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Society relies on Earth system models (ESMs) to predict future climate and carbon (C) 1 

cycle feedbacks. However, the soil C response to climate change is highly uncertain in these 2 

models1,2, and they omit key biogeochemical mechanisms3-5.  Specifically, the traditional 3 

approach in ESMs lack direct microbial control over soil C dynamics6-8. Thus, we tested a new 4 

model that explicitly represents microbial mechanisms of soil C cycling at the global scale.  5 

Compared to traditional models, the microbial model simulates soil C pools that more closely 6 

match contemporary observations. It also predicts a much wider range of soil C responses to 7 

climate change over the twenty-first century. Global soils accumulate C if microbial growth 8 

efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, 9 

the microbial model predicts large soil C losses. By comparison, traditional models predict 10 

modest soil C losses with global warming. Microbes also change the soil response to increased C 11 

inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes 12 

consume these additional inputs; whereas in traditional models, additional inputs lead to C 13 

storage. Our results indicate that ESMs should simulate microbial physiology in order to more 14 

accurately project climate change feedbacks.  15 

Contemporary ESMs use traditional soil C models, which implicitly simulate microbial 16 

decomposition via first-order kinetics that determine turnover rates of soil C pools1,2.  Although 17 

such models can replicate extant soil C pools at various scales9,10, their ability to predict soil C 18 

response in a changing environment remains unresolved11,12.  In the past 30 years, researchers 19 

have identified key processes and feedbacks that could be important for accurately simulating 20 

future C cycle—climate feedbacks. For example, traditional models neglect microbial 21 

physiological processes that transform and stabilize soil C inputs3-5.  In contrast, recent microbial 22 

models explicitly simulate microbial biomass pools that catalyze soil C mineralization6,8 and 23 
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produce notably different results in transient simulations6.  By representing microbial 24 

physiological responses, such models may provide a better fit to observations, especially in a 25 

changing environment13,14.  Yet to date, no modeling studies have tested the relevance of 26 

microbial mechanisms for soil C responses to climate change at the global scale. 27 

We created a new soil biogeochemistry module for use in the Community Land Model 28 

that explicitly simulates microbial biomass pools (hereafter referred to as the CLM microbial 29 

model; Fig. 1; modified from ref.6).  The CLM microbial model represents aboveground and 30 

belowground processes and separates belowground pools into surface (0-30 cm) and subsurface 31 

(30-100 cm) horizons.  Microbes in this model directly catalyze the mineralization of litter and 32 

soil C pools according to Michaelis-Menten kinetics.  In this formulation, decomposition losses 33 

can be limited by both substrate availability (the organic C pools) and the microbial biomass, 34 

which is assumed to be the source of enzymatic activity. This structure differs from traditional 35 

models in which decomposition losses depend only on first-order decay of substrate (soil C) 36 

pools6. 37 

Temperature affects three key microbial parameters in our model.  The Michaelis-Menten 38 

relationship requires two parameters: Km, the substrate half-saturation constant, and Vmax, the 39 

maximal reaction velocity (Fig. 1).  We used observational data to constrain these parameters 40 

and their temperature sensitivities, which generally follow an exponential form15. The third key 41 

parameter is microbial growth efficiency (MGE), which determines how much microbial 42 

biomass is produced per unit of substrate consumed16.  MGE probably declines with increasing 43 

temperature, although the magnitude of the response is uncertain17.  Consequently, C 44 

decomposition depends on temperature, substrate availability, and the size of the microbial 45 

biomass pool.  46 
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After running to steady-state, we compared soil C pools from the CLM microbial model 47 

to soil C pools from two traditional models (illustrated with model parameterizations from 48 

CLM4cn18 and DAYCENT10). We also compared model outputs to observations from the 49 

globally gridded Harmonized World Soils Database19. Global simulations were forced with 50 

observationally-derived litter inputs (see methods) and with soil temperature and moisture from a 51 

20th century simulation18.  Overall, the CLM microbial model explained 50% of the spatial 52 

variation in the soil C observations, whereas the traditional models explained 28-30% of the 53 

variation and showed greater average deviations from soil C observations (Fig. 2). 54 

Other traditional models perform even worse than the two reported here. For example, a 55 

prior version of CLM4cn, using modeled litter inputs, explained only ~2% of the spatial 56 

variation in observed soil C stocks at the 1º grid scale, and no other ESM explained more than 57 

16% of the variation2. Some of this poor performance may be due to ESM errors in simulating 58 

litter inputs. We avoided these errors by using litterfall observations for our current analysis. 59 

Still, the CLM microbial model explained 20% more soil C variation than traditional CLM4cn 60 

with observed litterfall, an improvement rivaling the entire explanatory power of previous 61 

models.  Moreover, the CLM microbial model accurately simulates observed soil C pools in both 62 

surface soil layers (0-30 cm) and total soil profiles (0-100 cm; r = 0.75 and 0.71, respectively; SI 63 

Fig. 1). 64 

A closer examination of regional patterns illustrates specific gaps in our representation of 65 

processes driving soil C cycling (Fig. 2). Some regions, especially in the tropics, have low 66 

predicted soil C densities compared to soil C observations.  These low biases suggest systematic 67 

problems with modeling the physiochemical soil environment.  Specifically, the CLM microbial 68 

model does not simulate the physical protection of soil C or pH effects on soil microbial activity.  69 
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These mechanisms should be a focus for future model development, especially in tropical soils. 70 

Additionally, simulating processes that build and maintain organic soils remains a challenge in 71 

ESMs20.  In the Arctic, the CLM microbial model generates higher soil C densities than 72 

traditional modeling approaches (Fig. 2). However, there are poor spatial correlations between 73 

our modeled soil C pools and observational datasets (SI Fig. 2). Also, all of the Arctic datasets 74 

show a high degree of spatial heterogeneity in soil C, a feature clearly absent from our model 75 

simulations (SI Fig. 2).  Improved hydrologic and moisture controls over soil C turnover will 76 

likely be needed to simulate this heterogeneity in the Arctic.  In addition to model improvements, 77 

measurement efforts should address the wide discrepancies in empirical estimates of Arctic soil 78 

C (SI Fig. 2).   79 

Accurate simulation of current soil C stocks is essential, but the main goal of ESMs is to 80 

project carbon – climate feedbacks in the future. When the environment changes, the CLM 81 

microbial model makes projections that differ from traditional soil biogeochemistry models (Fig. 82 

3). For example, perturbations like elevated CO2 or N deposition may increase plant productivity 83 

and C inputs to soils.  In the CLM microbial model, increasing global litter inputs by 20% results 84 

in an ephemeral accumulation of soil C, which concurrently increases microbial biomass. Larger 85 

microbial biomass pools then accelerate rates of soil C turnover and increase rates of 86 

heterotrophic respiration. The net effect is no change in soil C pools after 30 years (Fig. 3a). In 87 

contrast, increasing litterfall inputs to traditional models causes soil C accumulation. The 88 

difference is due to the joint dependence of soil C loss on substrate pool size and microbial 89 

biomass in the microbial model. 90 

On balance, projections from the CLM microbial model show better agreement with 91 

observations from leaf litter manipulations21,22 and CO2 enrichment studies23. Increasing litter 92 
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inputs generally increase rates of soil respiration, but elicit no change in soil C storage (but see 93 

ref.24).  Although the mechanisms underlying these observations are not well understood, several 94 

studies emphasize the importance of the priming effect. Priming occurs when increased inputs of 95 

fresh organic substrates accelerate microbial decomposition of existing soil C25.  Typically, 96 

priming is driven by increased microbial demand for nutrients from soil organic matter, or 97 

increased microbial growth and enzyme production in response to substrate addition.  Only the 98 

latter mechanism operated in our simulations because the CLM microbial model does not include 99 

C-N interactions. 100 

We use both microbial and traditional models to simulate soil C responses to global 101 

warming (Fig. 3b).   In the microbial model, elevated temperatures accelerate enzyme kinetics, 102 

which generally leads to soil C loss. However, this effect can be completely offset if MGE 103 

declines with warming and reduces the microbial biomass that controls decomposition.  If MGE 104 

does not change with warming, then enzyme kinetics dominate and soils lose up to 300 Pg C. 105 

Consequently, global soil C losses over the 21st century could be negligible, or massive, 106 

depending on the thermal response of MGE.  Empirical studies suggest that MGE declines with 107 

increasing temperature, at least in the short term16,17. Still, the MGE response to temperature is 108 

poorly constrained, and adaptive processes in microbial communities could stabilize MGE in a 109 

warming world. In traditional models, MGE is a fixed constant. Accordingly, warming 110 

temperatures only affect kinetic constants in traditional models, which predict modest and 111 

similar soil C losses in the warming scenario (Fig. 3b). Thus, traditional ESMs miss an important 112 

element of global climate sensitivity driven by microbial control over soil C cycling. 113 

Despite better agreement with soil C observations, nearly 50% of the spatial variation in 114 

global soil C pools remains to be explained.  Our work is just the first step toward a new 115 
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generation of models that includes key biological and physical mechanisms in the soil C cycle. 116 

For example, shifts in microbial community structure could alter the temperature sensitivity of 117 

heterotrophic respiration26, such that soils respire less CO2 than expected for a given amount of 118 

warming. Enzyme Km, and enzyme Vmax could also adapt to climate warming, such that enzyme 119 

catalytic rates increase more than expected at warmer temperatures14,15. Some of these 120 

parameters may also shift with changes in N availability, possibly as a result of shifts in 121 

microbial community structure27. Accounting for these mechanisms not only holds promise for 122 

improved simulation of current soil C distributions, but should also increase confidence in the 123 

prediction of soil C responses to future climate change. However, the magnitude of microbial 124 

adaptation to climate change remains controversial28, and more empirical studies are needed to 125 

determine the mechanisms underlying adaptation, including physiological acclimation, microbial 126 

community shifts, and evolutionary processes.  Nonetheless our analysis suggests that soil C 127 

predictions from current ESMs will remain questionable until they can account for critical 128 

microbial mechanisms that affect soil carbon dynamics. 129 

Another key shortcoming in the CLM microbial model is the lack of soil mineral 130 

interactions.  In particular, there is no physiochemical protection of soil organic matter on 131 

mineral surfaces or within aggregates, yet physical protection is known to affect soil C 132 

storage4,7,29.  This omission is also relevant because minerals and aggregates are involved in soil 133 

C responses to perturbations3,7,29.  For example, soil mineralogy may influence the stabilization 134 

of microbial byproducts and the temperature sensitivity of organic matter sorption and 135 

desorption. These mechanisms should be high priorities for future model development.  136 

Our results have broad implications because society relies on ESMs to predict future 137 

atmospheric CO2 levels and climate.  Our model comparison shows that traditional ESMs omit 138 
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key microbial mechanisms that determine soil C responses to global climate change.  Clearly 139 

additional mechanisms should be included, but our model is a crucial first step toward a new 140 

generation of global models that integrates microbial physiology. Soil biogeochemistry models 141 

in ESMs deserve further investigation, development, and more rigorous benchmarking with data, 142 

but we contend that an explicitly microbial approach, like the one presented here, has several 143 

advantages. Simple microbial models should help bring ESMs into better alignment with our 144 

theoretical understanding of processes controlling turnover and stabilization of soil C, without 145 

adding undue computational expense.  Additionally, key parameters in the CLM microbial model 146 

can be measured, a feature that should facilitate future model development, evaluation, and 147 

validation.  Finally, this approach represents biological mechanisms responsible for carbon 148 

turnover in soils and will likely generate more accurate predictions of soil C feedbacks on 149 

climate change. 150 

 151 

Methods 152 

Equilibrium soil C pools were calculated for CLM4cn and DAYCENT models using an 153 

analytical solution30 with globally gridded input datasets for mean annual soil moisture and 154 

temperature18, soil texture and pH19, litter chemistry31, and litterfall inputs derived from 155 

observations32 (described in ref.33).  We forced the model with these litterfall data to reduce error 156 

and biases associated with ESMs’ predictions of net primary productivity, plant C allocation, and 157 

associated litter fluxes.  This modification substantially improves soil C estimates in 158 

conventional soil biogeochemistry models33.  Additionally, DAYCENT parameterizations were 159 

modified to simulate deeper soil horizons and minimize error between modeled and observed 160 

soil C pools33.  In its current configuration, the CLM microbial model has no structure allowing 161 
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for the decomposition of coarse woody debris.  Accordingly, coarse woody debris inputs were 162 

omitted from the litterfall inputs used to force all three models evaluated here. For conventional 163 

models, soil C pools reported here are the sums of all pools (Fig. 2b, 2c). 164 

Using the same soil temperature and litterfall inputs, we calculated equilibrium soil C 165 

pools for the CLM microbial model using a traditional spin-up (~1500 y run at hourly time 166 

steps).  For vertically resolved soils in the CLM microbial model, we allocated 65% of root litter 167 

inputs to surface soils (0-30 cm) and the remaining 35% to subsurface horizons (30-100 cm).  168 

Soil C pools reported for the CLM microbial model represent the sum of SOC and microbial 169 

biomass, although at equilibrium, microbial biomass pools are only ~1% of total soil C pools.  170 

We compared modeled soil C pools with observations from the Harmonized World Soils 171 

Database19 using sample cross-correlation and area weighted root-mean-square-error (RMSE). 172 

We assumed Michaelis-Menten kinetics parameters (Vmax and Km) and MGE were 173 

temperature sensitive, using parameter values reported in refs.6,15. Median values used to 174 

calculate the relationship between temperature and enzyme kinetics produced plausible global 175 

soil C pools (SI Fig. 3), although high RMSE, large litter pools, and large soil C pools suggested 176 

that C turnover was too slow, especially at high latitudes.  Therefore we used the upper and 177 

lower bounds for the temperature sensitivity of Vmax and Km, respectively, in the CLM microbial 178 

model to simulate equilibrium soil C pools that minimized RMSE with observations (Fig. 2d, SI 179 

Fig. 1).  180 

To examine model behaviors in response to future global change, we took steady-state 181 

soil C estimates generated for each model and perturbed litter inputs or soil temperature.  In both 182 

perturbation experiments, control simulations were forced with observationally-derived litter 183 

inputs evenly distributed throughout the year, and mean monthly soil temperature and soil 184 
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moisture data from 1985-2005 from a single Community Earth System Model (CESM) ensemble 185 

member from archived CMIP5 experiments (publically available online at 186 

http://www.earthsystemgrid.org).  In year 5 of the litter manipulation experiment, we increased 187 

global litter fluxes 20% for 30 years, calculating the difference in global soil C pools between 188 

control and increased litter simulations (Fig. 3a).  Using CESM soil temperature projections from 189 

an archived CMIP5 experiment for RCP 8.5 from 2006 to 2100, we calculated the change in soil 190 

C pools predicted by 4.8°C warming by the end of this century for each model (Fig. 3b).  The 191 

CLM microbial model has temperature sensitive MGE.  We explored the implications of 192 

assumptions made about changes in MGE with increasing soil temperatures, allowing: 1) 193 

instantaneous decreases in MGE with warming soil temperatures (Fig. 3b, solid green line); or 2) 194 

instantaneous adaptation of microbial community MGE, so that MGE does not decrease with 195 

warming (dashed green line).  Data presented in Fig. 3b are a subset of results from these 196 

warming experiments showing the range of possible outcomes with different parameters and 197 

initial soil C pools.  More information is available in SI Fig. 4.  198 

 199 
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 301 

Figure 1 | Diagram of the CLM microbial model.  The model explicitly simulates microbial-302 

driven soil C cycling in above ground, surface (0-30 cm) and sub-surface (30-100 cm) soil 303 

horizons. Ovals represent pools for litter (Lit), microbial biomass (Mic), and soil organic carbon 304 

(SOC).   Fluxes between pools are shown with arrows.  Plant inputs enter leaf and root litter 305 

pools (solid black arrows).  A small fraction of litter flux (Fi) enters SOC pools without passing 306 

through microbial biomass (dashed black arrows). Otherwise, litter and SOC pools pass through 307 

microbial biomass, with rates determined by the size of the microbial biomass pool and 308 

temperature sensitive Michaelis-Menten kinetic parameters (Vmax and Km, red arrows), based on 309 

observations15 (SI Table 1). Microbial respiration is also assumed to be temperature sensitive, 310 

and equal to 1 – MGE (heavy black arrows). Currently, MGE declines linearly with soil 311 

temperature, but parameters for this relationship are not well constrained by observations (see 312 

also ref15). Microbial turnover (i.e., mortality; τ) converts microbial biomass to SOC pools (blue 313 

arrows).  In the current parameterization, τ = 0.0005 h-1 and Fi = 0.02 h-1 (SI Table 1). 314 

 315 

Figure 2 | Global distribution of soil C pools (0-100 cm) from observations19 and models. (a) 316 

Observations, global total = 1259 Pg C, (b) CLM4cn, global total = 691 Pg C [spatial correlation 317 
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with observations (r) = 0.55, model-weighted root mean square error (RMSE) = 7.1 kg C m-2]; 318 

(c) DAYCENT, global total = 939 Pg C [r = 0.53, RMSE = 7.6]; and (d) the CLM microbial 319 

model, global total =  1310 Pg C [r = 0.71, RMSE = 5.3].   320 

 321 

Figure 3 | Divergent model responses of global soil C pools in global change simulations. 322 

Response of steady-state soil C pools for conventional soil biogeochemistry models [CLM4cn 323 

(black) and DAYCENT (blue)] and the CLM microbial model (green) to: (a) 20% global 324 

increase in litterfall beginning in year 5; (b) 4.8
o
C mean increase in global temperature by 2100, 325 

predicted by ensemble member one of CESM simulations for RCP 8.5 used in CMIP5 326 

experiments from 2006-2100. For the microbial model, MGE changes with temperature (solid 327 

line) or microbial communities adapt to increasing temperatures without changing MGE (dashed 328 

line). 329 
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