2. Global Solutions of the Boltzmann Equation in a Bounded Convex Domain

By Yasushi Shizuta*) and Kiyoshi Asano**)

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1977)

1. Introduction. We consider the Boltzmann equation

$$
\begin{equation*}
\frac{\partial F}{\partial t}+\sum_{i=1}^{3} \xi_{i} \frac{\partial F}{\partial x_{i}}=J(F, F) \tag{1}
\end{equation*}
$$

which describes the change in time of the distribution function of the arguments space x and velocity ξ. Here $J(F, F)$ is the collision integral [1]. The equilibrium solution of (1) is $F=\omega$, where

$$
\omega(\xi)=\frac{1}{(2 \pi)^{3 / 2}} \exp \left(-\frac{1}{2}|\xi|^{2}\right) .
$$

As we are interested in solutions of (1) which are close to $F=\omega$, we introduce $f(x, \xi)$ by
(2)

$$
F=\omega+\omega^{1 / 2} f
$$

Then the equation satisfied by f is

$$
\begin{equation*}
\frac{\partial f}{\partial t}=B f+\Lambda \Gamma(f, f) \tag{3}
\end{equation*}
$$

The explicit form of the operator B is

$$
\begin{align*}
(B f)(x, \xi)= & -\sum_{i=1}^{3} \xi_{i} \frac{\partial f(x, \xi)}{\partial x_{i}}-\nu(\xi) f(x, \xi) \tag{4}\\
& +\int_{R^{3}} K(\xi, \eta) f(x, \eta) d \eta
\end{align*}
$$

where $\nu(\xi)$, the collision frequency, is a certain unbounded positive function of ξ and $K(\xi, \eta)$, the collision kernel, is a symmetric function of ξ and η. The operator Λ is the multiplication operator by $\nu(\xi)$ and $\Gamma(f, f)$ denotes the quadratic term. Note that $J(\omega, \omega)=0$. We shall use Grad's estimates [1], [2] for $\nu(\xi), K(\xi, \eta)$ and $\Gamma(f, f)$ in computations. This means that the potential is a hard potential in the sense of Grad and that the angular cut-off assumption is made for the differential cross section. A typical example satisfying these conditions is a gas of rigid spheres. The initial value problems for the Boltzmann equation on the torus and on the entire space have been studied earlier in [4] and [5], respectively. In this note, we treat the initial boundary value problem for the case of specular reflection boundary condition. Our

[^0]aim is to show the existence of solutions in the large for the initial data near equilibrium.
2. Decay estimates. Let us consider a bounded convex domain Ω in R^{3} and assume that the boundary $\partial \Omega$ is three times continuously differentiable. In addition, the principal curvatures are assumed to be positive on $\partial \Omega$. The appropriate function space is $S_{\alpha}, \alpha \geqq 0$, i.e., the set of all functions satisfying
(i) f is a continuous function on $\bar{\Omega} \times R^{3}$,
(ii) for $(x, \xi) \in \partial \Omega \times R^{3}$,
$$
f(x, \xi)=f\left(x, \xi-2 n_{x}\left(\xi \cdot n_{x}\right)\right),
$$
where n_{x} denotes the inner normal to $\partial \Omega$ at x,
(iii) $\sup _{x}\left(1+|\xi|^{2}\right)^{\alpha / 2}|f(x, \xi)| \rightarrow 0, \quad$ as $|\xi| \rightarrow \infty$.

On this space we have the norm

$$
\|f\|_{\alpha}=\sup _{x, \xi}\left(1+|\xi|^{2}\right)^{\alpha / 2} \cdot|f(x, \xi)| .
$$

Taking into account of the specular reflection boundary condition, we see that the operator B generates a bounded semi-group $\{V(t)\}$ in S_{α} for any $\alpha \geqq 0$. The imaginary axis belongs to the resolvent set of B except for $\lambda=0$, which is an isolated eigenvalue of B. The resolvent $(\lambda-B)^{-1}$ has a simple pole at $\lambda=0$. The residue of the resolvent at $\lambda=0$ is a projection operator P of finite rank $r, 2 \leqq r \leqq 5$. By using a theorem of Jörgens and Vidav, we obtain the following estimate.

Theorem 1. For any $\gamma>0$ small enough, there exists a constant $M>0$ depending only on α and γ such that
(5) $\quad\|V(t)(I-P)\|_{S_{\alpha} \rightarrow S_{\alpha}} \leqq M e^{-\gamma t}, \quad$ for $t \geqq 0$.
3. Global solutions. The space $X_{\alpha, \gamma}$ is the set of functions of argument t with values in S_{α} satisfying
(i) f is a continuous function on $[0, \infty)$,
(ii) $\sup _{t} e^{r t}\|f(t)\|_{\alpha}<\infty$.
$X_{\alpha, \gamma}$ is endowed with the norm

$$
\|f\|_{\alpha, r}=\sup _{t} e^{r t}\|f(t)\|_{\alpha} .
$$

We denote by N_{α} the set of all functions $f \in S_{\alpha}$ satisfying $P f=0$. This is equivalent to saying that $f \in N_{\alpha}$ if and only if

$$
\iint_{\Omega \times R^{3}} f(x, \xi) \psi_{i}(x, \xi) d x d \xi=0, \quad i=1,2, \cdots, r
$$

where $\left\{\psi_{i}\right\}$ is a basis of the nullspace of $B . \quad Y_{\alpha, \gamma}$ denotes the set of all functions $f \in X_{\alpha, \gamma}$ taking its values in N_{α}. Now we consider the integral equation

$$
\begin{equation*}
f(t)=V(t) \phi+\int_{0}^{t} V(t-s) A \Gamma(f(s), f(s)) d s \tag{6}
\end{equation*}
$$

which is derived formally from (3) with $f(0)=\phi$. Note that the integral in the right side of (6) is well defined in $S_{\alpha-1}$ for any continuous function f with values $f(t)$ in $S_{\alpha}, \alpha \geqq 1$.

Theorem 2. If $\gamma>0$ is small enough and $\alpha \geqq 1$, there exists a positive constant d depending only on α and γ such that, for any $\phi \in N_{\alpha}$ with $\|\phi\|_{\alpha} \leqq d^{2}$, (6) has a unique solution $f \in Y_{\alpha, r}$ with $\|f\|_{\alpha, r} \leqq d$. The mapping $\phi \rightarrow f$ is continuous and indefinitely differentiable. Furthermore, $f=f(t, x, \xi)$ satisfies

$$
\begin{align*}
{\left[\frac{\partial}{\partial t}+\right.} & \left.\sum_{i=1}^{3} \xi_{i} \frac{\partial}{\partial x_{i}}\right] f(t, x, \xi) \\
= & -\nu(\xi) f(t, x, \xi)+\int K(\xi, \eta) f(t, x, \eta) d \eta \tag{7}\\
& +\nu(\xi)(\Gamma(f(t), f(t)))(x, \xi)
\end{align*}
$$

pointwise on $(0, \infty) \times \Omega \times R^{3}$. Here $\left[\partial / \partial t+\sum_{i=1}^{3} \xi_{i} \partial / \partial x_{i}\right]$ means the differentiation in the direction $\left(1, \xi_{1}, \xi_{2}, \xi_{3}\right)$ for every fixed ξ.

The proof is based on Theorem 1 and the implicit function theorem. A similar result has been obtained by Guiraud [3] for the case of pseudo reflection boundary condition.

References

[1] H. Grad: Asymptotic theory of the Boltzmann equation. II. Rarefied Gas Dynamics, 1 (J. A. Laurmann, Ed.), Academic Press, New York (1963).
[2] -: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation. Proceedings of Symposia in Applied Mathematics, 17, Amer. Math. Soc., Providence (1965).
[3] J. P. Guiraud: An H theorem for a gas of rigid spheres in a bounded domain. Théories Cinétiques Classiques et Relativistes, C. N. R.S., Paris (1975).
[4] Y. Shizuta: On the classical solutions of the Boltzmann equation (to appear in Comm. Pure Appl. Math.).
[5] --: The existence and approach to equilibrium of classical solutions of the Boltzmann equation (to appear in Comm. Math. Phys.).

[^0]: *) Department of Mathematics, Nara Women's University, Nara 630, Japan.
 **) Institute of Mathematics, Yoshida College, Kyoto University, Kyoto 606, Japan.

