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1. Introduction. This paper studies an initial-value problem for the
generalized Benjamin-Ono-Burgers equation (BOB)

ut + P (u)x − νuxx − H(uxx) = 0, x ∈ R, t > 0, (1.1)

u(x, 0) = f(x), x ∈ R, (1.2)

where P (u) : R → R is a given C∞ function satisfying certain growth con-
ditions to be specified below, and H is the Hilbert transform defined by the
principal-value integral

Hu(x) =
1

π
PV

∫ ∞

−∞

u(y)

x − y
dy. (1.3)

In equation (1.1), subscripts denote partial differentiation, u(x, t) is a real-
valued function, and ν is a positive number. Using PDE techniques, the
following results are obtained about the solution and its long time asymptotic
behavior of the above initial value problem:

1. Let P (u) satisfy either of the following two restrictions,

lim sup
u→+∞

|P ′(u)|
|u|2 ≤ C, (1.4)

Received for publication January 1998.
*Current address: Department of Mathematical Sciences, New Jersey Institute of Tech-

nology, Newark, NJ 07102.
AMS Subject Classifications: 35B40, 35B45, 35C20, 35Q58, 35Q72, 45G10, 76B15.

115



116 a.s. fokas and l. luo

or when Λ(u) ≤ 0 and P ′(u) ≤ 0,

|P ′(u)| ≤ Ce|u|, (1.5)

where Λ′(u) = P (u), Λ(0) = 0, prime denotes differentiation, and C is some
positive number. Then, for any f(x) with finite H1(R)-norm, the initial-
value problem defined by equations (1.1) and (1.2) has a global solution in
H1(R) for any finite t > 0. (Typical examples of P (u) satisfying (1.4) and
(1.5) are u2 and e−u, respectively.)

2. Let
P (u) = cup+1, p > 2, c a constant. (1.6)

Assume that the initial-value problem (1.1) and (1.2) has a global solution∗.
Then the long time behavior of the solution u is decomposed into two parts.
One part is identical with the long time behavior of the solution w(x, t) of
the corresponding linearized equation, and the other part is a higher order
term which is given explicitly in terms of P (u) : If p > 2,

lim
t→+∞

t
3

2

(
|u(·, t) − w(·, t)|2

)2
=

c2

4ν(8νπ)
1

2

( ∫ +∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2

. (1.7)

This paper is a continuation of [6] but can be read independently. The
only results of [6] used here without proof are the long time behavior of the
solution w of the linear equation of (1.1), and the leading behavior of u of
the equation (1.1) for long time.

We conclude this introduction with some remarks.

1. In the analysis of the long time asymptotics of equation (1.1) we
have assumed that P (u) is given by equation (1.6). This assumption was
made only in order to simplify the analytical derivations. Actually, since the
solutions of equations (1.1) and (1.2) decay to zero in the L2 and in the L∞
norms, one can choose T large enough such that |P (u)| ≤ |c||u|p+1 for t ≥ T.

Hence, in general, the assumption on P will be that it vanishes at u = 0 at
least in the order p + 1 for p > 2.

2. If ν = 0 and P (u) = 1
2u2, equation (1.1) becomes the Benjamin-

Ono equation. Using the fact that this equation possesses infinitely many
conservation laws, it is possible to show that its initial-value problem is
globally well posed in H1(R) [1, 12, 13, 16, 18]. The Benjamin-Ono equation

∗if c < 0 and p is even, or if c > 0 and p = 2, it follows from 1 above that this is the
case for all f ∈ H1(R); otherwise f should be sufficiently small in L2-norm [6].
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was originally derived as a model in the study of internal waves in deep,
stratified fluids [3, 15]. If the dissipation effects cannot be neglected, then
the term −νuxx must be added [10], and the so-called Benjamin-Ono-Burgers
equation (BOB)

ut + uux − νuxx − H(uxx) = 0 (1.8)

is obtained. We note that the physical derivation of the BOB equation gives
rise to the additional term ux. However, for the results obtained in this
paper, without loss of generality one can consider equation (1.8) and (1.1),
since the relevant estimates are not affected if one uses a moving frame of
reference.

3. The results presented here have certain similarities with the corre-
sponding results for the generalized Korteweg-de Vries-Burgers equation

ut + ux + P (u)x − νuxx + uxxx = 0, x ∈ R, t > 0, (1.9)

and the generalized regularized long-wave-Burgers equation

ut + ux + P (u)x − νuxx − uxxt = 0, x ∈ R, t > 0. (1.10)

We recall that these equations have global solutions when the growth of P (u)
is less than quintic for equation (1.9), while there is no growth restriction
for equation (1.10). Furthermore, if P (u) is given by (1.6), the leading order
behavior of the long time asymptotics of the solutions is the same as that of
their corresponding linearized equations (see [4, 5]). The case of quadratic
nonlinearity is investigated in [2].

4. The asymptotic results presented here are for generic initial data. If the
initial data have some additional property, the decay rate of corresponding
solutions will be higher than that of solutions with generic initial data. For
instance, if the Fourier transform of the initial data vanishes in power α,

then the corresponding solutions of the equation (1.1) will decay faster than
the solutions with generic initial data in the power α

2 (see [6]).

5. For the derivation of some of the results presented here we have used
the relationship between the H

1

2 and L∞ norms given in [7].

Notation. The Lq-norm of a function f which is qth-power absolutely
integrable on R is denoted by |f |q for 1 ≤ q < ∞, and similarly |f |∞ =
‖f‖L∞ . If m ≥ 0 is an integer, Hm(R) will be the Sobolev space consisting
of those L2(R)-functions whose first m generalized derivatives lie in L2(R),
equipped with the usual norm, ‖f‖Hm(R) = ||f ||m =

∑m
k=0 |f (k)|2. If m is
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not integer, then the norm for Hm(R) will be defined by ||f ||2m =
∫ ∞
−∞(1 +

s2)m|f̂(s)|2 ds, where f̂ is the Fourier transform of a function f defined by

f̂(k) = 1√
2π

∫ ∞
−∞ e−ikxf(x) dx.

2. Global solutions.

Theorem 2.1. Let u(x, t) satisfy equations (1.1) and (1.2) where ν > 0,

f(x) ∈ H1(R) and P (u) : R → R is C∞ and satisfies either of the two

constraints given by equations (1.4) and (1.5). Then there exists a unique

global solution u(x, t) in H1(R) for any finite t > 0.

Proof. The local solution can be easily obtained by applying the contraction
mapping theorem, or semigroup theorem. The global solution exists if the
H1(R)-norm of the solution is bounded for all t > 0. Multiplying equation
(1.1) by 2u and integrating the result with respect to x and t over R× [0, t],
it follows that

(
|u(·, t)|2

)2
+ 2ν

∫ t

0

(
|ux(·, τ)|2

)2
dτ =

(
|f |2

)2
. (2.1)

Indeed, using

∫ ∞

−∞
u(P (u))x dx =

∫ ∞

−∞
uxP (u) dx = −

∫ ∞

−∞
uxΛ′(u) dx = −

∫ ∞

−∞

∂

∂x
Λ(u) dx,

− 2

∫ ∞

−∞
uuxx dx = 2

∫ ∞

−∞
u2

x dx,

∫ ∞

−∞
uH(uxx) dx = −

∫ ∞

−∞
uxH(ux) dx = 0,

and integrating with respect to x, it follows from equation (1.1) that

∂

∂t

∫ ∞

−∞
u2 dx + 2ν

∫ ∞

−∞
u2

x dx = 0.

Integrating with respect to t this equation becomes (2.1).
Multiplying equation (1.1) by 2uxx and integrating the result over R ×

[0, t], it follows that

(|ux(·, t)|2)2 + 2ν

∫ t

0

(|uxx(·, τ)|2)2 dτ = (|f ′|2)2 + 2

∫ t

0

∫ ∞

−∞
uxxP (u)x dx dτ.

(2.2)
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Indeed, using

2

∫ ∞

−∞
uxxut dx = −2

∫ ∞

−∞
uxuxt dx = − ∂

∂t

∫ ∞

−∞
u2

x dx,

equation (1.1) implies

∂

∂t

∫ ∞

−∞
u2

x dx + 2ν

∫ ∞

−∞
u2

xx dx = 2

∫ ∞

−∞
uxx(P (u))x dx,

which becomes equation (2.2) after integrating with respect to t.

Using Cauchy-Schwarz and Young’s inequalities,

2

∫ ∞

−∞
ab dx ≤ 2

( ∫ ∞

−∞
a2dx

) 1

2

( ∫ ∞

−∞
b2 dx

) 1

2 ≤ α

∫ ∞

−∞
a2 dx +

1

α

∫ ∞

−∞
b2 dx,

where α is an arbitrary positive number, together with |P (u)x|2 = |uxP ′(u)|2
≤ |ux|2|P ′(u)|∞, one finds that

∫ ∞

−∞
uxx(P (u))x dx ≤ ν

(
|uxx(·, t)|2

)2
+

1

ν

(
|ux(·, t)|2

)2(|P ′(u(·, t)|∞
)2

.

Using this last estimate in equation (2.2), it follows that

(
|ux(·, t)|2

)2
+ ν

∫ t

0

(
|uxx(·, τ)|2

)2
dτ

≤
(
|f ′|2

)2
+

1

ν

∫ t

0

(
|ux(·, τ)|2

)2(|P ′(u(·, τ)|∞
)2

dτ. (2.3)

Equations (2.1) and (2.3) are the main equations used for the proof of the
global existence of u(x, t). We consider the two cases (1.4) and (1.5) sepa-
rately:

(i) |P ′(u)|∞ ≤ C(|u|∞)2. In this case, since (|u|∞)2 ≤ |u|2|ux|2 and
|u|2 is bounded (see equation (2.1)), it follows that |P ′(u)|∞ ≤ C(|f |2)|ux|2.
Using this estimate to replace |P ′|∞ in equation (2.3), one obtains

(|ux(·, t)|2)2 + ν

∫ t

0

(|uxx(·, τ)|2)2dτ ≤ (|f ′|2)2 + C(ν, |f |2)
∫ t

0

(|ux(·, τ)|2)4dτ.

(2.4)
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Using Gronwall’s inequality, namely if y(t) ≤ c+
∫ t

0
g(τ)y(τ) dτ, then y(t) ≤

C̃e
∫

t

0
g(τ)dτ , and letting y = g = (|ux(·, t)|2)2, equation (2.4) yields

(
|ux(·, t)|2

)2 ≤ C1(|f |2)eC2(ν,|f |2)
∫

t

0

(
|ux(·,τ)|2

)
2

dτ . (2.5)

However,
∫ t

0

(
|ux(·, τ)|2

)2
dτ is bounded (see equation (2.1)), thus equation

(2.5) implies that |ux(·, t)|2 is bounded for all t > 0.

(ii) |P ′(u)|∞ ≤ Ce|u|∞ , Λ ≤ 0 and P ′ ≤ 0. In this case, the following
estimate is valid,

(
||u(·, t)|| 1

2

)2
+ ν

∫ t

0

∫ ∞

−∞
|y|3|û(y, τ)|2 dy dτ ≤ C(||f || 1

2

)2. (2.6)

Indeed, multiplying equation (1.1) by H(ux) − P (u), integrating the result
over R × [0, t], and using the facts that

−
∫ ∞

−∞
H(ux)uxx dx =

∫ ∞

−∞
uxH(uxx) dx,

∫ ∞

−∞
P (u)uxx dx = −

∫ ∞

−∞
P ′(u)u2

x dx,

− P (u)ut = −Λ′(u)ut = −∂Λ

∂t∫ ∞

−∞
H(ux)ut dx =

1

2

∂

∂t

∫ ∞

−∞
H(ux)u dx,

it follows that

1

2

∫ ∞

−∞
uH(ux) dx + ν

∫ t

0

∫ ∞

−∞
ux(H(uxx)) dx dτ

=

∫ ∞

−∞
Λ(u) dx + ν

∫ t

0

∫ ∞

−∞
P ′(u)u2

x dx dτ +

∫ ∞

−∞

(1

2
fH(fx) − Λ(f)

)
dx.

If Λ(u) ≤ 0 and P ′(u) ≤ 0, this equation implies equation (2.6).
Applying the Brezis-Wainger inequality [7]

|u|∞ ≤ C||u|| 1
2

[
1 + log(1 + ||u|| 3

2

)
] 1

2 , (2.7)

it follows that

|P ′(u(·, t)|∞ ≤ Ce|u(·,t)|∞ ≤ Ce
C||u|| 1

2

[1+log(1+||u|| 3
2

)]
1

2 ≤ C(ν, ||f || 1
2

)||u|| 3
2

,

(2.8)
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since |u| 1
2

is bounded and is independent of t (see (2.6)). Using the estimate

(2.8) in (2.3) to replace |P ′(u)|∞, it follows that

(
|ux(·, t)|2

)2
+ ν

∫ t

0

(
|uxx(·, τ)|2

)2
dτ (2.9)

≤
(
|f ′|2

)2
+ C(ν, ||f || 1

2

)

∫ t

0

(
|ux(·, τ)|2

)2(||u(·, τ)|| 3
2

)2
dτ.

By using (2.1) in (2.9), one shows that

(
|ux(·, t)|2

)2
+ ν

∫ t

0

(
|uxx(·, τ)|2

)2
dτ (2.10)

≤
(
||f ||1

)2
+ C(ν, ||f || 1

2

)

∫ t

0

[(
|ux(·, τ)|2

)2
∫ ∞

−∞
|y3||û(y, τ)|2dy

]
dτ.

Using Gronwall’s inequality, with y(t) = (|ux(·, t)|2)2 and

g(t) =

∫ ∞

−∞
|y3||û(y, t)|2dy,

together with the boundedness of
∫ t

0

∫ ∞
−∞ |y3||û(y, τ)|2dy dτ , because of equa-

tion (2.6), equation (2.10) implies that |ux(·, t)|2 is bounded.

3. Asymptotic behavior of solutions. Let w(x, t) solve the linearized
version of equations (1.1) and (1.2), i.e.,

wt − νwxx − H(wxx) = 0, x ∈ R, t > 0, (3.1)

w(x, 0) = f(x), x ∈ R. (3.2)

If f ∈ H1(R), these equations imply

w(x, t) =
1√
2π

∫ ∞

−∞
exp

(
− νy2t + i|y|yt + iyx

)
f̂(y) dy = S(t)f(x). (3.3)

Furthermore, if f ∈ H1(R) ∩ L1(R), then

lim
t→∞

t
1

2

∫ ∞

−∞
w2(x, t) dx = lim

t→∞
t

1

2

(
|S(t)f(x)|2

)2
= (8νπ)−

1

2

( ∫ ∞

−∞
f(x) dx

)2
,

(3.4)

lim
t→∞

t
3

2

∫ ∞

−∞
w2

x(x, t) dx = (128ν3π)−
1

2

( ∫ ∞

−∞
f(x) dx

)2
, (3.5)
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where S(t)f(x) is defined in equation (3.3) (see Dix [8, Theorem 2.1.1, and
Corollary 2.2.7] and see also [6]).

It was shown in [6] that if f ∈ H1(R)∩L1(R), the solution u of (1.1) and
(1.2), with P (u) given by (1.6), satisfies

|u(·, t)|2 ≤ C(1 + t)−
1

4 and |ux(·, t)|2 ≤ C(1 + t)−
3

4 (3.6)

for t ≥ 0. The same decay estimates follow from the results in [8] under
closely related assumptions on the initial data.

Using equations (3.4)-(3.6) we can now derive the decay results of the
difference between the solution of (1.1) and (1.2) and the solution of the
corresponding linear equation (3.1) and (3.2).

Theorem 3.1. Let f ∈ H1(R)∩L1(R). Let u satisfy the equations (1.1) and

(1.2) with ν > 0 and P (u) = cup+1 for p > 2. Let w satisfy the linearized

equations (3.1) and (3.2). Then the difference between u and w in L2-norm

satisfies equation (1.7).

Proof. Let v = u − w. Then v solves

vt − νvxx − H(vxx) + cupux = 0, x ∈ R, t > 0, (3.7)

v(x, 0) = 0, x ∈ R. (3.8)

Taking the Fourier transform of equation (3.7) with respect to the spatial
variable x, and solving the resulting ordinary differential equation, it follows
that û satisfies the integral equation

û(y, t) − ŵ(y, t) = −ci

∫ t

0

y exp
(
(−νy2 + iy|y|)(t − τ)

)
ûp+1(y, τ) dτ. (3.9)

Using |up+1(·, t)|1 ≤ |u(·, t)|p−1
∞ (|u(·, t)|2)2, together with equation (3.6), one

obtains
|up+1(·, t)|1 ≤ C(1 + t)−

p

2 . (3.10)

If p > 2, equation (3.10) implies that
∫ ∞
0

∫ ∞
−∞ up+1dx dτ exists. Then the

limit appearing in the left-hand side of equation (1.7) can be computed.
Using Parseval’s identity and equation (3.9), it follows that

lim
t→+∞

t
3

2

(∣∣u(·, t) − w(·, t)
∣∣
2

)2
= lim

t→+∞
t

3

2

(∣∣û(·, t) − ŵ(·, t)
∣∣
2

)2

= lim
t→+∞

t
3

2

(∣∣∣ci
∫ t

0

y exp
(
(−νy2 + iy|y|)(t − τ)

)
ûp+1(y, τ)dτ

∣∣∣
2

)2

= lim
t→+∞

t
3

2

∫ ∞

−∞
c2y2

∣∣∣
∫ t

0

e(−νy2+iy|y|)(t−τ)ûp+1(y, τ)dτ
∣∣∣
2

dy.
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Making the change of variable s = y
√

t, and using limt→∞ exp
[
(νs2 −

is|s|) τ
t

]
→ 1 for any fixed s and τ ∈ [0, t), this limit becomes

lim
t→+∞

∫ ∞

−∞
c2s2e−2νs2

∣∣∣
∫ t

0

e(νs2−is|s|) τ
t ûp+1(

s√
t
, τ)dτ

∣∣∣
2

ds

= c2

∫ ∞

−∞
s2e−2νs2

∣∣∣
∫ +∞

0

ûp+1(0, τ)dτ
∣∣∣
2

ds

= c2

∫ ∞

−∞
s2e−2νs2

ds
( 1√

2π

∫ +∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2

=
c2

2π(2ν)
3

2

∫ +∞

0

s
1

2 e−sds
( ∫ +∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2

=
c2

4ν(8νπ)
1

2

( ∫ +∞

0

∫ ∞

−∞
up+1(x, τ)dxdτ

)2

, (3.11)

where we have taken the limit inside the integral since the relevant integral
is finite. In fact, the use of (3.10) shows that for p > 2,

∣∣∣
∫ t

0

e(νs2−is|s|) τ
t Ûp+1(

s√
t
, τ)dτ

∣∣∣ ≤
∫ t

2

0

+

∫ t

t
2

eνs2 τ
t |up+1(·, τ)|1dτ

≤ e
νs2

2

∫ t
2

0

Cdτ

(1 + τ)p/2
+

∫ t

t
2

Ceνs2 τ
t

(1 + τ)p/2
dτ (3.12)

≤ Ce
νs2

2 +
Ct

(1 + t
2 )p/2

eνs2 − e
νs2

2

νs2
≤ C

[
e

νs2

2 + eνs2 1 − e−
νs2

2

s2

]
.

Hence, the integrand in (3.11) is bounded as

s2e−2νs2
∣∣∣
∫ t

0

e(νs2−is|s|) τ
t Ûp+1(

s√
t
, τ)dτ

∣∣∣
2

(3.13)

≤ Cs2e−2νs2
[
e

νs2

2 + eνs2 1 − e−
νs2

2

s2

]2

≤ C
[
s2e−νs2

+
(1 − e−

νs2

2 )2

s2

]
,

for all t > 0. Note that the left-hand side of (3.13) is a L1-function. Hence,
one can use the Dominated-Convergence Theorem to (3.11).
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