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Abstract

With continuous nitrogen (N) enrichment and sulfur (S) deposition, soil acidification has accelerated
and become a global environmental issue. However, a full understanding of the general pattern of
ecosystem belowground processes in response to soil acidification due to the impacting factors

remains elusive. We conducted a meta-analysis of soil acidification impacts on belowground functions
using 304 observations from 49 independent studies, mainly including soil cations, soil nutrient,
respiration, root and microbial biomass. Our results show that acid addition significantly reduced soil
pH by 0.24 on average, with less pH decrease in forest than non-forest ecosystems. The response ratio
of soil pH was positively correlated with site precipitation and temperature, but negatively with initial
soil pH. Soil base cations (Ca®", Mg>", Na™) decreased while non-base cations (AI>*, Fe’*) increased
with soil acidification. Soil respiration, fine root biomass, microbial biomass carbon and nitrogen
were significantly reduced by 14.7%, 19.1%, 9.6% and 12.1%, respectively, under acid addition. These
indicate that soil carbon processes are sensitive to soil acidification. Overall, our meta-analysis suggests
astrong negative impact of soil acidification on belowground functions, with the potential to suppress

soil carbon emission. It also arouses our attention to the toxic effects of soil ions on terrestrial

ecosystems.

Introduction

Since the mid 20th century, acid rain has become a
serious global environmental problem due to rapid
industrial development (Blank 1985, Duan et al 2016).
The main sources of acid and acidifying pollutants are
sulfur dioxide (SO,), nitrogen oxides (NO,) and
ammonia (NH3) emitted from fossil fuel combustion
and agricultural activities (Zhao et al 2009, Yang et al
2012). Though SO, and NO, emissions have been
reduced in Europe and North America, they are
increasing in many developing countries due to coal
combustion (Gao et al 2018). Soil acidification is a
natural process, which has been accelerated by increases
in N and S deposition associated with human activities
(Grieve 2001, Kunhikrishnan et al 2016). Human
accelerated soil acidification alters biogeochemical

cycles and impairs ecosystem function (Stevens et al
2010, Liang et al 2018). Therefore, understanding the
general patterns of ecosystem processes with acid
deposition across diverse environments will provide
valuable knowledge for predicting future ecosystem
dynamics under global change. To date, however, there
has been no systematic global synthesis of acid deposi-
tion impact on ecosystem functions.

Acid deposition has complex effects on ecosystems,
especially for belowground processes. First, more H"
input to soil along with SO~ and NOj induced by acid
deposition may directly affect microbial activities
(Kuperman and Edwards 1997). Second, H' from acid
deposition will compete with base cations (e.g. K,
Mg*", Ca*") for replacement, which increase base
cation leaching out of soil. This further reduces soil acid
buffering capacity (Driscoll et al 2003) and nutrient

© 2019 The Author(s). Published by IOP Publishing Ltd
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availability (Likens et al 1996). Third, increased soil
acidification with continuous acid deposition has the
potential to mobilize and release free AI’* and Fe’" to
soil solution. This accumulation of toxic elements in
topsoil may eventually impair root growth and micro-
bial activity (Godbold et al 1988, Kochian 1995,
Poschenrieder et al 2008), which will consequently
reduces soil respiration.

The rate and form of acid deposition, soil type,
environmental factor, and ecosystem type all may reg-
ulate the effects of acid deposition on soil processes.
Normally, acid deposition rate should be a major fac-
tor to drive soil acidification (Vanhala et al 1996). Dif-
ferent acid forms, e.g. H,SO, and HNOj3, may also
contribute to the variable impacts of acid deposition
due to their different adsorption mechanism. NOj is
adsorbed only through electrostatic attraction, while
SO3~ can be specially adsorbed through ligand
exchange, especially in variable charge soils (Curtin
and Syers 1990, Guadalix and Pardo 1991). This spe-
cial adsorption may lead to a release of hydroxyl ions,
which could neutralize a part of the acids and retard
soil acidification to some extent. Furthermore, soil
type is a significant contributor to regulating soil
acidification response. It is expected that soils with
different initial pH may go through different acidifica-
tion buffering phases (Bowman et al 2008). Soil with
a lower pH generally experiences greater acid-
weathering, which makes less sensitive to external acid
input (De Vries et al 1989, Zhu 2017). High precipita-
tion accelerates the leaching of soil cations and further
aggravates acidification (Lapenis et al 2004, Ling et al
2007). Low temperature possibly depresses litter
decomposition (Oulehle ef al 2011, Liang et al 2013),
leading to litter accumulation and then weakening soil
acidification magnitude (Aerts 1997). The influence of
these abiotic and biotic factors in combination finally
causes different ecosystem response to acid deposi-
tion. Itis a challenge but essential to quantify the influ-
ences of those factors on the soil acidification impacts
across different experiments with different application
rates and acid agents to soils with varying buffering
capacities.

Here, we compiled a global dataset (304 observa-
tions) from 49 case studies and performed a meta-
analysis to quantify belowground process dynamics in
response to experimental acid addition. Specifically,
we addressed the following questions: (1) How have
various belowground processes respond to acid addi-
tion at global scale? (2) What are the main controlling
factors for the responses of belowground processes?

Materials and methods

Data compilation

Web of Science, Google Scholar and China National
Knowledge Infrastructure were searched for peer-
reviewed publications on experiments dealing with
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acid deposition and ecosystem function. The searched
keywords were: (acid deposition or S deposition or
simulated acid rain) AND (soil cations (e.g. Na™,
Mg“, Ca®™), soil nutrient (e.g. SOC, STN), soil
respiration, fine root biomass, microbial biomass).
The following criteria were employed to screen appro-
priate studies for analysis: (1) only acid addition
experiments in the field were included, with the
treatment duration lasting at least one growing season;
(2) The control and acid addition treatments had
to experience the same climate and soil condition;
(3) examined variables were required to be clearly
described by their means, sample sizes and standard
deviation.

To acquire as many observations as possible, we
gathered the data at each peak biomass stage of the
growing season during all measurement years. If sev-
eral studies with different vegetation types or environ-
mental conditions (i.e. annual temperature or
precipitation) were reported in an article, each study
was considered to be independent. Table-form data
were directly extracted, while graph-form data were
obtained by the Engauge Digitizer software (Free Soft-
ware Foundation, Inc., Boston, MA, USA). If climate
variables could not be obtained from the papers, we
used the latitude and longitude of each study to extract
these data from a global database (http://worldclim.
org/). Soil type data were acquired from the FAO data-
base (http://fao.org/). Finally, a global dataset was
established with 49 independent studies from 45
papers (figure S1 is available online at stacks.iop.org/
ERL/14/074003 /mmedia). This dataset covered the
area with latitude range from 23.15 to 69.75° N and
elevation range from 10 to 1200 m. Mean annual
temperature varied from —2 °C to 21.4 °C, and pre-
cipitation from 130 to 2400 mm. Ecosystems included
forest, grassland and peatland, but we sorted them
into two groups for analysis (forest and non-forest).
This is due to the lack of data from grassland and peat-
land ecosystems. Experimental duration spanned 1 to
14 years.

In our dataset, most data were related to below-
ground processes. Response variables included soil
cations (K', Na™, Mg”, Ca?*, zn*t, Mn?t, APPT,
Fe’"), soil nutrient (SOC-soil organic C, DOC-
dissolved organic C, STN-soil total N, soil NH,, soil
NO:s, soil available P, soil C:N), soil respiration, fine
root biomass, and microbial biomass (MBC-microbial
biomass C, MBN-microbial biomass N, Bac-bacterial
biomass and Fun-fungal biomass). Furthermore, our
dataset also involved other background data, such as
longitude, latitude, elevation, climate factors (i.e.
temperature and precipitation).

Meta-analysis

As described in previous studies (Hedges et al 1999, Lu
et al 2011), we employed meta-analysis techniques to
evaluate the impacts of acid addition on ecosystem
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belowground processes. Effect sizes of acid treatment
were calculated as equation (1):

10g (RR) = 10g (Xtreatment/ Xcontrol)

= 10g Xireatment — 10g X control

(6]

where Xy eatment aNd Xcontrol are the mean values in
acid addition and control treatments, respectively.

Effect sizes and their subsequent inferences in
meta-analysis may be influenced by how individual
observations are weighted (Mueller et al 2012, Ma and
Chen 2016). According to previous studies (Wu et al
2011, Ma and Chen 2016) and our analysis, the weigh-
ted method based on variance assigns extreme impor-
tance to individual effect sizes, with a result that overall
effect is mostly determined by a small number of
extreme observations. Thus, we calculated a weighting
factor (w) based on the sample size in each experiment
as follows (Adams et al 1997, Pittelkow et al 2015,
Zhangetal2018).

Ncontrol X Mireatment
W = contro. reatmen , (2)

Meontrol + Mireatment

where #iontrol and Mireatment are the sample size of
variables in control and acid treatment, respectively.

Linear mixed effect model fitted with the Restric-
ted Maximal Likelihood was utilized to analyze the
impacts of acid addition on belowground processes as
follows (‘lme4’ R package) (Bates et al 2015):

In(RR) = 50 + Tistudy + ¢, (3

where (g, M.y and € are coefficient, the random
effect of ‘study’ and sampling error respectively. The
possible autocorrelation among observations within
each study was explicitly accounted by the random
effect of study (Chen and Chen 2018). Linear, power
and quadratic functions were applied to examine the
relationships between log(RR) of belowground pro-
cesses (i.e. soil cations-K*, Nat, Mg”, Ca*t, Zn*t,
Mn>*, AP’*, Fe’*; soil nutrient-SOC, DOC, STN,
NO;, NHj, AP, soil C:N; soil respiration; fine root
biomass; microbial biomass) and log(RR) of soil
acidification (soil pH versus acid addition level), MAT
or MAP. We selected the best bivariate relationships
based on the Akaike Information Criterion (AIC). If
the difference in AIC among multiple models was less
than two, the simple model was selected. If the
difference in AIC was larger than two, the model with
lower AIC was chosen (Wagenmakers 2003). Further-
more, we found that the residuals of most models did
not follow a normal distribution with the Shapiro—
WilK’s test. Thus, we applied a nonparametric boot-
strap analysis to estimate the effect sizes and their 95%
confidence interval (CI) using the ‘boot’ package
(Davison and Hinkley 1997, Canty and Ripley 2012).
In addition, we analyzed the relationships of below-
ground processes with both acid addition level and soil
pH change, and found that the results were consistent
between two analyses. To include as much data in
analysis as possible, we mainly presented the results
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with the soil pH analysis in our main text, but put
those with the acid level analysis in the supplementary
material.

All independent variables were scaled to ensure the
comparability between the results. For ease of inter-
pretation, we converted the results of log (RR) as a
percentage of belowground process responses to acid
treatment (i.e.100 x (10°8(RR) _ 1)) All statistical
analyses and figure plotting were performed in R ver-
sion 3.4.3 (R Core Team 2017).

Results

Effects of acid treatment on belowground processes
At global scale, acid addition significantly reduced soil
pH by 0.24 on average (figures 1, 5). Similarly, acid
addition caused a significant decrease in soil base
cations, such as Na*, Mg*" and Ca®". In contrast, acid
treatment increased soil AI’* and Fe’* by 22.7% and
48.6%, respectively (figures 1, 5). Moreover, acid
addition further reduced soil carbon processes signifi-
cantly, with a lower decrease in MBC (9.6%) than fine
root biomass (19.1%) and soil respiration (14.7%). For
microbial community, bacterial biomass showed a
significant decrease (16.4%), whereas fungal biomass
was not sensitive (figures 1, 5). Acid addition mostly
had no impact on soil nutrient, such as SOC, DOC,
STN, NH,~N, NO3—N, available P or soil C: N.

Across the acid addition gradient, soil pH was sig-
nificantly reduced when acid addition rate was higher
than 5 kmol H" ha™" yr ™' (figure 2). Below this level,
soil pH did not show any significant response. Fur-
thermore, we found similar relationships of below-
ground processes with acid addition level versus soil
pH change. To be concise, here we mainly presented
those results with the pH analysis. For soil cations, soil
Na*, Mg®" and Ca*" reduced linearly with decreasing
soil pH (figure 3). By contrast, soil AI’" and Fe’"
showed a positive relationship with soil acidification
(figure 3). With respect to soil nutrient, soil acidifica-
tion significantly suppressed soil NO3;—N and soil
C: N, but promoted soil NH,~N and available P
(figure 3). Soil respiration and microbial biomass car-
bon displayed a positive relationship with soil acid-
ification (figure 3). Moreover, soil acidification
linearly reduced bacterial biomass, whereas enhanced
fungal biomass (figure 3).

For different forms of acid addition, our results
demonstrated that most belowground processes
showed similar responses to both addition of
H,SO, + HNOj; and H,SO, alone. Moreover, no sig-
nificant difference of soil NO3 occurred between these
two acid forms. There was a positive response of soil
NH; caused by H,SO, addition, but no response
under H,SO, + HNOj; addition (figure S3).
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Figure 1. Effects of acid addition on soil pH, soil cations (K, Na™, Mg“, Ca?", Zn*", Mn**, AI’*, Fe® ™), soil nutrient (SOC-soil
organic C, DOC-dissolved organic C, STN-soil total N, Soil NO3—NOs-N, Soil NH,~NH,—N, AP-available P, soil C:N), soil
respiration (SR), fine root biomass (FRB) and microbes (MBC-microbial biomass C, MBN-microbial biomass N, Fun-fungal biomass,
Bac-bacterial biomass). Error bars represent 95% confidence intervals (Cls). The dotted line was drawn at weighted mean log
(RR) = 0. The simple size for each variable was shown on the right. The effect of acid addition is considered significant if the 95% CI
does not cover zero. Based on the formula of log, ;(H catment/ Hi piro) = 10810(H reatment) — 108,0(HL 00> S0il pH change by acid
addition was represented as (PHcontrol — PHtreatment)- Notably, the data in the graph were presented by pH reatment — PHecontrol-

Ecosystem type affecting acid addition effects
Between different ecosystems, forests had a lower
reduction in soil pH (0.15) than non-forest ecosystems
(0.96). In forests, acid addition posed a significant
impact on most belowground processes, negatively
affecting soil Mg®*, Ca>", soil respiration, fine root
biomass, MBC, MBN and bacterial biomass but
positively influencing soil Fe’*, NH,~N, available P
and fungal biomass (figure S4a). In non-forest ecosys-
tems, acid addition only decreased soil Na™ by 29.5%
and increased soil AI’" by 87.1% (figure S4b). In
addition, among different soil types, acrisols, kastano-
zem, luvisol and podzol showed a significant
pH reduction, whereas anthrosol, calcisol and cambi-
sol had no significant response (figure 2).

Environmental factors regulating acid addition
effects

The response ratio of soil pH showed a negative
relationship with initial soil pH (figure 4(a)), but a
positive relationship with site temperature and precipi-
tation (figures 4(b), (c)). High temperature tended to

lessen the response magnitudes of soil A’", NO;-N,
NH,—N and available P to acid addition, but to enhance
that of fine root biomass (figure S5b). More precipita-
tion intensified the effect of acid treatment on soil Mg” "
and fine root biomass, while it attenuated the impact on
soil AP, NH,~N and fungal biomass (figure S5a).

Discussion

Soil itself is a buffer system for external H" input.
When H* input exceeds the maximum of soil buffer
capacity, it will cause soil acidification. By synthesizing
the results from global acid addition experiments, we
found that acid addition significantly reduced soil
pH by 0.24 unit (figures 1, 5). A similar reduction in
pH occurred, with a decrease of 0.26 pH unit, reported
in a global synthesis of nitrogen addition experiments
(Tian and Niu 2015), but it is lower than a decrease of
0.63 unit reported from Chinese northern grasslands
over the last two decades (Yang et al 2012). Soil
acidification became significant when the H' addition
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dotted line was drawn at soil pH change = 0. The sample size for each variable was shown on the right. Error bars represent 95%
confidence intervals (Cls). The effect of acid addition is considered significantat a = 0.05 if the 95% CI does not cover zero. The unit

Soil pH change

rate was more than 5 kmol ha™' yr ™', which indicates

a threshold level of acid deposition driving acidifica-
tion (Liao and Jiang (2002)). The similar responses of
belowground processes between different forms of
H,SO, + HNO; and H,SO, addition imply a domi-
nant effect of soil acidification and little impact by
N-fertilizer. However, different soil types showed
different sensitivities to acid addition (De Vries et al
1989). The largest soil pH decrease in Kastanozem is
likely because its carbonate is susceptible to H* input
(Bowman et al 2008, IUSS Working Group
WRB 2015). This may lead to the larger decrease of soil
pH in non-forests than forest ecosystems.

Acid addition-induced soil acidification further
altered soil nutrient availability. The increase of soil
available P with soil pH reduction indicates that much
H™ input by acid addition mainly promotes the release
of phosphate from Fe or Al binding compound
(Barrow and Shaw 1979, Barrow 2017). In addition,
we found that soil NHJ increased with a decrease in
soil pH, likely due to the inhibition of nitrification and
plant N uptake (Kemmitt et al 2005, Vanguelova et al
2007, Chen et al 2013). Furthermore, more H" inhibi-
tion of nitrification can suppress the transformation of

soil NHj to NOj, resulting in a negative relationship
of soil NO3 with acid addition level (figure S2) (Chen
etal2013).

In line with our expectation, soil acidification
caused a significant reduction in fine root biomass,
which is mainly due to the following reasons. First,
acid deposition accelerated the leaching of soil base
cations (Mg”, Ca2+), further reducing their avail-
ability (Vanhala et al 1996, Pennanen et al 1998, Chen
et al 2013, Chen et al 2015). This may directly reduce
plant uptake for these essential elements, resulting in
plant nutrient deficiency and then limiting primary
productivity (Kochian 1995, Van Den Berg et al 2005,
Vanguelova et al 2007, Chen et al 2013). Second, once
base cations have been depleted, soil may release and
accumulate toxic ions like A" (Bowman ef al 2008).
In this study, we indeed found that acid addition led to
asignificant increase in A" and Fe’*. Increasing AI’*
can reduce root nutrient absorption, and much
absorption of AI’* will interfere with plant physiologi-
cal processes and finally cause AI’* toxicity (Ulrich
et al 1980). These together could explain the fact that
root biomass was significantly reduced by acid deposi-
tion (Hahn and Marschner 1998, Li et al 2018).
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Figure 3. Linear slopes in the relationship between the response ratio of soil pH and soil cations (K, Na™, Mg”, Ca**, Zn*", Mn*T,
AP, Fe®™), soil nutrient (SOC-soil organic C, DOC-dissolved organic C, STN-soil total N, Soil NO3~NO5-N, Soil NH,~NH,—N, AP-
available P, soil C:N), soil respiration, fine root biomass or microbes (MBC-microbial biomass C, MBN-microbial biomass N, Fun-
fungal biomass, Bac-bacterial biomass). If the 95% CI does not overlap the slope = 0, it means a significant response in soil
belowground processes caused by acidification.

Acid deposition also induced a significant decrease
in bacterial biomass, but had no effect on fungal bio-
mass (figures 1, 5). As shown in the summary figure
(figure 5), acid addition-induced soil acidification and
the ion toxicity (AI’* and Fe’") were two key factors to
affect soil microbes (Chen et al 2013). The decline in
bacteria biomass and no change in fungal biomass may
be attributed to the fact that fungi are less sensitive to
acidification and more tolerant to H* and AI’* when
compared to bacteria (Rousk et al 2009, Aliasgharzad
et al 2010, Strickland and Rousk 2010). For instance,
due to the difference in cell wall structure between
fungi and bacteria (Myrold and Nason 1992), fungi
can store excess H' in the vacuoles and then extrude it
into the environment (Kuperman and Edwards 1997).
For the A’ toxicity under acid deposition, on the one
hand, its high concentration may directly decrease
microbial biomass due to its toxicity to microbial cells
(Pina and Cervantes 1996). On the other hand, higher
level of A’ perhaps reduces plant substrate inputs to
soil (e.g. dead root, root exudate), further decreasing
the conversion efficiency of plant C into microbial bio-
mass C (Pietri and Brookes 2008, Oulehle et al 2018).

Soil respiration, which consists of autotrophic
respiration (R,) and heterotrophic respiration (Ry), is
one of the largest carbon effluxes in terrestrial ecosys-
tems (Kuzyakov 2006, Luo and Zhou 2006). The C
release through R, or Ry, is associated with below-
ground C pools, such as root biomass, soil organic C
(SOC) and microbial biomass C (MBC) (Zhou et al
2014). Several mechanisms for root and microbial
processes may help explain the decline in soil respira-
tion under soil acidification (figure 5). First, more H*
likely reduces microbial physiology and biomass, and
then depresses soil heterotrophic respiration (Riggs
and Hobbie 2016). Second, the nutrient limitation of
microbial growth due to soil base cation loss (e.g.
Mg”, Ca’") (Bowman et al 2008, Oulehle er al 2018)
and other ion (e.g. H, AI’") toxicity (Tian and
Niu 2015) tend to reduce soil heterotrophic respira-
tion. Moreover, we also found a negative effect of acid
addition on fine root biomass, which should cause a
decrease in autotrophic respiration and thus soil
respiration (Davidson et al 2006, Liang et al 2013).

Acid deposition impacts on belowground processes
varied with environmental factors. Soil pH decreased
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more at sites with high initial pH (figure 4(a)), which is
likely because soils have different acid buffering capa-
cities depending on the initial pH. It is generally accep-
ted that the exchange capacity of soil cation is: trivalent
cations (Fe’™ > AI’") > divalent cations (Mn?" >
Zn*" > Ca®" > Mg"") > monovalent cations (K* >
Na™). High valence cations will be replaced to buffer
soil acidification only when low valence cations are
mostly depleted. Based on the charge equivalent princi-
ple, soil with high initial pH is more vulnerable to be
acidified. Contrary to our expectation, soil pH reduced
less in sites with higher precipitation (figure 4(c)).
Although more precipitation is expected to promote
soil acidification by accelerating cation leaching, sites
with high precipitation had a low initial soil pH in our
study, which were less vulnerable to be acidified
(figure 4(c)). In a word, our findings emphasize the

interactive effects of acid deposition and environmental
factors on soil acidification.

Opverall, this study has important implications for
soil biogeochemical cycles. We found that acid addition
significantly reduced the exchangeable base cations of
Na™, Mg2+, Ca®" in soils. Similar to the result of
N-induced soil acidification (Tian and Niu 2015), acid
deposition induced soil acidification process goes
through different buffering stages. The decline in soil
pH is accompanied by a depletion of soil base cations.
Once base cations have been depleted, soil reaches toxic
levels because of AI’* release. A significant increase in
soil free A" has been already detected under acid
deposition, suggesting that soil in terrestrial ecosystem
has begun to enter AI’* buffering stage. All these alert
our attention to the danger of the coming soil acidifica-
tion and its buffering stages of toxic A’ * and Fe’ .
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Figure 5. Conceptual figure summarizing the relative changes in belowground processes under acid addition.
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Conclusion

Our synthesis revealed that belowground processes
were sensitive to acid deposition at global scale and
across different ecosystems. Global soil acidification is
currently in a transition stage from base cation (Ca*",
Mg**, K*) to non-base cation buffering (AI>*, Fe’ ™).
This calls our attention to the toxic effects of soil ions
on terrestrial ecosystems. Moreover, acid deposition
further caused a decline in microbial biomass, fine
root biomass and soil respiration, suggesting that the
inhibition of soil carbon emission will substantially
change soil carbon balance and its feedback to climate
change. However, it is difficult to predict the magni-
tude of soil acidification with acid deposition and its
impacts on belowground processes, mainly due to the
complex relationships of acid effects with diverse
environmental factors (soil properties and climate).
Overall, this meta-analysis provides the first global
viewpoint on linking belowground processes with soil
acidification under acid deposition.
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