tackled the task of performing computations over
artifacts in project histories to provide assistance for
finding relevant artifacts. Cubranic et al [18] describe
the design and evaluation of Hipikat, a tool that draws
on information retrieval techniques to help developers
identify artifacts that are related to an artifact used to
generate a query. Their evaluation shows that the tool
finds useful starting points for exploring the code.
Kersten et al [45] design a tool, Mylar, that computes a
degree of interest for project artifacts, using task
context and project history, and provides a filter
function to help identify useful artifacts. Bruegge et al
[9] take a different tack with their tool, Sisyphus.

Rather than selecting or filtering artifacts, Sisyphus
supports the creation and subsequent browsing of a
graph created by linking artifacts, as well as
annotations and comments on those artifacts.

Other work has focused on finding relevant people,
rather than artifacts. Several papers have specifically
tackled the question of locating people with the right
expertise in a distributed setting. Erlich and Chang
[26] performed a social network analysis of
information seeking in order to understand where
people currently go to find different kinds of expertise
such as technical information, administrative
information, and innovative ideas. McDonald and
Ackerman [48] and Mockus and Herbsleb [49] have
designed and deployed tools for locating expertise in
software development projects, using data from the
version control system about which developers have
contributed to what parts of the code.

Others have focused on tools to facilitate or to
diagnose particular kinds of interactions in projects.
Anvik and colleagues [2] use machine-learning
techniques in the design of a tool that uses past history
of bug fixes to assist open source bug triagers identify
appropriate developers for fixing an incoming bug.
Halverson et al [33] identified common problems in
change management in software projects, and
developed two visualizations using change
management data to assist in identification of specific
problems and overall project health. Froehlich et al
[28] developed Augur, which uses linked views of
code and activities to promote awareness, e.g., by
seeing who changed what lines, and what lines were
checked in together. Finally, Souza and colleagues
[65] proposed a social call graph, i.e., a graph in which
the nodes, and the edges are drawn between developers
whose code calls the code of another developer. They
suggest such a representation could be useful for
finding people whose code is likely to be impacted by
a change.

4.2 Research challenges

Virtual co-location. Current research on

collaborative IDEs is adding impressive capabilities,
and tackling some important integration issues. Yet
we do not know, at this point, how close these
environments are to creating the natural, effortless kind
of awareness and communication that happens in co-
located settings. We should focus on creating an
environment that puts people in virtual proximity so
that those who do in fact need to coordinate and
communicate can do so as naturally through the
environment as they could if they had offices in the
same hallway. This will require a better knowledge of
who actually needs to coordinate with whom, as

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

research has shown that these coordination
requirements are volatile and apparently non-obvious
to all but the most proficient developers [13]. It will
also require a detailed understanding of what kinds of
task dependencies exist, and what kinds of facilities,
such as different communication media, are needed to
resolve them.

Continuing to exploit project memory. While we
have now accumulated a substantial body of research
on how to identify relevant artifacts and people in
project memories, it is not clear that winning strategies
and approaches have yet been identified. While many
existing approaches seem promising, we have much to
learn about how specific approaches can be used to
support particular tasks, and when the
recommendations made by tools are sufficiently
accurate and precise that they outweigh the potential
distraction and neglect of non-recommended choices.
We need to move beyond a proof-of-concept approach,
in which validation is primarily a few plausible
examples of good recommendations or a demonstration
that the recommendations are at better-than-chance
levels. This approach has served us well to this point,
but we need to understand the practical realities of
bringing this functionality to bear on day-to-day tasks,
figuring out when the cost is worth the benefit, and
how to mitigate any ill-effects that might arise because
of biases built into the recommendation algorithms.

Enriching project memories. Project memories
consist primarily of data accumulated almost
inadvertently, for other reasons, e.g., for version
control or to keep track of change requests. One of the
real challenges for the future is to think about such
repositories from the point of view of creating a project
memory, and designing an environment that collects a
richer set of data, for example, by more information
about the original context. Many actions by individual
developers that might have value are not typically
tracked, for example, recording all the documents a
developer examined around the time a change was
made in order to better understand a rationale for the
decision. Just accumulating the data is not sufficient,
of course, it must be stored in tractable form, capable
of being exploited, without undue space and
performance penalties. There is also the question of
privacy concerns. Collecting more and more data,
while potentially useful, created the risk that the data
can be used in illegitimate and punitive ways. One of
the real challenges is to provide a rich data set that will
support search and exploration to accomplish project
work, but cannot readily be exploited for surveillance
purposes.

Project history and collaborative tool
infrastructure. As more kinds of data are accumulated,
and as more collaborative functionality is added to

IDEs, the infrastructural requirements become more
demanding. Notification services that can readily be
customized by users and are sensitive to tasks being
executed will be important. Strategies for caching,
storing, and consolidating data form disparate sources
will be a critical need. The need for interoperable tools
with standard data formats and interaction protocols
will become increasingly important as we move toward
more integration of collaborative capabilities into the
environment.

5. Orchestrating global development

The practices, organizational structures, and

methods used for co-located development are often not
adequate for GSD projects. Typical ways of
orchestrating projects often rely heavily on the sorts of
frequent communication, shared knowledge, and
common history that are absent in distributed projects.

5.1 Research summary

In addition to the relationship between software
architecture and the form of the development
organization discussed in Section 2, several kinds of
organizational models have been proposed for GSD
projects. Evidence suggests that unlike co-located
projects, distributed projects suffer fewer coordination
problems when they exhibit informal hierarchies rather
than a network organizational form [42], presumably
because of the high cost of communication in
distributed teams. Other work has examined a variety
of organizational models used in industry, which for
example, assign different components to teams at
different sites, or assign the work associated with
different process steps to different sites [30].

Other authors [35], based on qualitative
observations, have suggest the importance of the match
on several dimensions, of organizations that are
collaborating on a software project. Offshore teams
have other options as well, for example adopting a
matrix form rather than mirroring the structure of the
client team [52]. Under appropriate circumstances,
such as when a number of different product groups
want to enhance and maintain a common resource, an
open source style of organizing development, in which
various users of a resource develop the functionality
they need, can be effective [31].

In addition to research on overall organizational
models for GSD, other research has focused on how
agile methods can be adapted to GSD, even though on
the surface, the intense use of informal communication
to coordinate work makes agile seem a poor match for
GSD [56]. While experience with agile in GSD is still

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

fairly sparse, Ramesh and colleagues [59] report
successful experiences when agile is adjusted
appropriately for a GSD context, e.g., to facilitate
communication and knowledge management.

Finally, there have been a number of qualitative
studies of individual practices or collections of
practices to support GSD. Paasivaara and colleagues
[55] identify a number of practices used and deemed
successful in GSD projects, including frequent
deliveries and establishing links among peers. Cusick
and Prasad [20] suggest a collection of practices, some
of which are adaptations of traditional practices (e.g.,
issue tracking, short phases, small deliverables), while
some are unique to GSD (e.g. ensuring that domain
expertise is retained both onshore and offshore).

Other qualitative studies suggest the value of
particular practices for addressing specific problems.
Battin and colleagues [7] associate practices with
specific GSD problems that these practices address.
For example, they propose an incremental integration
strategy to deal with cross-site integration. Carmel and
Agarwal [11] advocate several ways of reducing the
intensity of needed interactions among sites, and for
reducing cultural and temporal distance between sites.
Ebert et al [25] describe successful practices for
distributed validation, including things like co-locating
code inspection, and introducing continuous builds.

5.2 Research challenges

What practices are effective when? We do not
know much at this point about when various GSD
practices are effective, and when they are not. When is
it advisable to have a “cultural liaison” [11]? When is
it advisable to introduce agile approaches into GSD
projects? Many authors propose plausible rules of
thumb for such questions, but we need research to test
these views. We also need to identify the range of
applicability for practices. For example, what kinds of
practices are appropriate for outsourcing where there
are legal and organizational boundaries, as opposed to
projects distributed within a single company?

Interactions among practices. Our understanding
of how various practices play together takes two forms.
First, sets of compatible or complementary practices
are bundled together and recommended as a whole [20,
60]. The other approach is to address the practices in
a purely atomic manner, matching them for example to
problems they address [7]. The truth likely is
somewhere in between. Bundles of practices are rarely
so bound together that no other practices could be
substituted. Nor is it the case that the decision to adopt
a practice can be considered in total isolation from all
other practices. Yet we don’t really know much about
the conflicts and complementarities among practices,

knowledge which is critical for an intelligent
consideration of tradeoffs.

6. Conclusion

I argued at the beginning of this paper that the key

phenomenon in GSD is coordination at a distance. The
need to manage a variety of dependencies across sites
drives the essential problems of GSD. It follows that
the biggest need to make substantial progress in GSD
is to achieve a deeper understanding of the kinds of
coordination that are required, the factors that drive
these needs so they can be predicted for a given
project, and the principles governing how the
coordination mechanisms available to a development
organization can best be deployed against these needs.

We currently have a number of individual solutions,
such as tools, practices, and methods, but we
understand as yet very little about the tradeoffs among
them, and the conditions of their applicability. If we
work toward compatible processes across sites, can we
reduce the amount of communication? If we carefully
design architectures to isolate work at different sites,
can we get away with incompatible processes? We
currently have very little to go on for addressing these
crucial questions. We have a pressing need for good
theories that will provide a sound basis for reasoning
about tradeoffs and predicting outcomes.

7. Acknowledgements

The author gratefully acknowledges support by NSF
grant IIS-0534656, as well as support from the
Software Industry Center and its sponsors, particularly
the Alfred P. Sloan Foundation and Siemens Corporate
Research. He also thanks Leonard Bass, Matthew Bass,
Marcelo Cataldo, and Daniela Damian for their
insightful comments on an earlier draft.

8. References

[1] Allen, T.J., Managing the Flow of Technology. 1977,
Cambridge, MA: MIT Press.
[2] Anvik, J., Hiew, L., and Murphy, G.C., Who should fix
this bug? in Proceeding of the 28th international conference
on Software engineering. 2006, ACM Press: Shanghai,
China.
[3] Aranda, G.N., et al. Technology Selection to Improve
Global Collaboration. in International Conference on Global
Software Engineering. 2006. Florianopolis, Brazil.
[4] Baldwin, C.Y. and Clark, K.B., Design Rules: The
Power of Modularity. Vol. 1. 2000, Cambridge, MA: The
MIT Press.
[5] Ball, T., et al. Thorough Static Analysis of Device
Drivers. in EuroSys. 2006. Leuven, Belgium.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

[6] Ball, T. and Rajamani, S.K. The SLAM Toolkit. in
Computer Aided Verification: 13th International Conference.
2001. Paris, France.
[7] Battin, R.D., et al., Leveraging Resources in Global
Software Development. IEEE Software, 18, 2 (Mar/Apr
2001), p. 70-77.
[8] Bhat, J.M., Gupta, M., and Murthy, S.N., Overcoming
Requirements Engineering Challenges: Lessons from
Offshore Outsourcing. IEEE Software, 23, 5 (2006), p. 38-
44.
[9] Bruegge, B., Dutoit, A.H., and Wolf, T. Sysiphus:
Enabling informal collaboration in global software
development. in International Conference on Global
Software Engineering. 2006. Florianopolis, Brazil.
[10] Carmel, E., Global Software Teams. 1999, Upper
Saddle River, NJ: Prentice-Hall.
[11] Carmel, E. and Agarwal, R., Tactical Approaches for
Alleviating Distance in Global Software Development. IEEE
Software, March/April, (2001), p. 22-29.
[12] Casey, V., Richardson, I. Project Management within
Virtual Software Teams. in International Conference on
Global Software Engineering. 2006. Florianopolis, Brazil.
[13] Cataldo, M., et al., Identification of coordination
requirements: implications for the Design of collaboration
and awareness tools, in Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative
work. 2006, ACM Press: Banff, Alberta, Canada.
[14] Cheng, B. and Atlee, J., Research Directions in
Requirements Engineering, in Future of Software
Engineering 2007, L. Briand and A. Wolf, Editors. 2007,
IEEE-CS Press.
[15] Cheng, L.-T., et al., Building Collaboration into IDEs.
Queue, 1, 9 (2004), p. 40-50.
[16] Conway, M.E., How Do Committees Invent?
Datamation, 14, 4 (1968), p. 28-31.
[17] Cubranic, D. and Murphy, G. Hipikat: Recommending
Pertinent Software Development Artifacts. in International
Conference on Software Engineering. 2003. Portland, OR.
[18] Cubranic, D., et al., Hipikat: a project memory for
software development. 31, 6 (2005), p. 446.
[19] Curtis, B., Krasner, H., and Iscoe, N., A field study of
the software design process for large systems.
Communications of the ACM., 31, 11 (1988), p. 1268-1287.
[20] Cusick, J. and Prasad, A., A Practical Management and
Engineering Approach to Offshore Collaboration. IEEE
Software, 23, 6 (2006), p. 20-29.
[21] Damian, D., Stakeholders in Global RE: Lessons
learned from practice. IEEE Software, (2007), p.
[22] Damian, D. and Moitra, D., Global Software
Development: How Far Have We Come? IEEE Software, 23,
5 (2006), p. 17-19.
[23] Damian, D.E. and Zowghi, D., Requirements
Engineering challenges in multi-site software development
organizations. Requirements Engineering Journal, 8, (2003),
p. 149-160.
[24] Dinkelacker, J., et al. Progressive open source. in
International Conference on Software Engineering. 2002.
Orlando, Florida.
[25] Ebert, C., et al. Improving validation activities in a
global software development. in International Conference on
Software Engineering. 2001. Toronto, Canada.

[26] Ehrlich, K. and Chang, K. Leveraging expertise in
global software teams: Going outside boundaries. in
International Conference on Global Software Engineering.
2006. Florianopolis, Brazil.
[27] Fitzpatrick, G., Marshall, P., and Phillips, A., CVS
integration with notification and chat: lightweight software
team collaboration, in Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative
work. 2006, ACM Press: Banff, Alberta, Canada.
[28] Froehlich, J. and Dourish, P., Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Development Teams, in Proceedings of the 26th
International Conference on Software Engineering. 2004,
IEEE Computer Society.
[29] Grinter, R.E. Systems Architecture: Product Designing
and Social Engineering. in International Joint Conference on
Work Activities, Coordination, and Collaboration. 1999. San
Francisco, CA.
[30] Grinter, R.E., Herbsleb, J.D., and Perry, D.E. The
Geography of Coordination: Dealing with Distance in R&D
Work. in GROUP '99. 1999. Phoenix, AZ: ACM Press.
[31] Gurbani, V.K., Garvert, A., and Herbsleb, J.D., A case
study of a corporate open source development model, in
Proceeding of the 28th international conference on Software
engineering. 2006, ACM Press: Shanghai, China.
[32] Gutwin, C., Penner, R., and Schneider, K., Group
awareness in distributed software development, in
Proceedings of the 2004 ACM conference on Computer
supported cooperative work. 2004, ACM Press: Chicago,
Illinois, USA.
[33] Halverson, C.A., et al., Designing task visualizations to
support the coordination of work in software development.
Proceedings of the 2006 20th anniversary conference on
Computer supported cooperative work, (2006), p. 39-48.
[34] Handel, M. and Herbsleb, J.D. What is Chat Doing in
the Workplace? in Conference on Computer-Supported
Cooperative Work. 2002. New Orleans, LA.
[35] Heeks, R., et al., Synching or Sinking: Global Software
Outsourcing Relationships. IEEE Software, March/April,
(2001), p. 54-60.
[36] Henderson, R.M. and Clark, K.B., Architectural
innovation: The reconfiguration of existing product
technologies and the failure of established firms.
Administrative Science Quarterly, 35, 1 (1990), p. 9-30.
[37] Herbsleb, J.D. and Grinter, R.E., Architectures,
Coordination, and Distance: Conway's Law and Beyond.
IEEE Software, Sept./Oct., (1999), p. 63-70.
[38] Herbsleb, J.D. and Grinter, R.E. Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited. in 21st International Conference on Software
Engineering (ICSE 99). 1999. Los Angeles, CA: ACM Press.
[39] Herbsleb, J.D. and Mockus, A., An Empirical Study of
Speed and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering,
29, 3 (2003), p. 1-14.
[40] Herbsleb, J.D. and Moitra, D., Global Software
Development. IEEE Software, March/April, (2001), p. 16-
20.
[41] Herbsleb, J.D., Paulish, D.J., and Bass, M. Global
Software Development at Siemens: Experience from Nine

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

Projects. in International Conference on Software
Engineering. 2005. St. Louis, MO.
[42] Hinds, P. and McGrath, C., Structures that work: social
structure, work structure and coordination ease in
geographically distributed teams, in Proceedings of the 2006
20th anniversary conference on Computer supported
cooperative work. 2006, ACM Press: Banff, Alberta, Canada.
[43] Holmstrom, H.C., E.O. Agerfalk, P.J. Fitzgerald, B.
Global Software Development Challenges: A Case Study on
Temporal, Geographical and Socio-Cultural Distance. in
International Conference on Global Software Engineering.
2006. Florianopolis, Brazil.
[44] Hsieh, Y. Culture and Shared Understanding in
Distributed Requirements Engineering. in International
Conference on Global Software Engineering. 2006.
Florianopolis, Brazil.
[45] Kersten, M. and Murphy, G.C., Using task context to
improve programmer productivity, in Proceedings of the
14th ACM SIGSOFT international symposium on
Foundations of software engineering. 2006, ACM Press:
Portland, Oregon, USA.
[46] Lanubile, F., Mallardo, T., and Calefato, F., Tool
support for geographically dispersed inspection teams.
Software Process: Improvement and Practice, 8, 4 (2003), p.
217-231.
[47] Malone, T.W. and Crowston, K., The interdisciplinary
theory of coordination. ACM Computing Surveys, 26, 1
(1994), p. 87-119.
[48] McDonald, D.W. and Ackerman, M.S. Expertise
Recommender: A Flexible Recommendation System and
Architecture. in ACM Conference on Computer Supported
Cooperative Work. 2000. Philadelphia, PA: ACM Press.
[49] Mockus, A. and Herbsleb, J.D. Expertise Browser: A
Quantitative Approach to Identifying Expertise. in
International Conference on Software Engineering. 2002.
Orlando, FL.
[50] Mockus, A. and Weiss, D.M., Globalization by
Chunking: A Quantitative Approach. IEEE Software,
January - March, (2001), p.
[51] Morgan, R. and Maurer, F. MasePlanner: A Card-Based
Distributed Planning Tool for Agile Teams. in International
Conference on Global Software Engineering. 2006.
Florianopolis, Brazil.
[52] Narayanan, S., Mazumder, S., and R, R. Success of
Offshore Relationships: Engineering team structures. in
International Conference on Global Software Engineering.
2006. Florianopolis, Brazil.
[53] Olson, G.M. and Olson, J.S., Distance Matters. Human-
Computer Interaction, 15, (2000), p. 139-178.
[54] Ovaska, P., Rossi, M., and Marttiin, P., Architecture as
a coordination tool in multi-site software development.
Software Process: Improvement and Practice, 8, 4 (2003), p.
233-247.
[55] Paasivaara, M. and Lassenius, C., Collaboration
Practices in Global Inter-organizational Software
Development Projects. Sofware Process Improvement and
Practice, 8, (2000), p. 183-199.
[56] Paasivaara, M. and Lassenius, C. Could Global
Software Development Benefit from Agile Methods? in
International Conference on Global Software Engineering.
2006. Florianopolis, Brazil.

[57] Parnas, D.L., On the Criteria to be Used in
Decomposing Systems into Modules. Communications of the
ACM, 15, 12 (1972), p. 1053-1058.
[58] Perry, D.E. and Wolf, A.L., Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17, 4
(1992), p. 40-52.
[59] Ramesh, B., et al., Can distributed software
development be agile? Commun. ACM, 49, 10 (2006), p. 41-
46.
[60] Sangwan, R., et al., Global Software Development
Handbook. 2006, Boca Raton, FL: Auerbach Publications.
[61] Sarma, A., Noroozi, Z., and Hoek, A.v.d. Palantír:
raising awareness among configuration management
workspaces. in International Conference on Software
Engineering. 2003. Portland, Oregon.
[62] Sarma, A. and van der Hoek, A. Towards Awareness in
the Large. in International Conference on Global Software
Engineering. 2006. Florianopolis, Brazil.
[63] Shaw, M. and Garlan, D., Software Architecture:
Perspectives on an Emerging Discipline. 1996, Upper Saddle
River, NJ: Prentice Hall.
[64] Sinha, V., Sengupta, B., and Chandra, S., Enabling
Collaboration in Distributed Requirements Management.
IEEE Software, 23, 5 (2006), p. 52- 61.
[65] Souza, C.R.B.d., et al., Sometimes you need to see
through walls: a field study of application programming
interfaces, in Proceedings of the 2004 ACM conference on
Computer supported cooperative work. 2004, ACM Press:
Chicago, Illinois, USA.
[66] Spanjers, H., et al. Tool Support for Distributed
Software Engineering. in International Conference on Global
Software Engineering. 2006. Florianopolis, Brazil.
[67] Teasley, S.D., et al., Rapid Software Development
through Team Collocation. IEEE Transactions on Software
Engineering, 28, 7 (2002), p. 671-683.
[68] Whitehead, J., Collaboration in Software Engineering:
A Roadmap, in Future of Software Engineering 2007, L.
Briand and A. Wolf, Editors. 2007, IEEE-CS Press.

Future of Software Engineering(FOSE'07)
0-7695-2829-5/07 $20.00 © 2007

