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Equations with Non-Instantaneous Impulses

Michelle Pierri, Hernán R. Henŕıquez and Andréa Prokopczyk

Abstract. In this note we study the existence of global solutions for a
class of impulsive abstract differential equations with non-instantaneous
impulses. Specifically, we establish the existence of mild solutions on
[0, ∞) and the existence of S-asymptotically ω-periodic mild solutions.
Our results are based on the Hausdorff measure of non-compactness.
Some applications involving partial differential equations are considered.
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1. Introduction

In this paper we study the existence of global solutions for a class of abstract
differential equations with non-instantaneous impulses of the form

u′(t) = Au(t) + f(t, u(t)), t ∈ [si, ti+1], i ∈ N, (1.1)

u(t) = gi(t,Ni(t)(u)), t ∈ (ti, si], i ∈ N, (1.2)

u(0) = x0, (1.3)

where A : D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup
of bounded linear operators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖),
x0 ∈ X and 0 = t0 = s0 < t1 < s1 < · · · < ti < si < ti+1 < . . . are
pre-fixed real numbers, Ni(t) : C([ti, si];X) → X are continuous maps for
t ∈ [ti, si], the function t �→ Ni(t)(u) is continuous for each u ∈ C([ti, si];X),
gi ∈ C([ti, si] × X;X) for all i ∈ N and f : [0,∞) × X → X is a suitable
function. Here, as throughout the text, for an interval I ⊆ [0,∞), we denote
by C(I;X) the space consisting of bounded continuous functions from I into
X provided with the norm of uniform convergence.
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1130144, and DICYT-USACH.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-015-0609-0&domain=pdf


1686 M. Pierri et al. MJOM

The literature on impulsive abstract differential equations is very ex-
tensive and consider basically problems in which the impulses are abrupt
and instantaneous. Concerning to the general motivations of the theory, its
most relevant developments and the current status of this class of problems,
we refer the reader to [1,2,5,7,9–12,15,21,22,25,26,29,31,34,35,37–43] and
the references therein. In addition, concerning the existence of global and al-
most periodic type solutions for differential equations with impulses we cite
the papers [3,15,23,26,38,40–42], the recent book by Stamov [39] and the
references therein.

The study of abstract differential equations with non-instantaneous im-
pulses was initiated recently by Hernández and O’Regan in [20]. In the ab-
stract model analyzed in [20], the impulses are triggered abruptly at the
instants ti and their action remains during a finite time interval of the form
[ti, si]. As pointed in [20], there are many different motivations for the study
of this type of problems. As example, from [20] we note the following sim-
plified situation concerning the hemodynamical equilibrium of a person. In
the case of a decompensation (for example, high or low levels of glucose) one
can prescribe some intravenous drugs (insulin). As the entry of drugs into
the bloodstream and the consequent absorption by the body are gradual and
continuous processes, we can interpret this situation as an impulsive action
which starts abruptly at a certain instant and stays active on a finite time
interval.

In this paper, we continue the development in [20]. Specifically, we
discuss the existence of mild solutions on [0,∞) and the existence of S-
asymptotically ω-periodic mild solutions for (1.1)–(1.3). Furthermore, we
consider the more realistic situation in which the impulsive action is not
instantaneous but depends on its accumulation over the entire time interval
in which acts.

We next introduce some additional notations, definitions and results
used in this paper. Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this
paper, we denote by L(Z,W ) the Banach space of bounded linear operators
from Z into W endowed with the norm of operators denoted by ‖ · ‖L(Z,W ),
and we abbreviate this notation to L(Z) and ‖ · ‖L(Z) when Z = W . In
addition, Br(z, Z) denotes the closed ball in Z with center at z ∈ Z and
radius r. When the space Z is clear from the context, we write simply Br(z)
instead of Br(z, Z). Henceforth, M ≥ 1 and σ ∈ R are constants such that
‖T (t)‖ ≤ Meσt for all t ≥ 0 and Ci = supt∈[si,ti+1] e

σ(t−si), for i ∈ N0. For

additional details on semigroup theory, we refer the reader to [30].

To treat with the impulsive action, we consider the vector space PC(X)
which is formed by all functions u : [0,∞) → X such that u(·) is continuous
at t 
= ti, u(t−i ) = u(ti) and u(t+i ) exists for all i ∈ N. For u ∈ PC(X) and
i ∈ N0, we denote by ũi the function ũi ∈ C([ti, ti+1];X) given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],
u(t+i ), for t = ti.
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In addition, for B ⊆ PC(X), t ≥ 0 and i ∈ N0, we use the notations B̃i and

B(t) for the sets B̃i = {ũi : u ∈ B} and B(t) = {u(t) : u ∈ B}.
We denote by PCb(X) the subspace of PC(X) consisting of bounded

functions endowed with the norm of uniform convergence denoted by
‖ · ‖PC(X). It is well known that PCb(X) is a Banach space. Moreover, the
following compactness criterion holds.

Lemma 1.1. Let B ⊆ PCb(X). Assume B̃i is relatively compact in C([ti, ti+1],
X) for all i ∈ N0 and u(t) → 0 as t → ∞ uniformly for u ∈ B. Then B is
relatively compact in PCb(X).

From this Lemma we deduce the following Ascoli–Arzelá criterion.

Corollary 1.1. Let B ⊆ PCb(X). Assume that the following conditions hold.

(a) B(t) is relatively compact in X for all t ≥ 0 and B is equicontinuous at
t 
= ti, for all i ∈ N.

(b) For each i ∈ N, limt→t+i
u(t) exists uniformly for u ∈ B and limt→∞

u(t) = 0 uniformly for u ∈ B.

Then B is relatively compact in PCb(X).

Proof. It is immediate from condition (b) that B̃i is an equicontinuous set at

t ∈ [ti, ti+1]. Moreover, it follows from (a) that B̃i(t) is relatively compact in
X for all t ∈ (ti, ti+1]. In addition, for each ε > 0, it follows from (b) that there

exists δ > 0 such that ‖u(t+i ) − u(ti + δ)‖ ≤ ε, which implies that B̃i(ti) ⊆

B̃i(ti+δ)+Bε(0). This yields that B̃i(ti) is relatively compact. Consequently,

B̃i, i ∈ N0, is relatively compact in C([ti, ti+1];X). We complete the proof
using condition (b) and Lemma 1.1. �

For the convenience of the reader, we recall below some properties of the
concept of Hausdorff measure of non-compactness. For general information
about this topic the reader can see [4,14].

Definition 1.1. Let B be a bounded subset of a metric space Y . The Hausdorff
measure of non-compactness of B is defined by

γ(B) = inf{ε > 0 : B has a finite cover by closed balls of radius ε}.

For a bounded set B ⊆ X, we next denote by co(B) the closed convex
hull of the set B. Moreover, if B is a set of functions, B(t) = {v(t) : v ∈ B}.

Remark 1.1 [4]. Let B,B1, B2 ⊆ X be bounded sets. The Hausdorff measure
of non-compactness has the following properties.

(a) If B1 ⊆ B2, then γ(B1) � γ(B2).
(b) γ(B) = γ(B) = γ(co(B)) and γ(λB) = |λ|γ(B) for all λ ∈ R.
(c) γ(B) = 0 if and only if B is totally bounded.
(d) γ(B1 ∪ B2) = max{γ(B1), γ(B2)} and γ(B1 + B2) � γ(B1) + γ(B2).

In what follows, we will use the symbols ζ and γ to denote the Hausdorff
measures of non-compactness on X and C([a, b];X), respectively.

Lemma 1.2. Let W ⊆ C([a, b];X). If W is bounded and equicontinuous, then
the set co(W ) is also bounded and equicontinuous.
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Lemma 1.3. Let W ⊆ C([a, b];X) be a bounded set. Then ζ(W (t)) � γ(W ) for
all t ∈ [a, b]. Furthermore, if W is equicontinuous on [a, b], then the function
t → ζ(W (t)) is continuous on [a, b] and γ(W ) = sup{ζ(W (t)) : t ∈ [a, b]}.

We note that a set W ⊆ L1([a, b];X) is said to be uniformly integrable
if there exists a positive function k ∈ L1([a, b]) such that ‖w(t)‖ ≤ k(t) a.e.
for all w ∈ W .

Lemma 1.4 [16, Theorem 3.1]. Assume that X is a separable Banach space.
If W ⊆ L1([a, b];X) is uniformly integrable, then the function t → ζ({W (t)}
is measurable and

ζ

({∫ b

a

w(s)ds : w ∈ W

})
�

∫ b

a

ζ ({w(s) : w ∈ W}) ds.

The next property has been studied by several authors [6,44] under
different hypotheses. We establish it here to unify the presentation and avoid
some unnecessary hypotheses.

Lemma 1.5. Let (Y, d) be a metric space and let D ⊆ Y be a bounded set.
Then there exists a countable set D0 ⊆ D such that γ(D0) = γ(D).

Corollary 1.2. Let W ⊆ L1([a, b];X) be a uniformly integrable set and m ∈
L1([a, b]) be a positive function such that ζ(W (t)) ≤ m(t) a.e. If F : L1([a, b];

X) → X is the map given by F (u) =
∫ b

a
u(s)ds, then ζ(F (W )) ≤

∫ b

a
m(s)ds.

Proof. From Lemma 1.5, there exists a countable set W0 = {wn : n ∈ N} ⊆
W such that ζ(F (W )) = ζ(F (W0)). It follows from [27, Proposition 2.2.6]
that there exist Zn ⊆ [a, b] with Lebesgue measure λ(Zn) = 0 such that
wn([a, b]\Zn) is separable. Redefining wn on a set of measure zero, which does
not change the value F (wn), we can assume that ∪∞

n=1wn([a, b]) is separable.
Thus, there exists a separable closed subspace X0 of X such that W0([a, b]) ⊆
X0.

We identify F with its restriction to L1([a, b];X0). Since W0 is uniformly
integrable, using Lemma 1.4 we obtain that ζ(F (W0)) ≤

∫ a

0
ζ(W0(s))ds. �

Definition 1.2. A continuous map F : X → X is said to be a γ-k-set con-
traction, k ∈ (0, 1), if for all bounded set B ⊂ X, γ(F (B)) � kγ(B) and F
is said to be γ-condensing if γ(F (B)) < γ(B) for every bounded subset B of
X with γ(B) > 0.

The following result was established by Darbo [8] in 1955 for γ-k-set
contractions, and for Sadovskii [36] in 1967 for γ-condensing maps.

Theorem 1.1. Assume that M is a nonempty bounded closed and convex sub-
set of a Banach space X. Let F : M → M be a γ-condensing map. Then F
has a fixed point in M .

The following result is a recent extension of Theorem 1.1 established in
[24].
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Theorem 1.2. Let B be a closed and convex subset of a Banach space Z and
F : B → B be a continuous map such that F (B) is bounded. For each bounded
subset D ⊆ B, denote F 1(D) = F (D) and Fn(D) = F (co(Fn−1(D))), n ∈
2, 3, . . . If there exist n0 ∈ N and r ∈ [0, 1) such that γ(Fn0(D)) � rγ(D), for
all bounded set D ⊆ B, then F has a fixed point.

This paper has three sections. In Sect. 2 we study the existence of global
solutions for (1.1)–(1.3). In Sect. 3, some applications involving the heat
equation are considered.

2. Existence of Global Solutions

In this section we discuss the existence of global mild solutions for the problem
(1.1)–(1.3). In the remainder of this work, for u ∈ PC(X) and i ∈ N, we use
the notation vi for the function

vi(t) =

{
u(t), t ∈ (ti, si],
u(t+i ), t = ti.

Following [20] we adopt the following concept of solution.

Definition 2.1. A function u ∈ PC(X) is called a mild solution of problem
(1.1)–(1.3) if u(0) = x0, u(t) = gj(t,Nj(t)(vj)) for all t ∈ (tj , sj ] and each
j ∈ N, and

u(t) = T (t)x0 +

∫ t

0

T (t − τ)f(τ, u(τ))dτ, t ∈ [0, t1],

u(t) = T (t − si)u(si) +

∫ t

si

T (t − τ)f(τ, u(τ))dτ, t ∈ [si, ti+1], i ∈ N.

To establish our results we introduce a number of conditions on f , gi,
Ni. In what follows we denote J = ∪∞

i=0[si, ti+1] and J ′ = ∪∞
i=1[ti, si].

(H1) There are positive constants Lgi
such that ‖ gi(t, x) − gi(t, y) ‖≤ Lgi

‖
x − y ‖ for all x, y ∈ X, t ∈ [ti, si] and each i ∈ N.

(H2) The map f : [0,∞) × X → X satisfies the Carathéodory conditions.
That is, f(·, x) is measurable for all x ∈ X and f(t, ·) is continuous for
almost all t ∈ J .

(H3) There are functions mf , hf ∈ L1
loc(J ; R+) and Φi ∈ C([0,∞); R+),

i ∈ N0, non-decreasing such that

‖ f(t, x) ‖≤ mf (t)Φi(‖ x ‖) + hf (t)

for all x ∈ X and almost all t ∈ [si, ti+1].
(H4) There exists a function H ∈ L1

loc(J ; R+) such that

ζ(f(t, B)) � H(t)ζ(B)

for almost all t ∈ J and every bounded set B ⊆ X.
(H5) There exist constants µi > 0, i ∈ N such that

γ({Ni(·)(v) : v ∈ Wi}) � µiγ(Wi)

for every bounded set Wi ⊆ C([ti, si];X).
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When condition (H5) holds, the maps Ni(·) : C([ti, si];
X) → C([ti, si];X), i ∈ N, given by (Ni(·)u)(t) = Ni(t)u are uniformly
bounded on bounded sets. In this case, we use the notation

νi,R = sup{‖Ni(t)(v)‖ : t ∈ [ti, si], v ∈ C([ti, si];X), ‖v‖∞ ≤ R}.

Remark 2.1. If condition (H5) holds, then the maps Ñi(·) : C([ti, si];X) →

C([ti, si];X), i ∈ N, defined by Ñi(v)(t) = Ni(t)(v), are continuous. In fact,
if (vn)n is a sequence convergent to v in C([ti, si];X), then the set W = {vn :
n ∈ N} is relatively compact in C([ti, si];X), which implies that {Ni(·)(vn) :
n ∈ N} is also relatively compact. Therefore, there exists a subsequence
(vnk

)k of (vn)n such that Ni(·)(vnk
) → Ni(·)(v) as k → ∞ in C([ti, si];X).

Since this property is independent of the sequence (vnk
)k, we obtain that

Ni(·)(vn) → Ni(·)(v) as n → ∞.

In order to show the generality of our presentation, we exhibit below a
pair of simple examples of families (Ni)i∈N that verify the condition H5.

Example 2.1. Let Qi : [ti, si] → L(X), i ∈ N, be a strongly continuous
operator map and let

Ni(t)(v) = Qi(t)v(t), v ∈ C([ti, si];X), t ∈ [ti, si], i ∈ N.

Since {Qi(t) : t ∈ [ti, si]} is bounded for the norm of operators, then Ni(·)(v)
is continuous on [ti, si] for each v ∈ C([ti, si];X) and Ni(·) is Lipschitz con-
tinuous. In particular, this occurs for Q(t) = I. In this case, Eq. (1.2) is
reduced to u(t) = gi(t, u(t)).

Example 2.2. Let ki : [ti, si] × [ti, si] × X → X, i ∈ N, be a continuous
function. Assume that ki takes bounded sets into bounded sets and there
are positive functions µi ∈ L1([ti, si]) such that ζ({ki(τ, t, x) : x ∈ B}) ≤
µi(τ)ζ(B), for every bounded set B ⊆ X. Then the maps

Ni(t)(v) =

∫ si

ti

ki(τ, t, v(τ))dτ, v ∈ C([ti, si];X), t ∈ [ti, si],

satisfy condition (H5). In fact, it is clear that Ni(·)(v) is continuous for each
v ∈ C([ti, si];X). Moreover, applying Corollary 1.2, we have

ζ(Ni(t)(W )) ≤

∫ si

ti

µi(τ)dτγ(W ),

for all bounded set W ⊆ C([ti, si];X). We note that in this case, Eq. (1.2) is
reduced to u(t) = gi(t,

∫ si

ti
ki(τ, t, u(τ))dτ).

We can establish now our first results on the existence of global solu-
tions.

Theorem 2.1. Assume that conditions (H1)–(H5) are fulfilled,

Lgi+1
µi+1 < 1, (2.1)
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for each i ∈ N0 and there exist constants R1(i), R2(i + 1) � 0 such that

MCiR2(i) + M sup
si≤t≤ti+1

∫ t

si

eσ(t−τ)(Φi(R1(i))mf (τ) + hf (τ))dτ ≤ R1(i),

(2.2)

Lgi+1
νi+1,R2(i+1) + sup

ti+1≤t≤si+1

‖gi+1(t, 0)‖ ≤ R2(i + 1), (2.3)

where R2(0) = ‖x0‖. Then the problem (1.1)–(1.3) has at least one mild
solution u ∈ PC(X).

Proof. We consider the map Gi : C([ti, si];X) → C([ti, si];X), i ∈ N, given
by

Gi(v)(t) = gi(t,Ni(t)(v)), ti ≤ t ≤ si. (2.4)

It follows from our general hypotheses and Remark 2.1 that Gi is a continuous
map. Moreover, if v ∈ C([ti, si];X) with supti≤t≤si

‖v(t)‖ ≤ R2(i), then

‖Gi(v)(t)‖ ≤ ‖gi(t,Ni(t)(v)) − gi(t, 0)‖ + ‖gi(t, 0)‖

≤ Lgi
νi,R2(i) + sup

ti≤t≤si

‖gi(t, 0)‖,

which implies that Gi(BR2(i)(0)) ⊆ BR2(i)(0). Moreover, if W ⊂ C([ti, si];X)
is bounded with γ(W ) > 0, and W ′ = {Ni(·)(v) : v ∈ W}, from ((H1)) and
(H5), we obtain

γ(Gi(W )) ≤ Lgi
γ(W ′) ≤ Lgi

µiγ(W ) < γ(W ).

Consequently, Gi is a condensing map, and using Theorem 1.1 we infer that
there exists a fixed point vi of Gi.

We define Γi : C([si, ti+1];X) → C([si, ti+1];X), i ∈ N0, by

(Γiv)(t) = T (t − si)(vi(si)) +

∫ t

si

T (t − τ)f(τ, v(τ))dτ, t ∈ [si, ti+1] ,

v ∈ C ([si, ti+1] ;X) , (2.5)

where v0(s0) = x0. Since the function τ �→ f(τ, v(τ)) is integrable on [si, ti+1],
we infer that Γi is well defined. Moreover, combining (H2), (H3) and the
Lebesgue dominated convergence theorem we deduce that Γi is a continuous
map.

On the other hand, if supsi≤t≤ti+1
‖v(t)‖ ≤ R1(i), it follows from (2.5)

that

‖(Γiv)(t)‖ � ‖T (t − si)(vi(si))‖ +

∥∥∥∥
∫ t

si

T (t − τ)f(τ, v(τ))dτ

∥∥∥∥

� MCiR2(i) + MΦi(R1(i))

∫ t

si

eσ(t−τ)mf (τ)dτ

+ M

∫ t

si

eσ(t−τ)hf (τ)dτ

� R1(i),

which implies that Γi(BR1(i)(0)) ⊆ BR1(i)(0).
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Let W be a bounded subset of BR1(i)(0), t ∈ [si, ti+1] and τ ∈ [si, t]. It
follows directly from the Definition 1.1 that

ζ({T (t − τ)f(τ, v(τ)) : v ∈ W}) ≤ Meσ(t−τ)ζ({f(τ, v(τ)) : v ∈ W})

≤ Meσ(t−τ)H(τ)γ(W ).

Using now Corollary 1.2, we obtain

ζ(Γi(W )(t)) ≤ M

∫ t

si

eσ(t−τ)H(τ)dτγ(W ) ≤ MCi

∫ t

si

H(τ)dτγ(W ). (2.6)

In addition, a simple estimate applying condition (H3) shows that Γi(W ) is
an equicontinuous subset of C([si, ti+1];X). Therefore, making use of
Lemma 1.3, we can write

γ(Γi(W )) ≤ MCi

∫ ti+1

si

H(τ)dτγ(W ).

We now evaluate γ(Γ2
i (W )) = γ(Γi(W

′)), where W ′ = co(Γi(W )). It
follows from Remark 1.1, condition (H4) and (2.6) that

ζ({f(τ, v(τ)) : v ∈ W ′}) ≤ H(τ)ζ(W ′(τ))

= H(τ)ζ(Γi(W )(τ))

≤ H(τ)MCi

∫ τ

si

H(ξ)dξγ(W ).

Hence, repeating our previous arguments, we can write

γ(Γ2
i (W )(t)) ≤ M

∫ t

si

eσ(t−τ)H(τ)MCi

∫ τ

si

H(ξ)dξdτγ(W )

≤ M2C2
i

∫ t

si

∫ τ

si

H(τ)H(ξ)dξdτγ(W )

=
1

2
M2C2

i

(∫ t

si

H(τ)dτ

)2

γ(W ),

and

γ
(
Γ2

i (W )
)

≤
1

2
M2C2

i

(∫ ti+1

si

H(τ)dτ

)2

γ(W ).

Proceeding inductively, we obtain

γ(Γn
i (W )) ≤

1

n!
MnCn

i

(∫ ti+1

si

H(τ)dτ

)n

γ(W ).

Since 1
n!M

nCn
i (

∫ ti+1

si
H(τ)dτ)n → 0 as n → ∞, applying Theorem 1.2 we

infer that there exists ui ∈ C([si, ti+1];X) such that Γi(ui) = ui.
Using this inductive construction, we are led to define

u(t) =

{
ui(t), t ∈ [si, ti+1), i ∈ N0,
vi(t), t ∈ [ti, si], i ∈ N.

(2.7)

It is not difficult to see that u ∈ PC(X) is a mild solution of problem (1.1)–
(1.3). �
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Corollary 2.1. Assume that conditions (H1)–(H3) and (H5) are fulfilled, that
T (t) is compact for all t > 0 and that for each i ∈ N0, the conditions (2.1),
(2.2), (2.3) hold. Then problem (1.1)–(1.3) has at least one mild solution
u ∈ PC(X).

Proof. We proceed as in the proof of Theorem 2.1. We only modify the argu-
ment to establish that the map Γi : BR1(i)(0) → BR1(i)(0) has a fixed point.
In fact, using that T (t) is compact for t > 0, it is easy to see that Γi is
a compact map. Therefore, the assertion is a consequence of the Schauder–
Tychonoff theorem [13, Theorem 7.1.13]. �

We can obtain a simpler result when the maps Ñi are completely con-
tinuous.

Corollary 2.2. Assume that conditions (H1)–(H4) are fulfilled, the maps Ñi,
i ∈ N, are completely continuous and that for each i ∈ N0, conditions (2.2)
and (2.3) hold. Then problem (1.1)–(1.3) has at least one mild solution u ∈
PC(X).

Proof. We proceed as in the proof of Theorem 2.1. In this case, we can choose
µi = 0. �

We consider now a situation frequent in applications. Next, we say that
Ni and f are uniformly Hölder-continuous if there are constants ai, bi ≥ 0,
θi, ϑi ∈ (0, 1) such that

‖Ni(t)(v2) − Ni(t)(v1)‖ ≤ ai‖v2 − v1‖
θi
∞, t ∈ [ti, si], v2, v1 ∈ C([ti, si];X),

‖f(t, x) − f(t, y)‖ ≤ bi‖x − y‖ϑi , t ∈ [si, ti+1], x, y ∈ X.

Corollary 2.3. Assume that conditions (H1), (H2), (H4) and (H5) are ful-
filled, and the function f(·, 0) is locally integrable on J . Suppose that Ni,
i ∈ N, and f are uniformly Hölder-continuous and that for each i ∈ N0 con-
dition (2.1) holds. Then the problem (1.1)–(1.3) has at least one mild solution
u ∈ PC(X).

Proof. We begin by pointing out that

‖Ni(t)(v)‖ ≤ ‖Ni(t)(v) − Ni(t)(0)‖ + ‖Ni(t)(0)‖ ≤ ai‖v‖θi
∞ + ‖Ni(t)(0)‖

for t ∈ [ti, si] and v ∈ C([ti, si];X), which implies that νi,R ≤ aiR
θi +

supti≤t≤si
‖Ni(t)(0)‖. Since

Lgi+1
ai+1R

θi+1 +Lgi+1
sup

ti+1≤t≤si+1

‖Ni+1(t)(0)‖+ sup
ti+1≤t≤si+1

‖gi+1(t, 0)‖ ≤ R,

for R large enough, we can select a constant R2(i+1) so that (2.3) is verified
for any i ∈ N0.

It remains to prove that there are constants R1(i) for i ∈ N0 for which
condition (2.2) is verified. Arguing as above,

‖f(t, x)‖ ≤ bi‖x‖ϑi + ‖f(t, 0)‖, t ∈ [si, ti+1], x ∈ X,

and we can choose mf (t) = bi, hf (t) = ‖f(t, 0)‖, and Φi(R) = Rϑi for t ∈
[si, ti+1]. Therefore, we can choose R1(i) sufficiently large so that condition
(2.2) is verified for all i ∈ N0.
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The assertion is now an immediate consequence of Theorem 2.1. �

In our next result we consider the following Lipschitz conditions.

(H6) There is a function Lf ∈ L1
loc([0,∞); R+) such that ‖ f(t, x)−f(t, y) ‖≤

Lf (t) ‖ x − y ‖ for all x, y ∈ X and every t ≥ 0.
(H7) There are constants ai ≥ 0 such that

‖Ni(t)(v2) − Ni(t)(v1)‖ ≤ ai‖v2 − v1‖∞, t ∈ [ti, si], v2, v1 ∈ C([ti, si];X).

Theorem 2.2. Assume that conditions (H1), (H2), (H6) and (H7) are satis-
fied, the function f(·, 0) is locally integrable on J , and aiLgi

< 1 for all i ∈ N.
Then there exists a unique mild solution u ∈ PC(X) of problem (1.1)–(1.3).

Proof. Let Gi, i ∈ N be the maps given by (2.4). It follows from our hypothe-
ses that Gi is a contraction on C([ti, si];X). Hence, there exists a unique
vi ∈ C([ti, si];X) such that Givi = vi. Let Γi, i ∈ N0, be the maps given
by (2.5). It is not difficult to see that there exists ni ∈ N such that Γni

i is a
contraction on C([si, ti+1];X). Consequently, there exists a unique solution
ui ∈ C([si, ti+1];X) such that Γiui = ui, for i ∈ N0.

We complete the proof defining u(·) by (2.7). �

Example 2.3. In this example we consider Ni(t) : C([ti, si];X) → X given
by Ni(t)(v) = v(t). We assume that conditions (H1) and (H2) hold, Lgi

< 1
for all i ∈ N and one of the following conditions is verified.

(i) Condition (H3) holds, T (t) is compact for t > 0 and

MCi lim inf
ξ→∞

Φi(ξ)

ξ

∫ ti+1

si

mf (τ)dτ < 1. (2.8)

(ii) Condition (H6) holds and the function f(·, 0) is locally integrable on J .
Then there exists a mild solution u ∈ PC(X) of problem (1.1)–

(1.3).
In fact, if (i) is fulfilled, then each map Gi is a contraction. Conse-

quently, there exists vi ∈ C([ti, si];X) such that vi(t) = gi(t, vi(t)) for
i ∈ N. Let R2(i) = ‖vi(si)‖. It follows from (2.8) that the condition (2.2)
is verified for R1(i) sufficiently large. We complete the proof in this case
as in Corollary 2.1. If (ii) is fulfilled, since (H7) holds with constants
ai = 1, the assertion is an immediate consequence of Theorem 2.2.

Example 2.4. In this example we consider Ni(t) : C([ti, si];X) → X given by

Ni(t)(v) =

∫ t

ti

pi(v(s))ds,

where pi : X → X is a completely continuous and not Lipschitz continuous
map. We denote ρi(R) = sup{‖pi(x)‖ : ‖x‖ ≤ R}. We assume further that
T (t) is compact for all t > 0, conditions (H1)–(H3) and (2.8) hold, and

Lgi
(si − ti) lim inf

ξ→∞

ρi(ξ)

ξ
< 1, ∀ i ∈ N. (2.9)

Then there exists a mild solution u ∈ PC(X) of problem (1.1)–(1.3).
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In fact, since

‖Gi(v)(t)‖ ≤ Lgi
(si − ti)ρi(R) + ‖gi(t, 0)‖,

for any v ∈ C([ti, si];X) with ‖v‖∞ ≤ R, it follows from (2.9) that there
is R2(i) > 0 such that Gi(BR2(i)(0)) ⊆ BR2(i)(0). Moreover, Gi is a com-

pact map on BR2(i)(0). It is sufficient to prove that Ñi : C([ti, si];X) →
C([ti, si];X) is completely continuous. Let R > 0. We consider the set W =
{v ∈ C([ti, si];X) : ‖v‖∞ ≤ R}. It follows from the definition of Ni(t) that
Ni(W ) is equicontinuous. Moreover, using the mean value theorem, we obtain

Ni(t)(W ) ⊆ (t − ti)co{pi(v(s)) : v ∈ W, 0 ≤ s ≤ t} ⊆ (t − ti)co(pi(BR(0))),

which shows that Ni(t)(W ) is relatively compact for all t ∈ [ti, si]. An appli-

cation of the Ascoli–Arzelá theorem allows us to affirm that Ñi is completely
continuous. We complete the proof proceeding as in Corollary 2.2 and Ex-
ample 2.3.

The hypotheses in our previous results are general conditions to obtain
the existence of solutions. There are special cases in which we can reduce
considerably these hypotheses.

Example 2.5. In this example, Ni(t) : C([ti, si];X) → X is given by

Ni(t)(v) =

∫ t

ti

v(τ)dτ,

and we assume that conditions (H1)–(H2) hold.

(i) If in further (H6) holds and the function f(·, 0) is locally integrable on
J , then there exists a unique mild solution u ∈ PC(X) of problem (1.1)–
(1.3).

(ii) If in further (H3) and (2.8) hold, and T (t) is compact for t > 0, then
there exists a mild solution u ∈ PC(X) of problem (1.1)–(1.3).

In fact, it is not difficult to see that Gni

i is a contraction for some
ni ∈ N large enough and each i ∈ N. This implies that Gi has a unique
fixed point in C([ti, si];X). In the case (i), we complete the proof arguing
as in the proof of Theorem 2.2, while in the case (ii), we complete the
proof arguing as in Example 2.3.

2.1. On the Existence of Bounded Mild Solutions

In this subsection, we study the existence of bounded mild solutions of prob-
lem (1.1)–(1.3) on [0,∞).

Theorem 2.3. Assume that conditions (H1)–(H5) are fulfilled, the condition
(2.1) holds and there are constants R1 ≥ 0, R2 ≥ ‖x0‖ such that

MCiR2 + M sup
si≤t≤ti+1

∫ t

si

eσ(t−τ) (Φi(R1)mf (τ) + hf (τ)) dτ ≤ R1, (2.10)

Lgi+1
νi+1,R2

+ sup
ti+1≤t≤si+1

‖gi+1(t, 0)‖ ≤ R2, (2.11)

for each i ∈ N0. Then the problem (1.1)–(1.3) has at least one bounded mild
solution u ∈ PC(X).
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Proof. Proceeding as in the proof of Theorem 2.1, we obtain the existence of
functions ui and vi such that ‖ui‖∞ ≤ R1 and ‖vi+1‖∞ ≤ R2 for all i ∈ N0.
In this case, the function u given by (2.7) is a mild solution of (1.1)–(1.3)
and satisfies supt≥0 ‖u(t)‖ ≤ max{R1, R2}. �

To establish our next result, for i ∈ N0 we introduce the notation

di =

⎧
⎨
⎩

1
σ eσ(ti+1−si), σ > 0,
− 1

σ , σ < 0,
ti+1 − si, σ = 0.

Corollary 2.4. Assume that conditions (H1), (H2), (H4) and (H5) are ful-
filled, the maps Ni and f are uniformly Hölder-continuous, and that for each
i ∈ N0 condition (2.1) holds. If, in addition, M supi∈N0

bidi < 1 and

sup
i∈N0

Ci < ∞, (2.12)

sup
i∈N

sup
ti≤t≤si

[Lgi
‖Ni(t, 0)‖ + ‖gi(t, 0)‖] < ∞, (2.13)

sup
i∈N0

∫ ti+1

si

‖f(τ, 0)‖dτ < ∞, (2.14)

sup
i∈N

Lgi
ai < 1, (2.15)

then the problem (1.1)–(1.3) has at least one bounded mild solution u ∈
PC(X).

Proof. Arguing as in the proof of Corollary 2.3, and using (2.13) and (2.15),
we have that

Lgi+1
νi+1,R + sup

ti+1≤t≤si+1

‖gi+1(t, 0)‖

≤ Lgi+1
ai+1R

θi+1 + sup
ti≤t≤si

[Lgi+1
‖Ni+1(t, 0)‖ + ‖gi+1(t, 0)‖]

≤ R,

for R > 0 large enough and all i ∈ N0. Let denote by R2 ≥ ‖x0‖ a con-
stant that satisfies the above condition. Proceeding in similar way, if v ∈
C([si, ti+1];X) with ‖v‖∞ ≤ R, using (2.12), (2.14) and the fact that
M supi∈N0

bidi < 1, we obtain that

MCiR2 + M sup
si≤t≤ti+1

∫ t

si

eσ(t−τ)‖f(τ, v(τ))‖dτ

≤ MCiR2 + MbidiR
ϑi + MCi

∫ ti+1

si

‖f(τ, 0)‖dτ ≤ R,

for R large enough and all i ∈ N0. Denoting by R1 this constant, we can
complete the proof as in Theorem 2.3. �
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To complete this section, we study the existence of bounded mild solu-
tions when the maps f and Ni satisfy Lipschitz conditions (H6) and (H7),
respectively. We introduce the notations

Di = sup
si≤t≤ti+1

∫ t

si

eσ(t−τ)‖f(τ, 0)‖dτ and

Ei = e
M

∫
ti+1
si

Lf (ξ)dξ
, for i ∈ N0.

Theorem 2.4. Assume conditions (H1), (H2), (H6), (H7), (2.12)–(2.15) are
satisfied and

sup
i∈N0

∫ ti+1

si

Lf (ξ)dξ < ∞. (2.16)

Then there exists a unique bounded mild solution u ∈ PC(X) of problem
(1.1)–(1.3).

Proof. Let Gi be defined by (2.4). It follows from (2.15) that Gi is a contrac-
tion. For each i ∈ N, let vi ∈ C([ti, si];X) be the unique solution of Givi = vi.
Then, we can estimate,

‖vi(t)‖ ≤ ‖gi(t,Ni(t)(vi)) − gi(t,Ni(t)(0))‖ + ‖gi(t,Ni(t)(0))‖

≤ Lgi
‖Ni(t)(vi) − Ni(t)(0)‖ + Lgi

‖Ni(t)(0)‖ + ‖gi(t, 0)‖

≤ Lgi
ai‖vi‖∞ + sup

i∈N

sup
ti≤t≤si

[Lgi
‖Ni(t)(0)‖ + ‖gi(t, 0)‖],

which implies that

‖vi‖∞ ≤
1

1 − supi∈N Lgi
ai

sup
i∈N

sup
ti≤t≤si

[Lgi
‖Ni(t)(0)‖ + ‖gi(t, 0)‖] = R′

2.

We denote by R2 = max{‖x0‖, R′
2}. In addition, et Γi, i ∈ N0, be defined

by (2.5). Proceeding as in the proof of Theorem 2.2 we know that there is
ui ∈ C([si, ti+1];X) for i ∈ N0 be the solution of Γiui = ui. It follows from
(2.5) that

‖ui(t)‖ ≤ Meσ(t−si)R2

+M

∫ t

si

eσ(t−τ)Lf (τ)‖ui(τ)‖dτ + M

∫ t

si

eσ(t−τ)‖f(τ, 0)‖dτ

which implies that

e−σt‖ui(t)‖ ≤ Me−σsiR2 + M

∫ t

si

e−στLf (τ)‖ui(τ)‖dτ

+M

∫ t

si

e−στ‖f(τ, 0)‖dτ,

and applying the Gronwall lemma, we infer that

‖ui(t)‖ ≤ Meσ(t−si)R2 + M

∫ t

si

eσ(t−τ)‖f(τ, 0)‖dτ

+

∫ t

si

eσt[Me−σsiR2+M

∫ τ

si

e−σξ‖f(ξ, 0)‖dξ]MLf (τ)e
∫

t

τ
MLf (ξ)dξdτ

≤ MCiR2Ei + MDiEi.



1698 M. Pierri et al. MJOM

Using our hypotheses, we obtain easily that

sup
i∈N0

sup
si≤t≤ti+1

‖ui(t)‖ ≤ M sup
i∈N0

(CiR2Ei + DiEi) < ∞.

Defining the mild solution u(·) by (2.7), we obtain that u(·) is bounded on
[0,∞). �

2.2. On the Existence of S-Asymptotically ω-Periodic Solutions

In this subsection we study the existence of S-asymptotically ω-periodic
mild solutions for (1.1)–(1.3). Concerning the theory of S-asymptotically ω-
periodic we cite the papers [17,18,28,33] and the recent work [32]. Next,
we need to adapt the concept of S-asymptotically ω-periodic function intro-
duced in the cited works to include piecewise continuous functions. Initially,
we recall the concept of S-asymptotically ω-periodic function.

Definition 2.2. A function u ∈ Cb([0,∞);X) is said to be S-asymptotically
periodic if there exists ω > 0 such that limt→∞[u(t + ω) − u(t)] = 0. In this
case, we say that u(·) is a S-asymptotically ω-periodic function.

In what follows, SAPω(X) denotes the space formed by all X-valued S-
asymptotically ω-periodic functions provided with the norm ‖ · ‖Cb([0,∞);X).

Definition 2.3. We say that a function u ∈ PCb(X) is IS-asymptotically
periodic if there exists ω > 0 such that limt→∞[u(t + ω) − u(t)] = 0. In
this case, we say that ω is an asymptotic period of u(·) and that u(·) is an
IS-asymptotically ω-periodic function.

We next use the notation ISAPω(X) for the space formed by all X-
valued S-asymptotically ω-periodic functions provided with the norm
‖ · ‖PC(X). It is not difficult to see that ISAPω(X) is a Banach space,

In the remainder of this section, we always assume that there is m ∈ N

such that the impulsive points si, tj satisfy that ti + ω
2m = si and si + ω

2m =
ti+1 for all i ∈ N0.

To simplify the text, in what follows we use the following notations. We
define g : [0,∞) × X → X as g(t, x) = gi(t, x) for t ∈ [ti, si], g0(0, x) = x0,
and

g(t, x) =
ti+1 − t

ti+1 − si
gi(si, x) +

t − si

ti+1 − si
gi+1(ti+1, x)

for t ∈ [si, ti+1] and i ∈ N0. It is easy to see that g is continuous. Let
u ∈ PC(X) and i ∈ N. We denote by ui ∈ C([ti, si];X) the function given
by ui(t) = u(t) for t ∈ (ti, si] and ui(ti) = limt→t+i

u(t). We define N(t) :

PC(X) → X by N(t)(u) = Ni(t)(ui) for t ∈ [ti, si], and

N(t)(u) =
ti+1 − t

ti+1 − si
N(si)(u) +

t − si

ti+1 − si
N(ti+1)(u)

for t ∈ [si, ti+1] and i ∈ N0. Here we set N(0) = 0.
Some of results included in the paper [17] depend heavily on the follow-

ing concept.
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Definition 2.4. A continuous function ϕ : [0,∞) × X → X is said to be uni-
formly S-asymptotically ω-periodic on bounded sets if for every bounded sub-
set K of X, the set {ϕ(t, x) : t ≥ 0, x ∈ K} is bounded and limt→∞(ϕ(t, x)−
ϕ(t + ω, x)) = 0 uniformly for x ∈ K.

This motivates us to establish the following definition.

Definition 2.5. We say that the family of functions (gi)i∈N is uniformly IS-
asymptotically ω-periodic on bounded sets if g is uniformly S-asymptotically
ω-periodic on bounded sets.

We also consider the following concept.

Definition 2.6. The family (Ni)i∈N is said to be IS-asymptotically ω-periodic
if the set {N(t)(u) : t ≥ 0} is bounded and N(t + ω)(u) − N(t)(u) → 0 as
t → ∞ for each u ∈ ISAPω(X).

In the next statement, C = supi∈N0
Ci. If σ ≤ 0, then C = 1 but if

σ > 0, then C = eσω/2m

.

Theorem 2.5. Assume that f is continuous and conditions (H1), (H6), (H7),
(2.13) and (2.16) are fulfilled. Suppose, that f(·) is uniformly S-asymptotically
ω-periodic on bounded sets, the family (gi)i∈N is uniformly IS-asymptotically
ω-periodic on bounded sets, and the family (Ni)i∈N is IS-asymptotically ω-
periodic. If Θ = supi∈N Lgi

is finite and α = MC supi∈N Lgi
ai < 1, then

there exists a unique IS-asymptotically ω-periodic mild solution of problem
(1.1)–(1.3).

Proof. To simplify the writing of the text, in what follows we assume that
m = 1. Moreover, to avoid introducing more notations, for a function u ∈
PC(X), and an interval of type [si, ti+1], we identify u with its restriction to
the interval [si, ti+1]. Similarly, for an interval (ti, si], we identify u with its
restriction on (ti, si] and u(ti) = limt→t+i

u(t).

Let Γ be the map defined on PC0(X) = {u ∈ PC(X) : u(0) = x0} by
Γu(t) = Giu(t), for t ∈ (ti, si], i ∈ N, and Γu(t) = Γiu(t), for t ∈ [si, ti+1],
i ∈ N0, where the maps Gi are defined by (2.4) and

Γiu(t) = T (t − si)(Gi(u)(si)) +

∫ t

si

T (t − τ)f(τ, u(τ))dτ, for t ∈ [si, ti+1].

It is clear that Γ : PC0(X) → PC0(X).
We separate the rest of the proof in three steps.

First step Initially we will show that Γ takes bounded functions into bounded
functions. Let u ∈ PC0(X) be a bounded function. For t ∈ [ti, si], i ∈ N, from

‖gi(t,Ni(t)(u))‖ ≤ Lgi
ai‖u‖∞ + Lgi

‖Ni(t)(0)‖ + ‖gi(t, 0)‖,

the conditions on α and Θ, and using (2.13) we obtain that {Γu(t) : t ∈ J ′}
is a bounded set. In similar way, for t ∈ [si, ti+1], i ∈ N0, we have that

‖Γu(t)‖ ≤ MC‖u(si)‖ + MC

∫ t

si

Lf (τ)‖u(τ)‖dτ + MC

∫ t

si

‖f(τ, 0)‖dτ,
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and using (2.16) and the fact that f(t, 0) is bounded on [0,∞), we obtain
that {Γu(t) : t ∈ J} is a bounded set. Consequently, we can consider Γ :
PC0

b (X) → PC0
b (X).

Second step In this second step we will prove that Γ is Lipschitz continuous on
PC0

b (X), and that there exists n ∈ N such that Γn is a contraction. We denote
k = supi∈N Lgi

ai. Since MC ≥ 1, we have that 0 ≤ k < 1. Let u, v ∈ PCb(X).
If t ∈ [ti, si], i ∈ N, then

‖Γv(t) − Γu(t)‖ ≤ Lgi
ai sup

ti≤t≤si

‖v(t) − u(t)‖ ≤ k‖v − u‖∞.

It is immediate that

‖Γnv(t) − Γnu(t)‖∞ ≤ kn‖v − u‖∞, ∀n ∈ N.

If t ∈ [si, ti+1], i ∈ N0, then

‖Γv(t) − Γu(t)‖ ≤ Meσ(t−si)‖Gi(v)(si) − Gi(u)(si)‖

+ M

∫ t

si

eσ(t−τ)Lf (τ)‖v(τ) − u(τ)‖dτ

≤ MCk‖v − u‖∞ + MC

∫ t

si

Lf (τ)dτ sup
si≤τ≤t

‖v(τ) − u(τ)‖.

Repeating this argument, we can assert that

‖Γnv(t) − Γnu(t)‖ ≤ (αn + αn−1β + αn−2 β2

2!
+ · · · +

βn

n!
)‖v − u‖∞,

where we have denoted β = MC supi∈N0

∫ ti+1

si
Lf (τ)dτ < ∞. Combining

these estimates, we can affirm that

‖Γnv − Γnu‖∞ ≤ (αn + αn−1β + αn−2 β2

2!
+ · · · +

βn

n!
)‖v − u‖∞.

Using now (2.16) and that α < 1, we get that αn + αn−1β + αn−2 β2

2! + · · · +
βn

n! → 0, as n → ∞, which implies that Γn is a contraction for n large enough.

Third step As a consequence of the Second Step, in order to establish that
there exists an IS-asymptotically ω-periodic mild solution it remains to show
that Γ(ISAP 0

ω(X)) ⊆ ISAP 0
ω(X), where ISAP 0

ω(X) = {u ∈ ISAPω(X) :
u(0) = x0}.

To prove this fact, we take u ∈ ISAP 0
ω(X) and t ≥ 0.

We analyze two cases. If t ∈ [ti, si], i ∈ N, then t + ω ∈ [ti+1, si+1], and

Γu(t + ω) − Γu(t) = g(t + ω,N(t + ω)(u)) − g(t,N(t + ω)(u))

+gi(t,N(t + ω)(u)) − gi(t,N(t)(u)).

Since {N(τ)(u) : τ ≥ 0} is a bounded set, g(t + ω,N(t + ω)(u)) − g(t,N(t +
ω)(u)) → 0 as t → ∞. In addition,

‖gi(t,N(t + ω)(u)) − gi(t,N(t)(u))‖ ≤ sup
i∈N

Lgi
‖N(t + ω)(u)

−N(t)(u)‖ → 0, t → ∞,
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and combining these estimates,

Γu(t + ω) − Γu(t) → 0, t → ∞, t ∈ [ti, si]. (2.17)

On the other hand, if t ∈ [si, ti+1], then t + ω ∈ [si+1, ti+2]. Therefore,

Γu(t + ω) − Γu(t) = T (t + ω − si+1)Gi+1(u)(si+1) − T (t − si)Gi(u)(si)

+

∫ t+ω

si+1

T (t+ω−τ)f(τ, u(τ))dτ −

∫ t

si

T (t−τ)f(τ, u(τ))dτ

= T (t − si)(Gi+1(u)(si+1) − Gi(u)(si))

+

∫ t

si

T (t − τ)[f(τ + ω, u(τ + ω)) − f(τ, u(τ))]dτ.

Let B = {u(τ) : τ ≥ 0}. It follows from above that

‖Γu(t + ω) − Γu(t)‖ ≤ MC‖Gi+1(u)(si+1) − Gi(u)(si)‖

+M

∫ t

si

eσ(t−τ)‖f(τ + ω, u(τ +ω)) − f(τ, u(τ + ω))‖dτ

+M

∫ t

si

eσ(t−τ)‖f(τ, u(τ + ω)) − f(τ, u(τ))‖dτ

≤ MC‖Gi+1(u)(si+1) − Gi(u)(si)‖

+
1

2
ωMC sup

si≤τ≤ti+1

‖f(τ + ω, x) − f(τ, x)‖

+MC

∫ t

si

Lf (τ)dτ sup
si≤τ≤ti+1

‖u(τ + ω)) − u(τ)‖.

(2.18)

The first term on the right hand side of (2.18) converges to zero as t → ∞
by (2.17) and using our hypotheses, we get that the other two terms also
converge to zero as t → ∞.

From the above steps we infer that Γn is a contraction on ISAP 0
ω(X),

which implies that there exists a unique IS-asymptotically ω-periodic mild
solution of (1.1)–(1.3). �

In the following results, we modify some of the assumptions about func-
tions gi and Ni considered in the statement of in Theorem 2.5.

Definition 2.7. We say that the family of functions (gi)i∈N vanishes at infinite
uniformly on bounded sets if for every bounded set K ⊆ X, g(t, x) → 0 as
t → ∞ uniformly for x ∈ K.

The following result is a direct consequence of Theorem 2.5.

Theorem 2.6. Assume that f is continuous and conditions (H1), (H6), (2.11)
and (2.16) are fulfilled. Suppose that f(·) is uniformly S-asymptotically ω-
periodic on bounded sets, the family (gi)i∈N vanishes at infinite uniformly on
bounded sets, and the maps Ni, i ∈ N are uniformly bounded on bounded

sets. If the maps Ñi : C([ti, si];X) → C([ti, si];X), i ∈ N, are completely
continuous, then there exists an IS-asymptotically ω-periodic mild solution
of (1.1)–(1.3).



1702 M. Pierri et al. MJOM

Proof. We introduce the space Y consisting of all bounded continuous func-
tions u : J ′ → X provided with the norm of uniform convergence. We define
Γ2 on Y by

Γ2u(t) = gi(t,N(t)(u)), t ∈ [ti, si], i ∈ N. (2.19)

Initially we point out that as a consequence of (H1), the fact that Ñi are
continuous, and the family (gi)i∈N vanishes at infinite uniformly on bounded
sets, it follows that Γ2 is a continuous map from Y into Y . In addition,

combining (H1) with the property that Ñi are completely continuous, we
deduce that the maps Gi for i ∈ N are also completely continuous. Using
again that the family (gi)i∈N vanishes at infinite uniformly on bounded sets
and arguing as in Lemma 1.1, we can affirm that Γ2 is completely continuous.
Moreover, using (2.11) we can assert that there exists a constant R2 > 0 such
that Γ2(BR2

(0, Y )) ⊆ BR2
(0, Y ).

An application of the Schauder–Tychonoff theorem [13, Theorem 7.1.13]
allows us to conclude the existence of a function u ∈ Y such that Γ2u = u.
From u(t) = gi(t,Ni(t)(u)) for t ∈ [ti, si], we infer that u(t) → 0 as t ∈ J ′,
t → ∞.

We define now Γ1 on PCb(X) by

Γ1u(t) =

⎧
⎨
⎩

T (t)x0 +
∫ t

0
T (t − τ)f(τ, u(τ))dτ, t ∈ [0, t1],

u(t), t ∈ (ti, si], i ∈ N,

T (t − si)u(si) +
∫ t

si
T (t − τ)f(τ, u(τ))dτ, t ∈ (si, ti+1], i ∈ N,

(2.20)

Arguing as in the proof of Theorem 2.5, we obtain that Γ1 is a map from
PCb(X) into PCb(X). Moreover, proceeding as in the third step of the proof
of Theorem 2.5 we can show that Γ1(ISAPω(X)) ⊆ ISAPω(X). In fact, if
t ∈ [si, ti+1], then t + ω ∈ [si+1, ti+2], and.

Γ1u(t + ω) − Γ1u(t) = T (t + ω − si+1)u(si+1) − T (t − si)u(si)

+

∫ t+ω

si+1

T (t + ω − τ)f(τ, u(τ))dτ

−

∫ t

si

T (t − τ)f(τ, u(τ))dτ

= T (t − si)(u(si + ω) − u(si))

+

∫ t

si

T (t − τ)[f(τ + ω, u(τ + ω)) − f(τ, u(τ))]dτ.

Since f is uniformly S-asymptotically ω-periodic on bounded sets and u(si) →
0 as i ∈ N, i → ∞, then Γ1u(t + ω) − Γ1u(t) → 0 as t → ∞.

On the other hand, proceeding as in the proof of Theorem 2.5 we can
show that

‖Γn
1 v2(t) − Γn

1 v1(t)‖ ≤
MnCn

n!

(∫ ti+1

si

Lf (τ)dτ

)n

‖v2 − v1‖∞

for n ∈ N. Using (2.16), we infer that there exists n ∈ N such that Γn
1 is a

contraction.



Vol. 13 (2016) Abstract Differential Equations 1703

Combining these assertions, we infer that there is u ∈ ISAPω(X) such
that Γ1u = u. This implies that u(t) = u(t) for t ∈ (ti, si], i ∈ N, and

u(t) = T (t − si)u(si) +

∫ t

si

T (t − τ)f(τ, u(τ))dτ

for t ∈ (si, ti+1]. Hence u(·) is an IS-asymptotically ω-periodic mild solution
of (1.1)–(1.3). �

The following immediate consequence of Theorem 2.6 is more appropri-
ate for applications.

Corollary 2.5. Assume that f is continuous and conditions (H1), (H6),
(2.11) and (2.16) are fulfilled. Assume further that f(·) is uniformly
S-asymptotically ω-periodic on bounded sets, the family (gi)i∈N vanishes at
infinite uniformly on bounded sets, and the maps Ni, i ∈ N are uniformly
bounded on bounded sets. If the set {gi(·, x) : x ∈ B} is relatively compact

in C([ti, si];X) for each bounded set B ⊆ X, and the set {Ñi(u) : u ∈ W}
is equicontinuous in C([ti, si];X) for each bounded set W ⊆ C([ti, si];X)
and i ∈ N, then there exists an IS-asymptotically ω-periodic mild solution of
problem (1.1)–(1.3).

Proof. It only remains to prove that the map Γ2 defined by (2.19) is com-

pletely continuous. Let W ⊆ C([ti, si];X) be a bounded set. Since Ñi(W )

is bounded, we obtain that the set Gi(W )(t) ⊆ {gi(t, v) : v ∈ Ñi(W )} is

relatively compact. Furthermore, combining (H1) with the fact that {Ñi(u) :
u ∈ W} is equicontinuous, we get that Gi(W ) is also equicontinuous. Con-
sequently, Gi(W ) is relatively compact in C([ti, si];X). We complete the
proof of the assertion arguing as in the proof of Corollary 1.1 and
Theorem 2.6. �

Example 2.6. For each i ∈ N, we consider Ni(t)(v) =
∫ t

ti
v(s)ds and gi(t, x) =

ϕi(t)Qi(x), where ϕi : [ti, si] → R is a continuous function such that ϕi(t) →
0, t ∈ [ti, si], t → ∞, and Qi : X → X is a Lipschitz continuous and
completely continuous map.

We assume that conditions (H1), (H6), (2.11) and (2.16) are fulfilled
and that f is continuous and uniformly S-asymptotically ω-periodic on
bounded sets. Then there exists an IS-asymptotically ω-periodic mild so-
lution of problem (1.1)–(1.3). In fact, it is not difficult to see that hypotheses
of Corollary 2.5 hold.

3. Applications

In this section, we will study the problem of heat conduction in a metal
bar subjected to impulses that are maintained during predetermined time
intervals. To simplify the exposition, we shall only consider a bar located on
the interval [0, π].
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Specifically, we consider a problem described by the equations

∂

∂t
w(t, ξ) =

∂2

∂ξ2
w(t, ξ) + F (t, w(t, ξ)), (t, ξ) ∈ ∪∞

i=0[si, ti+1] × [0, π],

(3.1)

w(t, 0) = w(t, π) = 0, t ∈ [0,∞), (3.2)

w(0, ξ) = z(ξ), ξ ∈ [0, π], (3.3)

w(t, ξ) = pi(t, qi(t, w(·, ξ))), ξ ∈ [0, π], t ∈ (ti, si], i ∈ N, (3.4)

where 0 = t0 = s0 < t1 < s1 < · · · < tn < sn · · · are fixed real numbers, and
F ∈ C([0,∞)×R; R); pi ∈ C([ti, si]×R; R) and qi : (ti, si]×C([ti, si]; R) → R

for all i ∈ N. We assume that pi(t, 0) = 0 and qi(t, 0) = 0, and that F, pi, qi

are functions that satisfy appropriate conditions which will be specified later.
To model this problem in abstract form, as usual we consider the space

X = L2([0, π]) and define u(t) = w(t, ·). For this reason, we take z ∈ X
and define the operator A : D(A) ⊆ X → X by Ax = x′′ on the domain
D(A) := {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A
is the infinitesimal generator of a compact semigroup (T (t))t≥0 on X such
that ‖ T (t) ‖≤ e−t for all t ≥ 0. Moreover, we define the functions f :
[0,∞) × X → X and gi : [ti, si] × X → X by f(t, x)(ξ) = F (t, x(ξ)) and
gi(t, x)(ξ) = pi(t, x(ξ)).

We study two alternatives for qi : (ti, si]×C([ti, si]; R) → R and Ni(t) :
C([ti, si];X) → X, for t ∈ (ti, si] and i ∈ N.

(i) qi(t, w(·, ξ)) = w(t, ξ) and Ni(t)(v)(ξ) = v(t)(ξ).

(ii) qi(t, w(·, ξ)) =
∫ t

ti
w(τ, ξ)dτ and Ni(t)(v)(ξ) =

∫ t

ti
v(τ)(ξ)dτ .

In these conditions the impulsive problem (3.1)–(3.4) can be modeled in the
form (1.1)–(1.3). Next, we say that w(·) is a mild solution of (3.1)–(3.4) if
u(·) ∈ PC(X) is a mild solution of the associated abstract problem (1.1)–
(1.3).

The next result follows from Theorem 2.2, Theorem 2.4 and Theo-
rem 2.5.

Proposition 3.1. Assume that condition (i) holds and that the following prop-
erties are fulfilled.

(a) There exists a constant LF ≥ 0 such that |F (t, η2) − F (t, η1)| ≤ LF |η2 −
η1| for t ≥ 0 and η2, η1 ∈ R.

(b) There are constants 0 ≤ Li < 1 such that |pi(t, η2) − pi(t, η1)| ≤ Li|η2 −
η1|, for t ∈ [ti, si], η2, η1 ∈ R and i ∈ N.

Then there exits a unique mild solution w of problem (3.1)–(3.4).
If the following additional conditions are verified.

(c) supi∈N Li < 1; supi∈N supti≤t≤si
|pi(t, 0)| < ∞; supi∈N0

(ti+1 − si) < ∞,
and
supi∈N0

∫ ti+1

si
|F (τ, 0)|dτ < ∞,

then there exits a unique bounded mild solution w of problem (3.1)–(3.4).
If, in addition to all the above conditions, ti+1 −si = ω/2, si −ti = ω/2,

F (t+ω, η)−F (t, η) → 0, t → ∞, for η ∈ R, and pi+1(t+ω, η)−pi(t, η) → 0,
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t → ∞, t ∈ [ti, si] and η ∈ R, then there exists an IS-asymptotically ω-
periodic mild solution of problem (3.1)–(3.4).

Proof. We only prove the last assertion. By comparing with the statement of
Theorem 2.5, it remains to show that f(·) is uniformly S-asymptotically ω-
periodic on bounded sets, the family (gi)i∈N is uniformly IS-asymptotically
ω-periodic on bounded sets, and the family (Ni)i∈N is IS-asymptotically
ω-periodic. Let K ⊆ X be a bounded set and x ∈ K. Then

|F (t + ω, x(ξ)) − F (t, x(ξ))| → 0, t → ∞, ξ ∈ [0, π].

Moreover, since |F (t, η)| ≤ LF |η| + |F (t, 0)| the Lebesgue dominated conver-
gence theorem implies that

‖f(t + ω, x) − f(t, x)‖ =

(∫ π

0

|F (t + ω, x(ξ)) − F (t, x(ξ)) |2dξ

)1/2

→ 0, t → ∞,

uniformly for x ∈ K. This shows that f(·) is uniformly S-asymptotically
ω-periodic on bounded sets. A similar argument establishes that the family
(gi)i∈N is uniformly IS-asymptotically ω-periodic on bounded sets. Finally,
from (i) is immediate that the family (Ni)i∈N is IS-asymptotically ω-periodic.

�

On the other hand, since in this case T (t) is compact for t > 0, pro-
ceeding as in Example 2.5 we get the following consequence.

Proposition 3.2. Assume that condition (ii) and the following properties are
fulfilled.

(a) There exists a positive continuous function ρ such that
∫ ti+1

si
ρ(τ)dτ < 1

for all i ∈ N0, and |F (t, η)| ≤ ρ(t)|η|, for t ≥ 0 and η ∈ R.
(b) There are constants Li ≥ 0 such that |pi(t, η2) − pi(t, η1)| ≤ Li|η2 − η1|,

for t ∈ [ti, si], η1, η2 ∈ R and i ∈ N.
Then there exits a mild solution w of problem (3.1)–(3.4).
If the following additional conditions are verified.

(c) There is n ∈ N such that supi∈N

Ln
i

n! < 1; supi∈N supti≤t≤si
|pi(t, 0)| <

∞, and supi∈N0

∫ ti+1

si
ρ(τ)dτ < 1,

then there exits a bounded mild solution w of problem (3.1)–(3.4).
If, in addition to all the above conditions, ti+1 −si = ω/2, si −ti = ω/2,

F (t+ω, η)−F (t, η) → 0, t → ∞, for η ∈ R, and pi+1(t+ω, η)−pi(t, η) → 0,
t → ∞, t ∈ [ti, si] and η ∈ R, then there exists an IS-asymptotically ω-
periodic mild solution of problem (3.1)–(3.4).

Proof. To prove the first assertion, we choose mf (t) = ρ(t) and Φi(ξ) = ξ for
ξ ≥ 0 and i ∈ N0. Thus, in this case condition [2.8 holds and the assertion is
a consequence of Example 2.5(ii)].

To establish the second assertion, we proceed as in the proof of Theo-
rem 2.6. It is not difficult to see that in this case Γ2 : Y → Y and Γn

2 is a
contraction. Hence, there exists u ∈ Y such that Γ2(u) = u. We complete the
proof as in Theorem 2.6.
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The last assertion is proved in similar manner to what we did to establish
that type of property in Proposition 3.1. �
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