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1. Introduction 

In  recent years, there has been some interest in quasi-linear differential 
equations of conservation type, and much progress has been made in the case of a 
single space variable (see [ l ]  for a survey of the literature). The results obtained 
here extend part of this theory to several space variables. To  be more precise, we 
are concerned with solutions, which are defined in the region t 2 0, of the Cauchy 
problem 

where x = (xl , * * * , x n ) ,  u = u(t ,  x ) ,  and thef, , j  = 1, 2, * * - , n, are continuously 
differentiable functions of a single real variable. If some of thef, are nonlinear, it 
is well known that one cannot, in general, obtain continuous solutions, and that 
shocks (jump discontinuities) develop in a finite time, [ 13. The solutions we obtain 
will therefore be weak solutions in the sense that 

(1.2) 1 f' 0 [.h + 3=1 5 f9(+&,] dx dt + ~ = d . ) C ( O ,  4 dx = 0 9 

for every continuously differentiable test function 4 = +(t, x) having compact 
support. 

In  addition to 
requiring that uo(x)  be bounded, we also require that uo(x)  be of bounded variation 
in the sense of Tonelli-Cesari on any compact set. A function f is said to have 
bounded variation in the sense of Tonelli-Cesari over a compact set Q if there 
exists a set Z of measure zero in Q such that the functions 

Our main hypotheses concern the initial function u o ( x ) .  
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are measurable and summable. This is equivalent to the statement that the 
gradient off, in the sense of the theory of distributions, is a measure whose total 
variation is finite over the compact set &, [2]. If we let 8 be the class of bounded 
functions in R,  having locally bounded variation in the sense of Tonelli-Cesari, 
then we can state our main theorem in the following way. 

THEOREM 1. Let f i  , i = 1, 2, . . * , n, be continuously differentiable functions of a 
single real variable. If u o ( x )  E 8, then there exists a function u ( t ,  x )  which is a weak 
solution of (1.1) in the region t > 0 having u o ( x )  as initial value. Moreover, for each 
j x e d  t ,  u ( t ,  x )  E 8, and u ( t ,  x )  has the same upper and lower bounds as u o ( x ) .  

In  order to prove this theorem, we shall make use of a finite difference scheme 
proposed by Lax in [ 3 ] .  In  the case of a single space variable, Oleinik [4] used this 
scheme in order to prove existence of a weak solution; our methods are related 
to hers. 

As a consequence of the method of proof, we shall also prove the following 
theorem. 

THEOREM 2. Monotonicity in one or more of the space variables is persistent in time; 
i.e., i f u 0 ( x )  is  monotonic in one or more variables, then for eachjxed t ,  the solution u ( t ,  x )  
constructed in Theorem 1 is  monotonic in the same sense in the same variables. 

The plan of the paper is the following: In  Section 2 we introduce the difference 
scheme and derive the basic estimates for the solution of these equations. In  
Section 3 we construct a sequence of functions from the solution of the difference 
equations, and, using a compactness criterion due to de Giorgi [ 5 ]  and Fleming 
[6], extract a subsequence which converges in the topology of L, convergence on 
compacta. The limit of this subsequence is then shown to be a solution of our 
problem. The last section consists of some concluding remarks. 

2. Estimates for the Difference Equations 

In  order to facilitate the presentation, we shall avoid cumbersome notation by 
restricting ourselves to the case n = 2. I t  will be quite clear that everything 
which we do in this case can be extended at  once to the more general case. Thus 
we shall consider the initial value problem 

where f and g are functions in the class C1 and uo E 8. By a solution of the problem 
(2.1), we shall mean that 

+f(44, + s(4+,1 d x d y d t  
(2.2) t ’ 0  

+ U O ( X , Y ) + ( O ,  “2) & 4 = 0 
t=O ss 

for all C1 functions 4 = +(t ,  x,y) having compact support. 
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Let the half-space t 2 0 be covered by a grid defined by the planes 

t = k h ,  x = n q ,  y = m p ,  

where h, q, and p are fixed positive real numbers, k runs through the non-negative 
integers, and n and m assume all integral values. In  the region t > 0, we consider 
the finite difference scheme defined by 

Uk+l  - *(.k 
n,m n+l,m + Uk,-l,m + ~ k n , m + l  + Uk,m-l) 

h 
(2.3) 

f ( 4 + j , m )  - f (Uf”,- l ,m) + + 
29 

g(ukn.m+l) - g(k,m-l) = 0 , 
2P 

where we are using the notation 

u;,.) = u(ah,  84, YP) . 
LEMMA 1. Let Lkfo 5 u : , ~  5 MI l o r  all n and m, and let A and B be &fined by 

A = max I f ’ ( u ) I  , B = max Ig’(u)I . 
AM, 5 U 5M, 

Then if the stability requirements Ahlq < 4 and Bh/p < 
~ k , , ~  5 Ml for all values o f  n, rn and k .  

M, s u 5 M, 

are fulfilled, we have M(, 5 

Proof: By using the mean value theorem, we can write (2.3) in the fbrm 

= 1. 
n , m  4 ( 4 + 1 , m  + 4 - 1 . m  + C m + l  + 4 , m - 1 )  

h 
- - f ’(an,m) (u;+l.rn - ‘:-1,m) 

24 

2P 

h 
- - ~ ’ ( 8 n . m )  (4z.m+1 - z4,m-l)  , 

where a n , ,  is some intermediate value between u : + ~ , ~  and U E - ~ , ~ ,  and /3n,m is 
some intermediate value between ~ k , , ~ + ~  and ~ k , ~ - ~  . This last equation can then 
be written as 

Now the coefficients of the u t j  appearing in (2.4) are non-negative and add up 
to one so that if we inductively assume that Ado 5 u ; , ~  5 Ml for all n and m, we 
see at  once that Mo 5 ~1::: 5 Ml for all n and m. 

In  what follows, we shall always assume that the stability conditions Rh/p < 4 
and Ah/q < 4 are satisfied. 
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LEMMA 2. I f  P, q and h satigy 

( 2 . 5 )  q s 6 h ,  p S 6 h ,  

f o r  some fixed 6 > 0, then for  arbitrary X we have the estimate 

where by 2 we mean summation over all n, m satisfying q In1 2 L, p Iml 2 L. 
L 

Proof: We let w : , ~  = u : + ~ , ~  - u:,~ and v: , ~  = ~ k , , ~ + ~  - u:,~ . From (2 .3)  
we obtain, after applying the mean value theorem, 

where B i , j  and are intermediate values for U~L;,~ and u : j l .  Because of the 
stability requirement on h, p ,  and q, the four coefficients of the w&' in (2.7) are 
non-negative. Therefore, 

In  the same way we can obtain an identical estimate for C I ~ k , , ~ l .  If we make use 
of (2 .5) ,  we can express these estimates as 

If we now apply this estimate to the right side of this last inequality, and continue 
in this way k times, we obtain the desired estimate (2 .6) .  

LEMMA 3. rf w:,,, 5 0 (2 0 )  for  all n and m, then w : , ~  5 0 (2 0 )  f o r  all k ,  n, 

Because of the stability restriction on h, p ,  and q, all four coefficients in 
(2 .7)  are non-negative. Therefore, if wf;' 5 0 (2  0) for all i andj, then w : , ~  will 
also be 5 0 (2  0 ) .  

and m. The same statement is true for  vk,,, . 
Proof: 

LEMMA 4. Let 6 > 0 satifly (2 .5) .  Then z f a  > b, 

where the constant c is dejined by 
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Proof: We first consider the transition from two adjacent time intervals. If 
we use (2.4), we can write, for B < k + 1 s a, 

1 h  

Therefore, since the coefficients of the differences of the two uf, ,  are non-negative, 
and since the sum of the first two as well as the last two coefficients is 4, we can write 

z: IUi+l,m - U;,ml 

+ 4P 2: z: l&n+l - UE,ml 

d m l -  

qln l lX  PlrnISX+P 

But then if we use Lemma 2, we get 

c I C A  - U;J 4P 

2 c ( P  14+l.m - uon,ml + 4 IUUn.m+l - .",.,I) 

5 6h 2 ( P  14+l.m - us,,nI + 4 IUOn.m+l - uOn.,l) 

X 

X+I(k+l)h 

X+I (ah) 

= ch . 
I t  follows from the triangle inequality that 

which is the desired result. 

3. Proof of the Main Theorem 

I n  this section we shall prove the theorem stated in the introduction for the 

THEOREM 1 I. If uo(x, y )  belongs to the class 8, then there exists a weak solution 
u( t ,  x , y )  o f  the Cauchy problem (2.1) for all t ,  t 2 0. For each j xed  t, the function u 
considered as a function o f  x andy  belongs to the class 8 and has the same upper and lower 
bounds as uo . 

We shall obtain u( t ,  x ,  y )  as the limit of a sequence of solutions of the difference 
equation (2.3). However, rather than consider solutions of the difference equation 

case n = 2; i.e., we shall prove 
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to be defined only on grid points t = kh, x = nq andy = mp as was done in Section 
2, we wish to consider them as functions defined throughout t ,  x,y-space. We 
accomplish this by defining 

for kh 5 t < ( k  + l ) h ,  nq 5 x < ( n  + l ) q ,  mp 5 y  < ( m  + 1)p. We refer to these 
functions as “grid functions”. The first step in the proof of the above theorem is 

There exists a sequence o f  grid functions U; ,  having the same upper and 
lower bounds as uo , such that on any compact set Q c R2, U; converges to uo in L l (  Q )  and 
V(U; ; Q )  is uniform& bounded f o r  all i. V(Ui  ; Q )  is defined as the total variation in 
the sense o f  Tonelli-Cesari o f  the function Ui over the set Q .  

Let Qi , i 2 1, be a sequence of squares such that Q ,  c Qi+l and the 
union of the Qi  is R2.  Let w, be the gaussian averaging kernel having the circle 
of radius 1 as its support and let u, = uo * w, . I t  is a classical result that 

U ( t ,  X,Y) = u:., 

LEMMA 5 .  

Proof 

IIUA - UOllL,(Q) + 0 as 1 + 0 
for any compact set Q .  De Giorgi [ 7 ]  has show that V(u,  ; Q )  is a non-increasing 
function of A and that 

lim V(u,  ; Q )  = V(u;  Q )  . 
Let (A,}, i 2 1 ,  be a sequence of positive numbers converging to zero. Let Ui be a 
grid function which coincides with zi,, at the grid points, the mesh size being so small 
that 

Now if Q is any compact set, then Q G Qk for some k.  Therefore, if i 2 k ,  we have 

A-0 
(3.1) 

IIuA, - UiIILl(~th 5 1 i .  

lluo - U&,(Q) S lluo - %illL,(Q) + Ib,, - U;IIL,(Q,) 

S l b o  - %IlL,(Q) + 1, 9 
and we see that U; converges to uo in L , ( Q )  as i + co. Since LJ; coincides with 
uAi at grid points, it is clear that 

v(u; ; Q )  S ~ ( u A ~  ; Q )  3 

so that using (3 .1)  we see that V(U; ; Q )  is bounded independently of i. That the 
Ui have the same upper and lower bounds as uo follows at  once from the positivity 
of w, and the fact that J w, = 1. This completes the proof of the lemma. 

We now let U i ( t ,  x,y) be the solution of the difference equation (2.3) having 
Ui(x,y) as initial values. We assume that hi has been chosen so that 

Lemmas 1 through 4 are then valid. But grid functions U are functions whose 
gradients are measures having their mass concentrated along the grid lines, so 
that we have for any square Q c R2 

2 (P IUknf1.m - Ukn.ml + IUICn.rn+l - 4 , m I )  = ‘(u; Q )  > 
7 ~ .  m 
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where u:,,, = U ( k h ,  nq, mp) and the summation is over all values n,  m such that 
(nq, mp) E Q. We see therefore that Lemmas 2 and 4 are equivalent to the 
following lemmas, where Q(L) indicates the square 1x1 5 L and IyI 5 L. 

LEMMA 2'. For a t y j x e d  t 2 0,  

V ( U Z ( t ,  x , y ) ;  Q ( W )  5 V ( q ( x , Y ) ;  Q ( X  + W )  . 
LEMMA 4'. For t > s, 

/ / l U ' ( t ,  x , y )  - U'(s, x , y ) l  d x d y  5 8 ( t  - s)V(Ui ; Q ( X  + f i t ) )  . 
Q ( X )  

We are now prepared to prove 

LEMMA 6. From the sequence o f  functions {U'}, a subsequence (also denoted by {U'})  
can be selected which converges to a function u( t ,  x ,  y )  for eachjxed t in the sense that 

/ j I U ? ( t ,  X,Y) - u( t ,  X,Y)l dx dY 
Q 

converges to zero as i + 00 f o r  any square Q. 

Proof: From Lemma 2' and Lemma 5 it follows that the functions U ' ( t ,  x ,  y ) ,  
for any fixed value of t ,  have uniformly bounded total variation (in the sense of 
Tonelli-Cesari) over any fixed square Q in R2.  But then, according to a theorem 
of de Giorgi [ 3 ]  and Fleming [6], the functions U' are compact in L, over this 
square. We can, therefore, extract a subsequence that converges in L, on this 
square. By a diagonalization procedure we can select a subsequence of {VZ} that 
converges in L, over any square. By a further diagonalization process we can 
obtain a subsequence, denoted by {U' ( t ,  x , y ) } ,  which for t = t ,  , j = 1, 2,  * * . , 
converges in L,  on compact sets, the sequence {t ,}  being dense on the positive 
t-axis; i.e., if Q is any square, then 

/ / l U ' ( t ,  , " , Y )  - U Y t ,  9 X,Y)I dXdY 
Q 

converges to zero as i + co and 1 + 00. But now for any value o f t  we have 

J/IC.'(t, .,Y) - U Y t ,  X,Y)l dx 4 
Q 
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for every t i .  From Lemma 4' and Lemma 5, we see that the right-hand side of 
(3.2) is majorized by 

(3.3) J-/IU'(tj, .,y) - UYtj 9 X,Y)l dJc dY + c It  - t j l  , 
Q 

where c is independent of i and 1. I t  is clear that this quantity can be made as 
small as we wish by first choosing t j  close to t and then choosing i and 1 sufficiently 
large. This completes the proof of the lemma. 

We can improve the result of the last lemma by showing that the convergence 
in question is uniform in t, 0 5 t 5 T, for any T > 0. To see this, let E be any 
positive number. Since { t i }  is dense, we can find a finite number of the ti such 
that for any t ,  0 5 t 5 T,  we have c l t  - t j l  < s/2 for some one of a finite number 
of the ti . Here c is the constant appearing in (3.3), but for t = T. This majorizes 
the corresponding constant for any other value oft ,  0 5 t 5 T (c.f. Lemma 4'). 
We then choose i and 1 so large that 

Q 
for each of the finite number of the t j  . From (3.2) and (3.3),  it follows that for 
such i and 1 values we have 

for all t, 0 5 t 5 T. 
Because of this uniformity of convergence we see that 

. .  
S 

converges to zero as i, 1 + co. Therefore we can conclude that the limit function 
u(  t, x ,  y )  is measurable. Furthermore, since L, convergence implies convergence 
almost everywhere of a subsequence, we see that u( t ,  x , y )  has the same upper and 
lower bounds as do the Ui(t ,  x ,  y )  and these in turn have the same upper and lower 
bounds as u,(x,y). Finally, to see that u(t ,  x,y) E 8 for each fixed t ,  we recall that 
if Ui converges to u in L,( Q), then for each fixed ;1 

au; au, au; au, 
ax ax aY aY 
- +- and -+- 

in L,(Q). (Here we are employing the gaussian averaging kernels as in the proof 
of Lemma 5 . )  From this it follows that, for each fixed 1, 

Using (3.1), we see that V(u;  Q) has the same bound as V ( U i ;  &). 

The last step in the proof of Theorem 1' is given by 
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LEMMA 7. The function u( t ,  x, y )  satisjes equation (2.2) f o r  any C3 function C#J = 

To prove this lemma we employ a device used by Oleinik in [4]. By 

d ( t ,  x , y )  which has compact support. 

means of our difference scheme (2 .3) ,  we can write 

* -  + 

Proof: 

Uk+l 
n,m - 4 . m  4 + l , m  - 2 4 . m  + 4 - 1 . m  q2  2f(Uk,+l,m) - ‘f(Ukn-1.m) 

h 2q2 h 2q 2q 
- 

Uk+l - U k  
+ n.m n.m - 4 , . m + 1  - 2uE,m + 4z.m-1. p_” 

h 2P2 h 

If we multiply this equation by d“,, , we have 
+k+1 uk+l 

n+l.m n+l,m - dkn.mUkn,m - Uk+l (+?A - +tern) 
h n,m h 

We sum this equation over all integers n and m and all non-negative integers k. 
Then the desired equality (2.2) follows from Lemma 6. This procedure is carried 
out in detail by Oleinik in Lemma 7 of [4]. 

We can now complete the proof of Theorem 1. Since the function u(t ,  x , y )  is 
bounded and the set of C3 functions having compact support is dense in the set of 
C’ functions having compact support, the equality (2.2) is valid for any + = 
+(t ,  x ,y )  which belong to this larger class. Thus the theorem is proved. 

Monotonicity in x or y is persistent in time; i.e., if uo(x, y )  is mono- 
tonic in x or y ,  then f o r  eachjxed t ,  the solution constructed in Theorem 1’ is monotonic in 
the same sense in the same variables. 

THEOREM 2‘. 
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Proof From Lemma 3, we see that monotonicity in x ory  is persistent in the 
solution of the difference equations. Therefore, if we start out with monotonic 
initial data, it follows that the simple functions U‘, for a fixed t ,  will be monotonic 
in the same variables in the same sense. Hence the same is true of the limit 
function u ( t ,  x ,  y) since L, convergence on compacta implies convergence almost 
everywhere of a subsequence. 

4. Concluding Remarks 

1. Our  main theorem shows that, for each t ,  u ( t ,  x )  belongs to the class 5. 
Therefore, from a theorem of Krickeberg [2], the surface formed from the solution, 
for each fixed t ,  has finite Lebesgue area. However, a t  the present time we are 
unable to analyze the nature of the discontinuities of our solution. In particular, it 
would be of interest to know whether discontinuities other than shocks can occur. 

2. I t  is known [I ] ,  that weak solutions of ( 1 . 1 )  are not uniquely determined by 
their initial data. In  the case n = 1, Oleinik [4] has shown that weak solutions 
satisfying an additional condition (“entropy condition”) are uniquely determined 
by their initial data. In the general case, n > 1, the question of uniqueness is still 
unresolved. 

Addendum1 

Shortly after this paper was accepted for publication we obtained an additional 
result concerning the regularity of the solution constructed in Theorem 1. In the 
proof of that theorem we showed that the solution u was, for each fixed t ,  a function 
of locally bounded variation (in the sense of Tonelli-Cesari) in the space variables. 
In  other words, the derivatives (in the sense of the theory of distributions) with 
respect to the space variables, are locally finite measures in R, for each fixed t .  
However, we have made no statement concerning the regularity of the 
solution with respect to t. In  this note we shall show that the solution is in fact a 
function of locally bounded variation (Tonelli-Cesari) in both the space and time 
variables; i.e., in the sense of the theory of distributions, the derivatives u t  and 
uzt are locally finite measures in the subset of R,+l defined by t >= 0. 

T o  prove this statement (we again give the details only for the case n = 2) ,  we 
observe that the functions V ( t ,  x ,y )  defined in Section 3 are clearly functions 
of locally bounded variation in all three variables. The variation over the closed 
set K defined by 0 5 t ,  5 t 5 t ,  and ( x ,  y) E X ,  is given by 

This section was added in August, 1965. 
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where &- means summation over all indices k ,  n,  m such that the point ( kh ,  nq, mp) 
is in K.  (Of course, the derivatives are taken in the sense of the theory of distri- 
butions.) Now from (2.10), we have 

while from Lemmas 2 and 5 we have 

2 { p h  Iu:+l.,n - u"n,n,l + qh Iu"n,m+l - Ut .? , I>  
K 

= 2 h 2 { P  Iu:+*.m - uk,,,l + 4 Iun ,m+1  - ukn,,l> 
t l L k h S f 2  -r 
I - 2 hc' = c ' ( f ,  - t l )  . 

f,Sn-/L512 

Here c and c' are independent of the mesh size and depend only on the initial data. 
We thus see that the total variation of the functions U' over the set K is uniformly 
bounded in i. Therefore by the De Giorgi-Fleming criterion [6], it follows that 
the sequence {U'> is compact in the topology of L, convergence on compact 
subsets oft  2 0. Consequently the limit function obtained inTheorem 1 is seen to be 
of locally bounded variation in the half-space t 2 0. 

In view of these remarks, Theorem 1 can be amended so as to read as follows : 

THEOREM. Let j i  , i = 1, 2 ,  * * . , n, be continuously differentiable functions of a 
single real variable and let uo(xl , . . * , x n )  E 8. Then there exists a weak solution of the 
initial value problem (1.1).  This  solution is o f  locally bounded variation ( in  the sense of 
Tonelli-Cesari) in the half-space t 2 0,  and is in 8 . f i r  eachjxed t 2 0. IMoreover the 
solution has the same upper and lower bounds as uo . 
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