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Abstract. In this paper, a cross-diffusion predator-prey model with general functional response and stage-
structure for the prey is analyzed. The global existence of classical solutions to the system of strong coupled
reaction-diffusion type is proved when the space dimension less than ten by the energy estimates and
the bootstrap arguments. The crucial point of the proof is to deal with the cross-diffusion term and the
nonlinear predation term .

1. Introduction and the mathematical model

The dynamic relationship between predator and prey has long been, and will continue to be, one of the
dominant themes in both ecology and mathematical ecology due to its universal existence and importance.
Many kinds of predator-prey models have been studied extensively (see, [1, 2]). In the natural world,
there are many species whose individual members have a life history that takes them through two stages:
immature and mature. In particular, we have in mind mammalian populations and some amphibious
animals, which exhibit these two stages. Due to the above realistic evidences, the stage-structured models
have received much attention in recent years, see, [3–14, 31, 32, 34, 45–47] and the references therein. In
the model of Aiello and Freedman [2], the population has a life history and is divided into two stages:
immature and mature. They built and studied a time delay model of single species growth with stage
structure. Then, in [3], Zhang et al. proposed the following of a Lotka-Volterra predator-prey model with
prey-stage structure

dx1
dt = Bx2 − Cx1 −D1x1 − γx2

1 − kx1y, t > 0,

dx2
dt = Cx1 −D2x2, t > 0,

dy
dt = y(−D3 + δ1kx1 − ηy), t > 0.

(A)
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On the other hand, in order to understand the dynamics of a predator-prey model involves not only the
size and structure of the population, but also the ability to capture prey and renew itself. One significant
component of the predator-prey relationship is the predator’s functional response, i.e., the rate of prey
consumption by an average predator. Generally, the functional response can be classified into two types:
prey-dependent and predator-dependent. Prey-dependent indicates that the functional response is only a
function the preys density, while predator-dependent means that the functional response is a function of
both the preys and the predator’s densities. The classical Holling types I-III [37, 37], the Holling type
IV(or Monod-Haldane type)[39], the Ivlev type[38] and Rosenzweig type [44] are strictly prey-dependent
functional response; Ratio-dependent type [35] Hassell-Varley type [43], Beddington-DeAngelis type by
Beddington [40] and DeAngelis et al. [41] as well as Crowley-Martin type [42] are predator-dependent
functional response.

We note that an important factor in modelling of predator-prey is the choice of functional responses
governing the prey-predator interactions. The above system (A) assume the predator with Holling tyepe
I funcational response kx, which is linear and prey-dependent. However, this assumption seems not to be
so reliable all the time. Motivated by the above papers, it is realistic and interesting for us to construct
a stage-structured predator-prey model with general functional response function which depend on the
numbers of immature prey and predator. We also assume the predator only preys on immature prey. Under
the above assumptions, we establish the ODE prey-predator model with general functional response and
stage-structure for the prey as follows

dx1
dt = Bx2 − Cx1 −D1x1 − γx2

1 − ϕ(x1, y)y, t > 0,

dx2
dt = Cx1 −D2x2, t > 0,

dy
dt = y(−D3 + δ1ϕ(x1, y) − ηy), t > 0,

(1)

where x1, x2 are the population densities of immature and mature prey species, respectively. y denotes
the density of predator population. η is nonnegative constant. B,C,D1,D2,D3, γ, δ1 are positive constants.
B represents the birth rate of the immature prey, C denotes the transmission rate from immature prey
individuals, γ and η is the intra-specific competition rate of the immature prey and predator, respectively;
D1 and D2 represent the death rates of immature and mature prey, respectively. D3 is the death rate of
predator, δ1 is the conversion rate. Furthermore, we assume that the functional response function ϕ(x1, y)
satisfies:

(H1)′ : ϕ(0, y) = 0, for all y ≥ 0.

(H2)′ : ∂ϕ(x1,y)
∂y ≤ 0, for all x1 ≥ 0 and y ≥ 0.

From the biological point of view, the functional response function ϕ(x1, y) satisfies (H1)′ and (H2)′. The
condition (H1)′ implies that, as the prey population extinction, the capture rate of the predator is identical
to zero. The condition (H2)′ implies that, as the predator population increases, the consumption rate of
prey per predator decreases. Some explicit forms for the predator functional response that have been used
are

ϕ(x) = L1(1 − e−px) [Ivlev type (1961)[38]],

ϕ(x) = L1xq(q < 1) [Rosenzweig (1971)[44]];

ϕ(x) = L1x, L1x
a+x ,

L1x2

a+x2 [Holling types I-III (1959)[36, 37]];

ϕ(x) = L1x
1+ay+bx2 [Holling type IV type (1968) [39]];

ϕ(x, y) = L1x
ayδ+x (δ ∈ (0, 1)) [Hassell-Varley type (1969)[43]];

ϕ(x, y) = L1x
ay+x [ratio-dependent type (1989)[35]];

ϕ(x, y) = L1x
1+ax+by [Beddington-DeAngelis type (1975)[40, 41]];

ϕ(x, y) = L1x
(1+ax)(1+by) [Crowley-Martin type (1989)[42]];
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Using the scaling u1 =
1

D2
x1,u2 =

1
C x2,u3 =

1
D2

y, dτ = D2dt, and denoting τ by t again, the system (1.1)
becomes

du1
dt = au2 − bu1 − γu2

1 − 1(u1,u3)u3, t > 0,
du2
dt = u1 − u2, t > 0,

du3
dt = u3(−r + δ1(u1,u3) − ηu3), t > 0,

(2)

where a = BC
D2

2
, b = C+D1

D2
, r = D3

D2
, δ = δ1

D2
, and 1(u1,u3) = ϕ(D2u1,D2u3), so the conditions (H1)′ − (H2)′ become:

(H1) : 1(0,u3) = 0, for all u3 ≥ 0.
(H2) : ∂1(u1,u3)

∂u3
≤ 0, for all u1 ≥ 0 and u3 ≥ 0.

Note that the above ten functional responses satisfy the hypotheses (H1) − (H2). We also remark that
while there have been many results about prey-predator models with stage-structure for the predator, such
as [6, 11–13].

In the last decades, there has been a great interest in using cross diffusion to model physical and
biological phenomena, such as chemotaxis phenomenon in biomathematics, generalized drift diffusion and
energy transport model in semiconductor science, separation of granular material, etc[6, 12, 15–23, 30–33].
In real applications, such kinds of cross diffusion models describe the phenomena in consideration more
clearly than the classical weakly coupled diffusion systems, we shall include the cross diffusion term in the
third equation, as follows:

u1t − ∆[(d1 + α11u1)u1] = au2 − bu1 − γu2
1 − 1(u1,u3)u3, x ∈ Ω, t > 0,

u2t − ∆[(d2 + α22u2)u2] = u1 − u2, x ∈ Ω, t > 0,

u3t − ∆[(d3 + α31u1 + α32u2 + α33u3)u3] = u3(−r + δ1(u1,u3) − ηu3), x ∈ Ω, t > 0,

∂u1
∂ν =

∂u2
∂ν =

∂u3
∂ν = 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x) ≥ 0, i = 1, 2, 3, x ∈ Ω,

(3)

where α11, α22 ≥ 0 and α31, α32, α33 > 0. di(i = 1, 2, 3) are positive constants. di(i = 1, 2, 3) are the random
diffusion rates of the three species, respectively. αii(i = 1, 2, 3) are self-diffusion rates, and α31 and α32 are
cross-diffusion rates. For more details on the biological background, see [17].

Ever since the fundamental work by Amann (see, [24, 25]), the question of local existence of solutions to
(3) was settled by Amann’s work but global existence results seem to be answered in only very few cases.
However, Mathematically, one of the most important problem for (3) is to establish the existence of global
solutions. In particular, the global existence of classical solutions for (3) is open and interesting question to
understand the problem in the high-dimensional space. This question is on the list of open problems (for
two species predator-prey model with cross-diffusion) made by Y. Yamada in [48]. The main purpose of
this paper is to understand the global existence of classical solutions of (3) for higher-dimensional space.

The fundamental characteristics of this model are:
(C1) : The functional response function 1(u1,u3) is dependent on the densities of the immature prey and

predator.
(C2) : The intra-specific competition rate of the predator, η is nonnegative constant. At this point, it

becomes important whether η = 0 or η > 0 in estimating the term
∫

Qt
uq

3(−r + δ1(u1,u3) − ηu3)dxds.
(C3) : The system (3) is a strongly coupled parabolic systems. In particular, in the case α22, α32, α32 > 0.

Recently, Fu et.al, in [32] showed the existence of global solutions for the system (A) with cross-diffusion,
However, they only consider the system (3) the case when α22 = α32 = 0, G(u1,u3) = du and η > 0. First,
global existence results for (3) are stated in a different style according as α11 = α22 = 0 or α11, α22 > 0. If
α11 = α22 = 0, then (3) possesses a unique global solution for any initial functions, and any space dimension
N, while if α11, α22 > 0 some restriction on N or the nonlinear diffusion coefficients is necessary to ensure
global existence.
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Main results. The purpose of this paper is to establish the global existence of classical solutions to (3).
Precisely, we prove the following results:

(a) In case η > 0:

Theorem 1.1. Let (H1) − (H2) hold. Assume α11, α22, α33 > 0 and 1 ≤ N ≤ 9. Assume also that initial data
u01,u20,u30 ≥ 0 satisfy the zero Neumann boundary condition and belong to C2+λ(Ω) for some 0 < λ < 1. Then (3)
possesses a unique non-negative solution u1,u2,u3 ∈ C2+λ,1+ λ2 (Ω × [0,∞)).

Theorem 1.2. Let (H1) − (H2) hold. Assume α11 = α22 = 0, α33 > 0. If initial data u01,u20,u30 ≥ 0 satisfy the zero
Neumann boundary condition and belong to C2+λ(Ω) for some 0 < λ < 1. Then (3) possesses a unique non-negative
solution u1,u2,u3 ∈ C2+λ,1+ λ2 (Ω × [0,∞)).

(b) In case η = 0. In this case, we assume that f (u1,u3) ≡ 1(u1,u3)u3 satisfy:
(H3) : For all u1,u3 ≥ 0, 0 ≤ f (u1,u3) ≤ Ch(u1) for some positive constant C and continuous function

h(u1).

Theorem 1.3. Let (H1) − (H3) hold. Assume α11, α22 ≥ 0, α33 > 0. Assume also that initial data u01,u20,u30 ≥ 0
satisfy the zero Neumann boundary condition and belong to C2+λ(Ω) for some 0 < λ < 1. Then (3) possesses a unique
non-negative solution u1,u2,u3 ∈ C2+λ,1+ λ2 (Ω × [0,∞)).

Remark 1.4. Theorem1.1-Theorem1.3 also hold for (3) but with homogeneous Dirichlet boundary condition.

Remark 1.5. Although we have stated the existence of global solutions(Theorem1.1 and Theorem1.2), we do not have
enough information about the uniform boundedness of solutions and their asymptotic behaviors as t → ∞. In order
to study the asymptotic behavior of u1,u2,u3 as t → ∞, we have to establish the uniform boundedness of global
solutions. However, we have to leave an open question here that our above results whether can establish the uniform
boundedness of global solutions? This may be more challenging from mathematical point of view.

Remark 1.6. In the proof of Theorem1.1 -Theorem1.3, the positivity of self-diffusion coefficient α33 has played an
important role. However, in case of α31, α32 > 0 and α33 = 0 in (3), it is difficult to show the existence of global
solutions. Unfortunately, we have to leave an open question here.

Remark 1.7. We believe that the condition n < 10 of Theorem1.1 and the condition (H3) of Theorem1.3 are just the
technical conditions. To drop these conditions, more new ideas and techniques must be developed.

2. Local existence and A priori estimate

2.1. Local existence

For the time-dependent solutions of (3), the local existence of non-negative solutions is established
by Amann in the seminal papers [24, 25]. The results can be summarized as follows:

Theorem 2.1. Suppose that u10, u20, u30 are in W1
p(Ω) for some p > n. Then (3) has a unique non-negative

smooth solution u1,u2,u3 ∈ [C([0,T),W1
p(Ω))

⋂
C∞((0,T),C∞(Ω))] with maximal existence time T. Moreover, if

the solution (u, v) satisfies the estimate

sup{∥ui(·, t)∥W1
p (Ω) : t ∈ (0,T)} < ∞, i = 1, 2, 3.

then T = ∞.
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We denote

QT = Ω × [0,T),

∥u∥Lp,q(QT) =
( ∫ T

0
(
∫
Ω

|u(x, t)|pdx)
q
p dt

)1/q
,Lp(QT) := Lp,p(QT),

∥u∥W2,1
p (QT) := ∥u∥Lp(QT) + ∥ut∥Lp(QT) + ∥∇u∥Lp(QT) + ∥∇

2u∥Lp(QT),

∥u∥V2(QT) := sup
0≤t≤T

∥u(., t)∥L2(Ω) + ∥∇u(x, t)∥L2(QT),

T be the maximal existence time for the solution (u1,u2,u3) of (3). In order to the proof of Theorem
1.1-Theorem 1.3 , we need the following Lemmas.

2.2. A priori estimate
Lemma 2.2. (i) Let (u1,u2,u3) be a nonnegative solution of (3) in [0,T). Then there exists positive M0 such that

0 < u1,u2 <M0, and u3 > 0 in QT. (4)

(ii) For any T > 0. Then there exist positive C(T) such that

sup
0≤t≤T

∥u3(., t)∥L1(Ω) < C1. (5)

Proof. (i) Applying the maximum principle to (3), it is not hard to verify that ui > 0, i = 1, 2, 3. Now we
prove that ui ≤M0, i = 1, 2. To this end, we consider the auxiliary problem

u1t − ∆[(d1 + α11u1)u1] = f1(u), x ∈ Ω, t > 0,

u2t − ∆[(d2 + α22u2)u2] = f2(u), x ∈ Ω, t > 0,

∂u1
∂ν =

∂u2
∂ν = 0, x ∈ ∂Ω, t > 0,

ui(x, 0) = ui0(x) ≥ 0, i = 1, 2, x ∈ Ω,

(6)

where f1(u) = au2 − bu1 −γu2
1 − 1(u1,u3)u3, f2(u) = u1 −u2.Notice that the functions f1 and f2 are sufficiently

smooth in R2 and quasimonotone in R2
+. Let (0, 0) and (N1,N2) are a pair of upper-lower solutions for (6),

where Ni, i = 1, 2 are positive constants. Then we have

aN2 − bN1 − γN2
1 ≤ 0,

N1 −N2 ≤ 0,

u10 ≤ N1, u20 ≤ N2,

(7)

yields
N1 = max{ |a−b|

γ , ∥u10|L∞(Ω)},

N2 = max{N1, ∥u20|L∞(Ω)}.

It follows that there exists M0 = K max{N1,N2}, for any t > 0 such that u1,u2 <M0, where K is a sufficiently
large positive constant.

(ii) Integrating the third equation of (3) over the domainΩ and by the assumption (H2), (4) and Hölder
inequality, we have

d
dt

∫
Ω

u3dx ≤
∫
Ω

u3(| − r| + δ1(u1, 0) − ηu3)dx ≤ ρ
∫
Ω

u3dx −
η

|Ω|

(∫
Ω

u3dx
)2

, (8)
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where ρ = r + δM, M = max 1(u1, 0).
We note that ∫

Ω

u3dx ≤


∫
Ω

u30dx, if ρ = 0, η = 0;∫
Ω

u30dx

1+η|Ω|−1(
∫
Ω

u30dx)t
, if ρ = 0, η , 0;

eρt(
∫
Ω

u30dx), if ρ , 0, η = 0.

Now, we assume that ρ , 0 and η , 0. From (8), we have∫
Ω

u3dx ≤
eρtY

1 + YZ(eρt − 1)
≡ L(t), t ≥ 0,

where Y =
∫
Ω

u30dx,Z = η|Ω|−1ρ−1. Then

dL(t)
dt
=

ρ(1 − YZeρtY)
((1 − YZ) + YZeρt)2 .

Thus, when YZ ≥ 1, we have
L(t) ≤ L(0) = Y.

Then, we have ∫
Ω

u3dx ≤
∫
Ω

u30dx, t ≥ 0, if
∫
Ω

u30dx ≥
ρ

η
|Ω|.

On the other hand, when YZ < 1, we have

L(t) =
eρtY

(1 − YZ) + YZeρt <
eρtY

eρtYZ
= Z−1.

Then, we have ∫
Ω

u3dx ≤ Z−1 =
ρ

η
|Ω|, t ≥ 0, if

∫
Ω

u30dx <
ρ

η
|Ω|.

Hence, when ρ , 0 and η , 0, we have∫
Ω

u3dx ≤ max
{∫
Ω

u30dx,
ρ

η
|Ω|

}
, t ≥ 0.

Combing above results, it follows that

sup
0≤t≤T

∥u3(., t)∥L1(Ω) < C1(T).

We shall establish Lp-estimates and V2(QT)− estimates for u3.

Lemma 2.3. (i) When η > 0, then there exists a constant C2(T), such that

∥∇u1∥L4(QT) ≤ C2(T).

(ii) When η = 0, and we assume that (H3) hold. Then there exists a constant C3(T), such that

∥∇u1∥Lp(QT) ≤ C3(T) for any p > 1.

(iii) When η = 0, and we assume that (H3) hold. There exists a constant C4(T), such that

∥∇u2∥Lp(QT) ≤ C4(T) for any p > 1.
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Proof. (i) Let w1 = (d1+α11u1)u1. In case η > 0. First of all, integrating the inequality (8) from 0 to t, t ∈ [0,T],
we have

∥u3∥L2(QT) ≤ C5(T), (9)

where C5(T) > 0 is a constant which depends only on T, the initial data u10,u30 and the coefficients of (3).
On the other hand, multiplying the first equation of (3) by u1 and integrating the result over QT and using
the Gronwall inequality, we have

sup
0≤t≤T

∫
Ω

u2
1dx + d1

∫
QT

|∇u1|
2dxds + 2α11

∫
QT

u1|∇u1|
2dxds ≤ C6(T),

which implies that

∥u1∥V2(QT) < C6(T), (10)

with a constant C6(T) > 0 depending on T, the initial data u10 and the coefficients of (3). Next, we note that
w1 satisfies the equation

w1t = (d1 + 2α11u1)∆w1 + h1 + h2u3, (11)

where h1 = (d1 + 2α11u1)(au2 − bu1 − γu2
1), h2 = −(d1 + 2α11u1)1(u1,u3)u3. From Lemma 2.2 and (H2), we

know that h1 and h2 are bounded. Then multiplying the equation of (11) by −∆w1, integrating the resulting
expression over QT and using (9), (10) and Young’s inequality, we have

∥∆w1∥L2(QT) ≤ C7(T).

From this and the elliptic regularity estimates, we get (w1)xix j ∈ L2(QT) for all i, j = 1, 2, . . . ,n. From this, (9)
and (11), we have ∥w1∥W2,1

2 (QT) ≤ C2(T).
Moreover, it is easy to see that w1 satisfies

w1t ≤

√
d2

1 + 4α11d1w1∆w1 + (d1 + 2α11u1)au2.

Applying [20, Proposition 2.1 ] to the above equation with p = 2 and deduce that

∥∇u1∥L4(QT) ≤ C2(T).

(ii) In case η = 0. The equation of u1 can be written in the divergence form as

u1t = ∇ · [(d1 + 2α11u1)∇u1] + au2 − bu1 − γu2
1 − 1(u1,u3)u3. (12)

Since d1 + 2α11u1 and au2 − bu1 − γu2
1 − 1(u1,u3)u3 are bounded on QT by the assumption (H3) and Lemma

2.2, by applying the Hölder continuity result to (12), we have

u1 ∈ Cα,
α
2 (QT), α > 0. (13)

In (11), d1 + 2α11u1 ∈ Cα,
α
2 (QT) by (13), (d1 + 2α11u1)(au2 − bu1 −γu2

1 − 1(u1,u3)u3) ∈ L∞(QT) by lemma 2.2 and
the assumption (H3). The parabolic regularity theorem can be applied to (11) so that

∥w1∥W2,1
p (QT) ≤ C3(T) for any p > 1.

This implies

∇u1 =
1

d1 + 2α11u1
∇w1 ∈ Lp(QT) for any p > 1.

(iii) Using the similar arguments as in the preceding of lemma 2.3 (ii), it can be also obtains the desired
result.
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Lemma 2.4. (i) Let α11 = α22 = 0, α33 > 0. Then, for each q > 1, there is a constant C(q,T) such that for every
T1 ∈ (0,T]

sup ∥u3∥
q
Lq(Ω) + ∥∇u

q+1
2

3 ∥
2
L2(QT1 ) ≤ C(1 + ∥u3∥

q+1
Lq+1(QT1 )

). (14)

(ii) Let p > 2 and αii > 0, i = 1, 2, 3. Assume that there is a positive constant M1 < ∞ such that

∥∇ui∥Lp(QT) ≤M1(i = 1, 2).

Then, for each q > 1, there exists positive constant C(q,T,M1) such that for every T1 ∈ (0,T]

∥u3(., t)∥qLq(Ω) +
4(q − 1)d3

q
∥∇(u

q
2
3 )∥2L2(QT1 ) + ∥∇(u

q+1
2

3 )∥2L2(QT1 )

≤ C

1 + ∥u3∥
q−1

L
p(q−1)

p−2 (QT1 )

 . (15)

Proof. For any constant q > 1, multiplying the third equation of (3) by quq−1
3 and using the integration by

parts, we obtain

d
dt

∫
Ω

uq
3dx = −q(q − 1)

∫
Ω

uq−2
3 (d3 + α31u1 + α32u2 + 2α33u3)|∇u3|

2dx

−α32(q − 1)
∫
Ω

∇(uq
3) · ∇u2dx − α31(q − 1)

∫
Ω

∇(uq
3) · ∇u1dx

+q
∫
Ω

uq
3(−r + δ1(u1,u3) − ηu3)dx

≤ −q(q − 1)d3

∫
Ω

uq−2
3 |∇u3|

2dx − 2α33q(q − 1)
∫
Ω

uq−1
3 |∇u3|

2dx

−α32(q − 1)
∫
Ω

∇(uq
3) · ∇u2dx − α31(q − 1)

∫
Ω

∇(uq
3) · ∇u1dx

+q
∫
Ω

uq
3(−r + δ1(u1,u3) − ηu3)dx

= −
4(q − 1)d3

q

∫
Ω

|∇(u
q
2
3 )|2dx −

8α33q(q − 1)
(q + 1)2

∫
Ω

|∇(u
q+1

2
3 )|2dx

−α32(q − 1)
∫
Ω

∇(uq
3) · ∇u2dx − α31(q − 1)

∫
Ω

∇(uq
3) · ∇u1dx

+q
∫
Ω

uq
3(−r + δ1(u1,u3) − ηu3)dx.

Integrating the above inequality from 0 to t, we have∫
Ω

uq
3(x, t)dx +

4(q − 1)d3

q

∫
Qt

|∇(u
q
2
3 )|2dxds +

8α33q(q − 1)
(q + 1)2

∫
Qt

|∇(u
q+1

2
3 )|2dxds

≤

∫
Ω

uq
3(x, 0)dx − α31(q − 1)

∫
Qt

∇(uq
3) · ∇u1dxds − α32(q − 1)

∫
Qt

∇(uq
3) · ∇u2dxds

+ q
∫

Qt

uq
3(−r + δ1(u1,u3) − ηu3)dxds.

(16)

Now, we will divide the proof of Lemma 2.4 into two cases according to the different values of α11 and α22.
Case (i). α11 = α22 = 0.
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When η > 0, the last term in (16) may be estimated by

q
∫

Qt

uq
3(−r + δ1(u1,u3) − ηu3) dx dt

≤ −ηq∥u3∥
q+1
Lq+1(Qt)

+ δqM∥u3∥
q
Lq(Qt)

≤ −ηq∥u3∥
q+1
Lq+1(Qt)

+ δqM|QT |
1

q+1 ∥u3∥
q
Lq+1(Qt)

≤ −ηq∥u3∥
q+1
Lq+1(Qt)

+ δqM
[
ε∥u3∥

q+1
Lq+1(Qt)

+ ε−q
|QT |

q
q+1

]
≤ C8.

(17)

Note that when η = 0, this becomes

q
∫

Qt

uq
3(−r + δ1(u1,u3)) dx dt ≤ C9(1 + ∥u3∥

q+1
Lq+1(Qt)

),∀t ∈ [0,T). (18)

We also note ∣∣∣ − ∫
Qt

∇(uq
3) · ∇u1 dx dt

∣∣∣ = ∣∣∣ ∫
Qt

uq
3∆u1 dx dt

∣∣∣ ≤ ∥u3∥
q
Lq+1(QT)

· ∥∆u1∥Lq+1(QT).

We will make use of the maximal regularity theory for parabolic equations(see, e.g., [26]) to estimate
∥∆u1∥Lq+1(QT). It follows from the first equation in (3) that

∥∆u1∥Lq+1(QT) + ∥u1t∥Lq+1(QT)

≤ C10

(
∥au2 − bu1 − γu2

1 − 1(u1,u3)u3∥Lq+1(QT) + ∥u10∥W2
q+1(Ω)

)
≤ C11

(
1 + ∥u3∥

q+1
Lq+1(QT)

)
,

with some positive numbers C10 and C11. Here we have used the assumption (H2) and lemma 2.2(i). Note
that when η = 0 and the assumption (H3), this becomes

∥∆u1∥Lq+1(QT) + ∥u1t∥Lq+1(QT) ≤ C12.

Combining above inequalities, we see that

∣∣∣ − ∫
Qt

∇(uq
3) · ∇u1 dx dt

∣∣∣ ≤ C13

(
1 + ∥u3∥

q+1
Lq+1(QT)

)
(19)

with a positive constant C13. In a similar fashion, we get

∣∣∣ − ∫
Qt

∇(uq
3) · ∇u2 dx dt

∣∣∣ ≤ C14

(
1 + ∥u3∥

q+1
Lq+1(QT)

)
, (20)

where C14 is a positive constant.
Substituting (17)-(20) into (16) enables us to derive (14).
Case (ii). αii > 0, i = 1, 2, 3. In this case, (16) and (17) are also valid, but it is difficult to estimate∫

Qt
∇(uq

3) · ∇ui dx dt, i = 1, 2 and q
∫

Qt
uq

3(−r + δ1(u1,u3))dxdt.
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Since that 1
p +

1
2 +

p−2
2p = 1 and ∇ui, i = 1, 2 is in Lp(QT), by the Hölder’s inequality, we have∣∣∣∣∣∣−

∫
Qt

∇(uq
3) · ∇u1dxds

∣∣∣∣∣∣ = 2q
q + 1

∣∣∣∣∣∣
∫

Qt

u
q−1

2
3 · ∇(u

(q+1)
2

3 ) · ∇u1dxds

∣∣∣∣∣∣
≤

2q
q + 1

∥u
q−1

2
3 ∥L

2p
p−2 (Qt)

· ∥∇(u
q+1

2
3 )∥L2(Qt) · ∥∇u1∥Lp(Qt)

≤
2q

q + 1
∥u3∥

q−1
2

L
p(q−1)

p−2 (Qt)
· ∥∇(u

q+1
2

3 )∥L2(Qt) · ∥∇u1∥Lp(Qt)

≤
2q

q + 1
M1∥u3∥

q−1
2

L
p(q−1)

p−2 (Qt)
· ∥∇(u

q+1
2

3 )∥L2(Qt). (21)

Similarly,∣∣∣∣∣∣−
∫

Qt

∇(uq
3) · ∇u2dxds

∣∣∣∣∣∣ ≤ 2q
q + 1

M1∥u3∥
q−1

2

L
p(q−1)

p−2 (Qt)
· ∥∇(u

q+1
2

3 )∥L2(Qt). (22)

On the other hand, using Hölder’s inequality and Poincaré inequality, we can easily arrive at the
following estimate

q
∫

Qt

uq
3(−r + δ1(u1,u3))dxds ≤ q

∫
Qt

(δ1(u1, 0))uq
3dxds

≤

∫
Qt

(qδM)uq
3dxds

=

∫
Qt

(qδM) · u
q−1

2
3 · u

q+1
2

3 dxds

≤ ∥u
q−1

2
3 ∥L

2p
p−2 (Qt)

· ∥u
q+1

2
3 ∥L2(Qt) · ∥qδM∥Lp(Qt)

≤ C15∥u3∥
(q−1)/2

L
p(q−1)

p−2 (Qt)
· ∥∇(u

q+1
2

3 )∥L2(Qt). (23)

Therefore, from (17), (21), (22), (23) and (16), it follows that∫
Ω

uq
3(x, t)dx +

4(q − 1)d3

q

∫
Qt

|∇(u
q
2
3 )|2dxdt +

8α33q(q − 1)
(q + 1)2

∫
Qt

|∇(u
q+1

2
3 )|2dxdt

≤ C16 + C17∥u3∥
q−1

2

L
p(q−1)

p−2 (Qt)
· ∥∇(u

q+1
2

3 )∥L2(Qt)

≤ C16 +
C17

4ε
∥u3∥

q−1

L
p(q−1)

p−2 (Qt)
+ C17ε∥∇(u

q+1
2

3 )∥2L2(Qt)
.

For any ε > 0, from above expression and by choosing a sufficiently small ε, such that C17ε <
8α33q(q−1)

(q+1)2 , we
get (15). This completes the proof of the lemma.

Combining lemma 2.3 and lemma 2.4 of [19], we can prove the following Lemma.

Lemma 2.5. Let q > 1, q̃ = 2+ 4q
N(q+1) , β̃ in (0, 1) and let CT > 0 be any number which may depend on T. Then there

is a constant M′ depending on q,n,Ω, β̃ and CT such that for any 1 in C([0,T),W1
2(Ω)) with (

∫
Ω
|1(., t)|β̃dx)

1
β̃ ≤ CT

for all t ∈ [0,T], we have the following inequality

∥1∥Lq̃(QT) ≤M
′

1 +
(

sup
0≤t≤T
∥1(., t)∥L2q/q+1(Ω)

)4q/N(q+1)̃q

∥∇1∥
2/q̃
L2(QT)

 .
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The proof of the above lemma can be found in [19, Lemmas 2.3, 2.4].
Now, we establish Lp-estimates of u3 for any p > 1. For any number a, we denote a+ = max{a, 0}.

Lemma 2.6. Let η > 0 and α33 > 0.

(i) When α11, α22 > 0, then there is a constant C18 > 0 such that

∥u3∥V2(QT) ≤ C18.

Moreover, for any constant p < 4(N+1)
(N−2)+

, there exists a positive constant C19 such that

∥u3∥Lp(QT) ≤ C19.

(ii) When α11 = α22 = 0, then there exist positive constants C20 and C21, such that

∥u3∥Lp(QT) ≤ C20 for any p > 1,

and
∥u3∥V2(QT) ≤ C21.

Proof. (i) Set v = u
q+1

2
3 , and

E ≡ sup
0≤t≤T

∫
Ω

uq
3(x, t)dx +

∫
QT

|∇(u(q+1)/2
3 )|2dxds

= sup
0≤t≤T

∫
Ω

v2q/q+1dx +
∫

QT

|∇v|2dxds.

Let p0 = 4, p = 2p0

p0−2 . It follows from lemma 2.3 (i), (ii) and lemma 2.4 (ii) that

E +
4(q − 1)d3

q
∥∇(u

q
2
3 )∥2L2(QT) ≤ C22

1 + ∥v∥
2(q−1)

q+1

L
p(q−1)

q+1 (QT)

 . (24)

For any q > 1, if

(Np − 2N − 4)q ≤ 2N +Np, (25)

then, p(q−1)
q+1 ≤ q̃ = 2 + 4q

N(q+1) . By Hölder’s inequality, we have

∥v∥
L

p(q−1)
q+1 (QT)

≤ C23∥v∥Lq̃(QT), (26)

where C23 = |QT |
q+1

p(q−1)−
1
q̃ . Setting β̃ = 2/(q + 1) ∈ (0, 1), by (5) we get

∥v(., t)∥Lβ̃(Ω) = ∥u3(., t)∥
1
β̃

L1(Ω)
≤ (C1)

1
β̃ ,∀t ∈ [0,T). (27)

Therefore, by (27), Lemma 2.5 and the definition of E, from (26) we have

∥v∥Lp(q−1)/q+1(QT) ≤ C23∥v∥Lq̃(QT) ≤ C23M1

{
1 + E2/nq̃E

1
q̃

}
. (28)

From (24) and (28), we get

E ≤ C24(1 + EµEν) (29)
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with

µ =
4(q − 1)

nq̃(q + 1)
, ν =

2(q − 1)
q̃(q + 1)

.

As

µ + ν =
2(q − 1)
q̃(q + 1)

[ 2
N
+ 1

]
<

1
q̃

[
4q

N(q + 2)
+ 2

]
= 1.

Hence, there exists a positive constant C25 such that E ≤ C25. By (28) and (29) we get v ∈ Lq̃(QT), this implies
that u3 ∈ Lp(QT) with p = q̃(q+1)

2 for any q satisfying (25). Looking at (25), when N ≤ 2,

Np − 2N − 4 = 2(N − 2) ≤ 0,

then (25) holds for all q. Hence, for N ≤ 2, u3 ∈ Lp(QT) for all p > 1. when n > 2, then (25) is equivalent to

1 < q < q0 :=
2N +Np

(Np − 2N − 4)
=

3N
N − 2

.

By
q̃(q + 1)

2
= q + 1 +

2q
N
≤ p1 := q0 + 1 +

2q0

n
=

4(N + 1)
N − 2

.

We have that u3 is in Lp(QT) for all1 < p ≤ p1.Namely, there exist positive constant C19 such that ∥u3∥Lp(QT) ≤

C19 for p < 4(N+1)
(N−2)+

. Since (25) holds true for q = 2. Hence E is finite for q = 2. Therefore, u3 ∈ V2(QT) for any
n by (24).

(ii) From the definition of E and (14), we have

E ≡ sup
0≤t≤T

∥v(t)∥
2q

q+1

L
2q

q+1 (Ω)
+ ∥∇v∥2L2(QT) ≤ C26

(
1 + ∥v∥2L2(QT)

)
. (30)

By (9), this implies u3 ∈ L2(QT), so ∥v∥
L

4
q+1 (QT)

≤ C27. Since 4
q+1 < 2 ≤ q̃. Then we see from Hölder’s inequality

∥v∥2L2(QT) ≤ ∥v∥
2(1−λ)
Lq̃(QT)

∥v∥2λ
L

4
q+1 (QT)

≤ C2λ
27 ∥v∥

2(1−λ)
Lq̃(QT)

, (31)

where λ = ( 1
2 −

1
q̃ )/( q+1

4 −
1
q̃ ). Setting β̃ = 2/(q + 1) ∈ (0, 1), we have ∥v(., t)∥Lβ̃(Ω) = ∥u3(., t)∥

1
β̃

L1(Ω)
≤ C1(T)

1
β̃ for

all t ∈ [0,T) by Lemma 2.2. Then it follow from (30), (31) and Lemma 2.5 that

E ≤ C28(1 + Eθ) (32)

with
θ =

2(1 − λ)
q̃

(2
n
+ 1

)
.

A simple calculation show 0 < θ < 1. It follows from (32) that

sup
0≤t≤T

∥v(t)∥
2q

q+1

L
2q

q+1 (Ω)
≤ E ≤ C29.

with some C29 > 0, let p = q > 1, so that sup0≤t≤T ∥u3(t)∥Lp(Ω) ≤ C20.
By(17), (18), (19), (20) and (16), we have∫

Ω

uq
3(x, t)dx +

4(q − 1)d3

q

∫
Qt

|∇(u
q
2
3 )|2dxdt +

8α33q(q − 1)
(q + 1)2

∫
Qt

|∇(u
q+1

2
3 )|2dxdt

≤ C30(1 + ∥u3∥
q+1
Lq+1(Ω)

). (33)
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Since q̃ > 2, by Lemma2.5 and the definition of v, we have for any q > 1,

∥u3∥Lq+1(QT) = ∥v∥
2

q+1

L2(QT) ≤ C30∥v∥
2

q+1

Lq̃(QT)
≤ C31.

Letting q = 2 in (33) and use the above inequality, we have

sup ∥u3∥
2
L2(Ω) + ∥∇u3∥

2
L2(QT1 ) ≤ C32

with C32 > 0, and the proof is complete.

Lemma 2.7. Let η > 0 and αii > 0, i = 1, 2, 3, and suppose that there are p1 > max{N+2
2 , 3} and a positive constant

Cp1,T such that
∥u3∥Lp1 (QT) ≤ Cp1,T.

Then, there exists a positive M2 such that

∥u3∥Lp(QT) ≤M2 for any p > 1

Proof. The proof of Lemma 2.7 is similar to the proof of Lemma 3.2 in [31](or Lemma 3.7 in [32]), we omit
it.

Lemma 2.8. Let η = 0, α11, α22 ≥ 0, α33 > 0, and we assume that (H3) hold. Then there exist constant C33 > 0 and
C34 > 0, such that

∥u3∥V2(QT) ≤ C33,

and
∥u3∥Lp(QT) ≤ C34 for any p > 1.

Proof. First of all, multiplying the third equation of (3) by u3 and integrating the result on Qt, t ∈ [0,T], we
obtain∫

Ω

u2
3dx + 2d3

∫
Qt

|∇u3|
2dxds + 4α33

∫
Qt

u3|∇u3|
2dxds

≤ −α31

∫
Qt

∇(u2
3) · ∇u1dxds − α32

∫
Qt

∇(u2
3) · ∇u2dxds + 2δM

∫
Qt

u2
3dxds +

∫
Ω

u2
30dx.

(34)

Let wi = (di + αiiui)ui, i = 1, 2. Then by Lemma 2.3 (ii) and (iii), we have

∥wi∥W2,1
p (QT) ≤ C35, (i = 1, 2) for any p > 1.

Thus, the Sobolev inequality yields

wi ∈ Cβ+1, β+1
2 (QT) for any β ∈ (0, 1). (35)

Taking into account that ui =
−di+
√

d2
i +4wiαii

2αii
, i = 1, 2 (note that when αii = 0, this becomes ui =

wi
di
, i = 1, 2). By

(35), we have

ui ∈ Cβ+1, β+1
2 (QT) β ∈ (0, 1). (36)

By (36) and using the Young inequality, we have∣∣∣∣∣∣
∫

Qt

u3∇u3 · ∇u1dxds

∣∣∣∣∣∣ ≤ C36

∫
Qt

|u3||∇u3|dxds

≤ C36ε

∫
Qt

|∇u3|
2dxds +

C36

4ε

∫
Qt

u2
3dxds.
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Similarly, we have∣∣∣∣∣∣
∫

Qt

u3∇u3 · ∇u2dxds

∣∣∣∣∣∣ ≤ C37

∫
Qt

|u3||∇u3|dxds

≤ C37ε

∫
Qt

|∇u3|
2dxds +

C37

4ε

∫
Qt

u2
3dxds.

It follows from the above two inequalities and (34), we obtain

sup
0≤t≤T

∫
Ω

u2
3dx +

∫
QT

|∇u3|
2dxds +

∫
Qt

|∇(u2
3)|2dxds ≤ C38.

The above inequality implies that

u3 ∈ L2(QT), u3 ∈ V2(QT). (37)

Now, We will divide the proof of Lemma 2.8 into two cases according to the different values of α11, α22.
Case (a). α11, α22 > 0. From Lemma 2.3 (ii) and (iii), which implies ∥∇ui∥Lp(QT) ≤ M1(i = 1, 2) hold. From

Lemma 2.4 (ii), we have (15) holds for any q > 1 and p > 2. Hence (15) holds true for p = q + 1. Letting
p = q + 1 in (15) and using the inequality aqb ≤ qaq+1/(q + 1) + bq+1/(q + 1), we have

∥u3(., t)∥qLq(Ω) +
4(q − 1)d3

q
∥∇(u

q
2
3 )∥2L2(QT1 ) + ∥∇(u

q+1
2

3 )∥2L2(QT1 )

≤ C
(
1 + ∥u3∥

q+1
Lq+1(QT1 )

)
.

(38)

Note that (37), (38) and the definition of E. By the similar arguments in the proof of Lemma2.6 (ii), we can
show ∥u3∥Lp(QT) ≤ C34 for any p > 1.

Case (b). α11 = α22 = 0. From the definition of E and (14), we have (30) hold. By (37), we find (31) holds
true. The rest of the proof is the same as in the proof of Lemma2.6 (ii), so we omit it.

3. Proof of Theorem 1.1 and Theorem 1.2

Now we begin with the proof of Theorem 1.1 and Theorem 1.2. We divide the proof into the following
two steps. The first step of the proof is to show that u3 ∈ L∞(QT). In order to show that u3 ∈ L∞(QT), we
need the the following maximum principle is a modification of [29, Theorem 7.1, p.181].

Lemma 3.1. Suppose that w ∈ V1,0
2 (QT) satisfies

wt −
∂
∂xi

(ai jwx j + aiw) + biwxi + aw ≤ f , in QT,

w(., 0) = w0 in Ω,
(39)

and the boundary condition

νiai jwxi ≤ 0 on ∂Ω × [0,T), (40)

where ν = (ν1, ν2, . . . , νn) is the outward normal vector on ∂Ω. Suppose also that the coefficients ai j, ai, bi, a and f
satisfy the following conditions

λ1|ξ|
2
≤ ai j(x, t)ξiξ j for all ξ ∈ RN, for some λ1 > 0, (41)

and ∥∥∥∥∥∥∥
N∑

i=1

a2
i ;

N∑
i=1

b2
i ; a; f

∥∥∥∥∥∥∥
Lq,r(QT)

≤ µ1 < ∞, (42)
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for

1
r
+

N
2q
= 1 − κ1, (43)

with

q ∈
[

N
2(1 − κ1)

,∞

]
, r ∈

[ 1
1 − k1

,∞
]
, 0 < κ1 < 1, for N ≥ 2, (44)

q ∈ [1,∞], r ∈
[ 1
1 − k1

,
2

1 − 2k1

]
, 0 < κ1 <

1
2
, for N = 1. (45)

Assume also that w0 is bounded above and aiνi ≤ 0 on ∂Ω × [0,T). Then,

ess sup
QT

w

is finite.

Proof. [Proof of Theorem 1.1 and Theorem 1.2] For clarity, the proof will be divided into two steps.
Step 1. L∞ estimate.

Lemma 3.2. (L∞ estimates for u3) Let η > 0 and α33 > 0. Suppose (i) α11 = α22 = 0 or (ii) α11, α22 > 0 and n < 10.
Then there exists M2 such that

∥u3∥L∞(QT) ≤M2.

Proof. The third equation of (3) can be written as the linear equation

u3t =

n∑
i, j=1

∂
∂xi

(
ai j(x, t)

∂u3

∂x j

)
+

n∑
i=1

∂
∂xi

(aiu3) − au3 (46)

where

ai j(x, t) = (d3 + α31u1 + α32u2 + α33u3)δi j, ai = α31
∂u1

∂xi
+ α32

∂u2

∂xi
, a = −(−r + δ1(u1,u3) − ηu3)

with δi j = 1 if i = j and δi j = 0 if i , j.
(i) Fix any p > n+2

2 . Then it follows from Lemma 2.6 (ii) and [29, Theorem 9.1, p.341-342] that

∥ui∥W2,1
p

(QT)(i = 1, 2) is bounded. By [29, Lemma3.3, p.80], ∇u1,∇u2 ∈ L
(n+2)p
n+2−p (QT). Since ∥u3∥V2(QT) is bounded

by Lemma 2.6 (ii). By Lemma 3.1 and (46), we see that u3 is bounded in QT.
(ii) It follows from Lemma 2.6 and Lemma 2.7 that N+2

2 < 4(N+1)
N−2 for N ≤ 9. By Lemma 2.6 and Lemma

2.7, we have u3 ∈ Lp(QT) ∩ V2(QT) for any p > 1.
The equations of u1 and u2 can be written in the divergence form as

u1t = ∇ · [(d1 + 2α11u1)∇u1] + au2 − bu1 − γu2
1 − 1(u1,u3)u3, (47)

and

u2t = ∇ · [(d2 + 2α22u2)∇u2] + u1 − u2, (48)

Since di + 2αiiui(i = 1, 2) and u1 − u2 are bounded in QT by Lemma 2.2 and au2 − bu1 − γu2
1 − 1(u1,u3)u3 is in

Lp(QT) for p > 1. Application of the Hölder continuity result [29, Theorem 10.1]to (47) and (48), we have

u1,u2 ∈ Cβ,
β
2 (QT) with some β > 0. (49)
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Let wi = (di + αiiui)ui, i = 1, 2. Then wi satisfies

wit = (di + 2αiiui)∆wi + fi, i = 1, 2,

where f1 = (d1 + 2α11u1)(au2 − bu1 − γu2
1 − 1(u1,u3)u3), f2 = (d2 + 2α22u2)(u1 − u2) are bounded in QT by

Lemma 2.2 and Lemma 2.6, (di + 2αiiui) ∈ Cβ,
β
2 (QT) (i=1,2) by (49). By Theorem 9.1 in [29], we have

∥wi∥W2,1
r

(QT) <M3, i = 1, 2 for any r > 1.

By [29, Lemma3.3, p.80],

wi ∈ C1+β∗, (1+β
∗ )

2 (QT), ∀ 0 < β∗ < 1.

And direct calculation wi = (di + αiiui)ui, i = 1, 2 yields ui =
−di+
√

d2
i +4wiαii

2αii
, i = 1, 2. Therefore,

ui ∈ C1+β∗, (1+β
∗ )

2 (QT), ∀ 0 < β∗ < 1. (50)

Application of maximum principle( Lemma 3.1) to (46) yields u3 ∈ L∞(QT).

Step 2. Schauder estimate.
We give the proof only in case α11, α22 > 0 because the proof for α11 = α22 = 0 is essentially the same.
Note that the equation of u3 can be rewritten as

u3t = ∇ · [(d3 + α31u1 + α32u2 + 2α33u3)∇u3 + (α31∇u1 + α32∇u2)u3] + f3(x, t),

where f3(x, t) = u3(−r + δ1(u1,u3) − −ηu3), u1, u2, u3, ∇u1 and ∇u2 are all bounded functions because of
Lemma 2.2, Lemma 3.2 and (50). By Theorem 10.1 in [29], we have

u3 ∈ Cσ,
σ
2 (QT) with some 0 < σ < 1. (51)

We now turn to the equations for u1, u2 and rewrite its as

u1t = (d1 + 2α11u1)∆u1 + f ∗1 (x, t),
u2t = (d2 + 2α22u2)∆u2 + f ∗2 (x, t), (52)

where f ∗1 (x, t) = 2α11|∇u1|
2 + (au2 − bu1 − γu2

1 − 1(u1,u3)u3), f ∗2 (x, t) = 2α22|∇u2|
2 + (u1 − u2) ∈ Cσ,

σ
2 (QT) by (50)

and (51). Then the Schuader estimate in [29] applied to (52) yields

u1,u2 ∈ C2+σ∗, 2+σ
∗

2 (QT) with σ∗ = min{λ, σ}. (53)

Let w3 = (d3 + α31u1 + α32u2 + α33u3)u3, which satisfies

w3t = (d3 + α31u1 + α32u2 + 2α33u3)∆w3 + f ∗3 (x, t), (54)

where f ∗3 (x, t) = (d3 + α31u1 + α32u2 + 2α33u3)u3(−r+ δ1(u1,u3)− ηu3)+ (α31u1t + α32u2t)u3 ∈ Cσ∗,
σ∗

2 (QT) by (51)
and (53), d3 + α31u1 + α32u2 + 2α33u3 ∈ Cσ,

σ
2 (QT) by (50) and (51), by applying the Schuader estimate to the

equation (54), we have

w3 ∈ C2+σ∗, 2+σ
∗

2 (QT). (55)

Then

u3 =
−(d3 + α31u1 + α32u2) +

√
(d3 + α31u1 + α32u2)2 + 4w3α33

2α33
∈ C2+σ∗, 2+σ

∗

2 (QT). (56)

Now repeat the procedure by making use of (53) and (56) in place of (50) and (51), we have

u1,u2,u3 ∈ C2+λ, 2+λ2 (QT). (57)

Finally, by Theorem 2.1 we have (u1,u2,u3) exists globally in time. The proof of Theorem 1.1 and Theorem
1.2 is now complete.
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4. Proof of Theorem 1.3

Proof. [Proof of Theorem 1.3] The third equation of (3) can be written as the linear equation

u3t =

n∑
i, j=1

∂
∂xi

(
ai j(x, t)

∂u3

∂x j

)
+

n∑
i=1

∂
∂xi

(aiu3) − au3 (58)

where

ai j(x, t) = (d3 + α31u1 + α32u2 + α33u3)δi j, ai = α31
∂u1

∂xi
+ α32

∂u2

∂xi
, a = −(−r + δ1(u1,u3))

with δi j = 1 if i = j and δi j = 0 if i , j.
Since 0 < u1,u2 ≤M0 by Lemma 2.2, ∇u1,∇u2 ∈ Cβ,

β
2 (QT) by(36), ∥u3∥Lp(Qt), ∥u3∥V2(Qt) are finite by Lemma

2.8 and u31(u1,u3) is bounded by the assumption (H3) and Lemma 2.2. By applying the maximum principle
of Lemma 3.1 to the equation (58)ensures that u3 is bounded in QT . The rest of the proof is same as in the
case η > 0. Therefore, u1,u2,u3 ∈ C2+λ,1+ λ2 (Ω × [0,∞)). This concludes the proof of Theorem 1.3.
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