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2 Global Solutions o the Boltzmann Equation
in a Bounded Convex Domain

By Yasushi SHIZUTA*) and Kiyoshi ASAN0**)

(Communicated by KSsaku YOSIDA, M. $.A., March 12, 1977)

1. Introduction. We consider the Boltzmann equation

( 1 ) F +-- 3r J(r, r),

which describes the change in time of the distribution function of the
arguments space x and velocity . Here J(F, F) is the collision integral
[1]. The equilibrium solution of (1) is F--w, where

1 exp( 1 )w() (2z)3/ ---l 12

As we are interested in solutions of (1) which are close to F=, we
introduce f(x, ) by
( 2 ) F=co+
Then the equation satisfied by f is

( 3 ) Of Bf+ AF(f, f).
Ot

The explicit form of the operator B is

(Bf)(x, )= _,-- Of(x, ) --v()f(x, )
( 4 ) = x

JR3 K(, ])f(x, ])d],+
where ,(), the collision frequency, is a certain unbounded positive
function of and K(, ), the collision kernel, is a symmetric function
of and . The operator A is the multiplication operator by ,() and
F(f, f) denotes the quadratic term. Note that J(, )=0. We shall
use Grad’s estimates [1], [2] for ,(), K(, ]) and F(f, f) in computations.
This means that the potential is a hard potential in the sense of Grad
and that the angular cut-off assumption is made for the differential
cross section. A typical example satisfying these conditions is a gas of
rigid spheres. The initial value problems for the Boltzmann equation
on the torus and on the entire space have been studied earlier in [4]
and [5], respectively. In this note, we treat the initial boundary value
problem for the case of specular reflection boundary condition. Our
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aim is to show the existence of solutions in the large for the initial
data near equilibrium.

2. Decay estimates. Let us consider a bounded convex domain
/2 in R and assume that the boundary 3/2 is three times continuously
differentiable. In addition, the principal curvatures are assumed to
be positive on 39. The appropriate function space is S., a>__0, i.e.,
the set of all functions satisfying

) f is a continuous function on/2 R,
(ii) for (x, ) e 32 R,

f(x, ) f(x, --2n( n)),
where n denotes the inner normal to 3/2 at x,

(iii) sup (1+11)"/ If(x, )1-0, as

On this space we have the norm
If ll.=sup (1 +ll)"/.[f(x,

Taking into account o the specular reflection boundary condition, we
see that the operator B generates a bounded semi-group (V(t)) in
S. or any a0. The imaginary axis belongs to the resolvent set
B except or --0, which is an isolated eigenvalue of B. The resolvent
(I--B)- has a simple pole at --0. The residue o the resolvent at
--0 is a projection operator P o finite rank r, 2__<rg5. By using a
theorem o JSrgens and Vidav, we obtain the ollowing estimate.

Theorem 1. For any 0 small enough, there exists a constant
M0 depending only on and such that
( 5 ) V(t)(I-- P)lls.s. <-_ Me-’, for t >= O.

3. Global solutions. The space X.,r is the set o functions of
argument t with values in S. satisfying

(i) f is a continuous function on [0,
(ii) sup e" Jlf(t)J] < c.

X.,r is endowed with the norm
f l].,r-- sup e" f(t)

We denote by N. the set of all functions f e S. satisfying Pf 0. This
is equivalent to saying that f e N. if and only if

JJXRa

where {} is a basis of the nullspace o B. Y, denotes the set of all
functions f e X, taking its values in N. Now we consider the inte-
gral equation

( 6 ) f(t): v(t) +.[: u(t-s)Ap(f(s), f(s))ds,

which is derived formally from (3) with f(0)=. Note that the inte-
gral in the right side of (6) is well defined in S._1 for any continuous
function f with values f(t) in S.,
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Theorem 2. If >0 is small enough and a>=l, there exists a
positive constant d depending only on and such that, for any e N
with [][I.____d2, (6) has a unique solution f e Y,,,r with [[f][,,r<=d. The
mapping -f is continuous and indefinitely differentiable. Further-
more, f f(t, x, ) satisfies

+ o Z(t, , )
( 7

--() f(t, x, ) +. K($, )f(t, x, )d
+,()((f(t), f(O))(x, ),

pointwise on (0, )9R3. Here [3/3t+3/3x] means the dif-
i=1

ferentiation in the direction (1, , 2, ) for every fixed .
The proof is based on Theorem 1 and the implicit function theorem.

A similar result has been obtained by Guiraud [3] for the case of pseudo
reflection boundary condition.
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