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JOSÉ LUIS LÓPEZ (Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de
Granada, 18071 Granada, Spain)

and
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Abstract. In this paper, global well–posedness as well as regularity of very high
temperature Caldeira–Leggett models with repulsive Poisson coupling are proved by
using Green function techniques and Fokker–Planck smoothing arguments along with
kinetic energy and elliptic estimates.

1. Introduction and main result. The mathematical analysis of quantum dissi-
pation phenomena ruled by Fokker–Planck-type mechanisms has experienced a great
impulse in past years (an extensive review of dissipative quantum models can be found
in [6, 7]). In particular, this analysis has focused mainly on the problems of existence,
uniqueness, regularity and long-time behaviour of solutions to different approaches of
quantum mean–field Fokker–Planck models in a Wigner function context. In [2], the
derivation of the so-called Wigner–Poisson–Fokker–Planck (WPFP) equation from the
density matrix formalism of an electron ensemble interacting dissipatively with a ther-
mal bath as well as its well–posedness (in the frame of Lindblad’s class; see [10]) were
widely discussed. Also, a local existence theory was developed for the simplest Markovian
(frictionless) model which reads

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW , (1.1)

W (x, ξ, 0) = W0(x, ξ) , (1.2)

V (x, t) =
1

ε0|x|
∗ n(x, t) , n(x, t) =

∫
R3

W (x, ξ, t) dξ , (1.3)
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190 J. L. LÓPEZ AND J. NIETO

where m is the effective mass of electrons, ε0 is the vacuum permitivity, Dpp = ηkBT is a
physical constant related to particle–reservoir interaction (η > 0 is the damping constant
of the bath, kB the Boltzmann constant and T the temperature of the bath) and where
the nonlinear (pseudo–differential) term reads (see [2, 5])

Θ[V ]W (x, ξ, t) = H(x, ξ, t) ∗ξ W (x, ξ, t) , (1.4)

H(x, ξ, t) = 16
(m

�

)3

Re
{

i ei 2m
�

(x·ξ) F−1
x�→ξV

(2m

�
ξ, t

)}
, (1.5)

� denoting the Planck constant, Re(z) the real part of z and F−1 being the inverse
Fourier transform

F−1
x�→y[f ](y) =

1
(2π)3

∫
R3

f(x) eix·y dx .

A first approach to the existence of global (mild) solutions to quantum mean–field
Fokker–Planck systems was recently performed in [5]. Indeed, the existence of a unique,
regular solution to the following three–dimensional WPFP problem with nonvanishing
viscosity

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW + 2λ divξ(ξW ) + Dqq ∆xW, (1.6)

W (x, ξ, 0) = W0(x, ξ)

was proved. Here, λ = η
2m is the friction coefficient and Dqq = η�

2

12m2kBT is also an
interaction constant. The proof makes essential use of the elliptic x–regularization (via
the term Dqq ∆xW ) and the connection between the kinetic energies of the Wigner
function W (x, ξ, t) and of the Husimi function

WH(x, ξ, t) = W (x, ξ, t) ∗x,ξ

( m

�π

)3

exp
{
−m

�

(
|x|2 + |ξ|2

)}
,

whose great advantage is to be pointwise nonnegative on R
3
x×R

3
ξ because of the positivity

of the density matrix operator (guaranteed by the Lindblad condition). A global existence
theory has also been dealt with in [3] from a different perspective in a weighted L2 space.
In this direction, a remarkable advance is that the positivity assumption for the particle
density is not required. Recently, the system of 1D hydrodynamic equations for the
current and the charge density associated with the most general WPFP equation

∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W

=
Dpp

m2
∆ξW + 2λ divξ(ξW ) + 2

Dpq

m
divx(∇ξW ) + Dqq ∆xW (1.7)

was also tackled in [9], where Dpq = ηω�
2

12πmkBT is the quantum Drude factor (which in
some situations prevents the diffusion matrix to be positive semidefinite), with ω standing
for the cut–off frequency of the reservoir oscillators. Here, the authors study the rate of
time decay of solutions via the entropy dissipation method.
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GLOBAL SOLUTIONS OF CALDEIRA–LEGGETT MASTER EQUATION 191

The long–time dynamics of (1.1)–(1.5) were also analyzed in [2] under the assumption
that the solution is defined in [0,∞). Actually, it was proved that

lim
t→∞

‖W (t) − Q G0(t)‖L1(Ωt) = 0 , (1.8)

lim
t→∞

‖WH(t) − Q G0(t)‖L1(R3
x×R3

ξ) = 0 , (1.9)

where Ωt = {(t 3
2 x, t

1
2 ξ) : (x, ξ) ∈ Ω}, Ω being an arbitrary bounded open subset of R

6,
G0 is defined below (see § 3.1), and where Q denotes the total charge of the system which
is an invariant of motion.

Our main goal in this paper is to prove the existence of a unique global–in–time
mild solution to the 3D frictionless WPFP problem (1.1)–(1.5). To this purpose, the
most important difficulties to be overcome are the nonpositivity of the Wigner function
(which does not allow for the application of maximum principles and in general for the
standard techniques known to work for mean–field Vlasov–Fokker–Planck systems) and
the obvious lack of elliptic regularity in the position variable (because of absence of the
∆xW term), giving rise to much worse estimates than those available for Eqs. (1.6)
or (1.7), for example. A global existence theory for (1.1)–(1.5) would also fully justify
the arguments in [2] leading to the long–time (linear) behaviour of the solutions (cf.
(1.8)–(1.9)), for which existence in [0,∞) was assumed. Our main result is the following

Theorem 1.1. Let W0 be a physically admissible initial datum (i.e. such that the
density matrix operator corresponding to W0 is nonnegative) belonging to L1(R3

x×R
3
ξ)∩

L1(R3
ξ; L

2(R3
x)). Then, there exists 0 < Tmax ≤ ∞ such that the Wigner–Poisson–

Fokker–Planck equation (1.1) admits a unique mild solution

W ∈ C([0, Tmax); L1(R3
x × R

3
ξ) ∩ L1(R3

ξ; L
2(R3

x)))

when solved along with a given initial data W0 in the conditions above.
Besides, if

‖|ξ|2W0‖L1(R3
x×R3

ξ) + ‖∇xW0‖L1(R3
x×R3

ξ) + ‖W0‖L1(R3
ξ;Lp0 (R3

x)) < ∞

for some p0 > 3, then Tmax = ∞.

This result contributes to completing the global well–posedness analysis of physica-
lly relevant quantum Fokker–Planck models initiated in [5]. The paper is structured as
follows: Section 2 is devoted to sketch the derivation and main properties of Eq. (1.1),
and Section 3 concerns the proof of Theorem 1.1, which is split into several steps. First
we set our problem in a mild context and analyze the more relevant properties of its
fundamental solution. Then, local well–posedness and regularity of the solutions are
shown by standard fixed–point arguments and the use of the smoothing properties of the
Fokker–Planck kernel. Finally, global existence is deduced from the (linear) control of
the total energy and an extension of Lieb–Thirring inequalities.

2. On the very high temperature Caldeira–Leggett master equation. The
system to be dealt with throughout this paper is the quantum Fokker–Planck equation
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192 J. L. LÓPEZ AND J. NIETO

(cf. (1.1))
∂W

∂t
+ (ξ · ∇x)W + Θ[V ]W =

Dpp

m2
∆ξW (2.1)

in the Wigner phase–space representation, corresponding to the simplest Markovian ap-
proximation of open quantum systems in the high–temperature limit (set Dqq = Dpq = 0
in Eq. (1.7)) and frictionless case (set also λ = 0 in (1.7)). Here, the last term accounts
for dissipation and fluctuation effects due to the coupling to the environment and, from a
mathematical viewpoint, contributes to the regularization in the momentum variable of
the solutions and macroscopic observables. This simple model was shown in [8] to yield
a mathematically consistent master equation which does not take into account energy
dissipation of the electron ensemble by the background. Actually, frictionless models
constitute the only physically relevant Fokker–Planck quantum models which make the
quantum entropy S(R) := −Tr(R log(R)) grow (see [2]), Tr denoting the usual trace
operator and R(t) : L2(R3) → L2(R3) standing for the density matrix operator of the
electron (ensemble) for all t ≥ 0.

If Dqq = Dpq = 0 in Eq. (1.7) but the friction term is still retained (λ > 0), then
we find the celebrated Caldeira–Leggett model introduced in [4], which is known not to
belong to the so-called Lindblad class [10]. This implies an eventual lack of positivity
for the density matrix operator along the evolution. At variance, Eq. (2.1) may be
cast in Lindblad form, which ensures that the system is well posed in the sense that
total charge and quantum density and entropy are well defined, as well as the fact that
mathematical consistency of the problem (that is, R(t) is positivity preserving) holds.
Albeit seemingly simple, the mathematical analysis of the frictionless WPFP equation
(2.1) becomes much more complex than that carried out in [5] and [3], due to an obvious
lack of a priori elliptic regularization in the x–variable.

Let us finally say a few words on the formal derivation of Eq. (2.1). Let ρ(t) ≡
ρ(·, ·, t) ∈ L2(R3

x × R
3
y) be the density matrix function, i.e. the integral kernel of R(t).

The model for the motion of the electron reads
∂ρ

∂t
= − i

�
(Hx − Hy)ρ − Dpp

�2
|x − y|2ρ , (2.2)

where

H = − �
2

2m
∆x + V (x, t)

is the electron Hamiltonian and Hx, Hy stand for copies of H acting on the variables x

and y, respectively. Consider now the Wigner transform

W (x, ξ, t) :=
1

(2π)3

∫
R3

η

ρ
(
x +

�

2m
η, x − �

2m
η, t

)
e−iξ·η dη .

Wignerization of Eq. (2.2) straightforwardly yields (1.2). We remark that in [8] L. Diósi
used an asymptotic expansion in the parameter α = λ�

kBT to derive the (whole) evolution
equation for the density matrix

∂ρ

∂t
= − i

�
(Hx − Hy)ρ − γ(x − y) · (∇x −∇y)ρ

+
(
Dqq |∇x + ∇y|2 −

Dpp

�2
|x − y|2 +

2i

�
Dpq (x − y) · (∇x + ∇y)

)
ρ , (2.3)
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the error of which being O(α3). When the terms with coefficients Dqq and Dpq (which
are both of order O( 1

T )) are neglected from Eq. (2.3) (or equivalently from Eq. (1.7)),
then the Caldeira–Leggett equation is obtained. This approach, which gives a high
temperature O(α2)–accurate model, is shown to be admissible only if the coherence
length connected with the state of the electron is larger than the de Broglie wavelength
ldB = �√

4mkBT
. When one goes beyond the lowest order Markovian approximation at

high and medium temperatures, the dissipation term (that with coefficient λ) is also
dropped and there only remains the Dpp interaction. The so obtained master equation
constitutes an O(α)–accurate model. This is the sense in which Eq. (2.2) (or equivalently
Eq. (2.1)) can be regarded as a very high temperature model (or also as a model with
very weak system–reservoir coupling).

3. Proof of Theorem 1.1. We start by introducing some concepts and notation.
Define the following quantities:

Q(t) :=
∫

R3

∫
R3

W (x, ξ, t) dξ dx total charge , (3.1)

EK [W ](t) :=
1
2

∫
R3

∫
R3

|ξ|2 W (x, ξ, t) dξ dx kinetic energy , (3.2)

EP (t) :=
ε0

2

∫
R3

|∇xV (x, t)|2 dx potential energy , (3.3)

E(t) := EK [W ](t) + EP (t) total energy , (3.4)

j(x, t) :=
∫

R3
ξ

ξ W (x, ξ, t) dξ current density . (3.5)

Also, denote by Lq,p the functional spaces Lq(R3
ξ; L

p(R3
x)) and use Lp for the particular

case q = p. In the sequel, C will denote different positive constants.
3.1. Fundamental solution and mild formulation. The fundamental solution of the

frictionless kinetic Fokker–Planck equation is that obtained by solving the following linear
initial value problem:

∂G0

∂t
+ (ξ · ∇x)G0 =

Dpp

m2
∆ξG0 , (3.6)

G0(x, ξ, 0) = δ0(x, ξ) , (3.7)

δ0 standing for the Dirac delta centered at (x0, ξ0) = (0, 0). Fourier transformation of
(3.6)–(3.7) in both x �→ y and ξ �→ η variables leads straightforwardly to

∂Ĝ0

∂t
− (y · ∇η)Ĝ0 +

Dpp

m2
|η|2Ĝ0 = 0 , (3.8)

Ĝ0(y, η, 0) = 1 . (3.9)

Then, solving (3.8)–(3.9) along the characteristic system

y ≡ y0 ∈ R
3 ,

η(t) = η0 − y0 t ,
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194 J. L. LÓPEZ AND J. NIETO

we find

Ĝ0(y, η, t) = exp
{
−Dpp

m2

(
|η|2t + (η · y)t2 +

|y|2
3

t3
)}

.

Finally, by inverse Fourier transformation of Ĝ0 we have the following expression for the
fundamental solution G0:

G0(x, ξ, t) = d(t) exp
{
−a(t)|x|2 − c(t)|ξ|2 + b(t)(x · ξ)

}
with coefficients

a(t) =
3m2

Dpp t3
, b(t) =

3m2

Dpp t2
, c(t) =

m2

Dpp t
, d(t) =

( √
3 m2

2πDpp t2

)3

.

Then, the solution to the (linear) initial value problem

∂W

∂t
+ (ξ · ∇x)W =

Dpp

m2
∆ξW , W (0) = W0 ,

is given by the action of the kinetic Fokker–Planck flux operator G(t) on W0 ∈ L1 by
means of the following pseudo–convoluted expression:

W (t) = G(t)[W0] :=
∫

R3
v

∫
R3

z

G(x, ξ, z, v, t)W0(z, v) dz dv ,

where (see [11, 5]) G(x, ξ, z, v, t) = G0(x−z−vt, ξ−v, t) . The notion of a mild solution of
the WPFP system (1.1)–(1.5) is now introduced as the solution of a (formally) equivalent
integral equation.

Definition 3.1 (Mild solution). We call W ∈ C([0, T ]; L1 ∩ L1,2) a mild solution of
the initial value problem (1.1)–(1.2) if it solves the integral equation

W (t) = G(t)[W0] −
∫ t

0

G(t − s)[(H ∗ξ W )(s)] ds (3.10)

for all 0 ≤ t ≤ T , where H and V are given by (1.5) and (1.3), respectively.
In the following result we list our main a priori estimates.

Proposition 3.2 (A priori estimates). The following bounds are fulfilled:
(i) ‖G0(t)‖L1 = 1.
(ii) ‖|ξ|αG0(t)‖Lq,p = C(q, p, α) t

3
2q + 9

2p + α
2 −6 for all 1 ≤ q, p < ∞ and α ≥ 0.

(iii) ‖G(t)[f ]‖Lq,p ≤ ‖G0‖Ls,r‖f‖Lm,l , for 1 ≤ p, q < ∞ and 1 ≤ m ≤ l ≤ ∞ such
that

1 +
1
p

=
1
r

+
1
l

, 1 +
1
q

=
1
s

+
1
m

.

(iv) EK [G(t)[f ]] = EK [f ] + C t
∫

R3

∫
R3 f dx dξ.

(v) ‖H(t)‖L1(R3
ξ) ≤ C (‖n(t)‖L1(R3

x) + ‖n(t)‖L2(R3
x)). As consequence, we have

‖H(t)‖L1(R3
ξ) ≤ C (‖W (t)‖L1 + ‖W (t)‖L1,2).

Proof. (i), (ii) and (iv) follow from direct computations involving the fundamental
solution G0. (iii) is a consequence of Young’s inequality for convolutions. (v) follows
from the inequality (cf. (1.5))

|H(x, ξ, t)| ≤ 16
(m

�

)3∣∣∣F−1
x�→ξV

(2m

�
ξ, t

)∣∣∣
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and the identity

‖F−1
x�→yV (t)‖L1(R3) =

1
ε0

∥∥∥F−1
x�→y

( 1
|x| ∗ n

)
(t)

∥∥∥
L1(R3)

=
1

2π2ε0

∥∥∥ 1
| · |2 (F−1

x�→yn)(·, t)
∥∥∥

L1(R3)
.

Indeed, we first estimate the L1 norm of | · |−2(F−1
x�→yn)(·, t) outside and inside the 3D

unit ball B. Using Hölder’s inequality we have∥∥∥ 1
| · |2 (F−1

x�→yn)(·, t)
∥∥∥

L1(R3\B)
≤ C‖F−1

x�→yn(t)‖L2(R3) ≤ C‖n(t)‖L2(R3) .

Likewise, inside B we get∥∥∥ 1
| · |2 (F−1

x�→yn)(·, t)
∥∥∥

L1(B)
≤ C‖F−1

x�→yn(t)‖L∞(R3) ≤ C ‖n(t)‖L1(R3).

The second inequality in (v) follows from the obvious estimate ‖n(t)‖L1(R3
x) ≤ ‖W (t)‖L1

and Minkowski’s inequality applied to the integral expression of the position density

‖n(t)‖L2(R3) =
( ∫

R3
x

( ∫
R

3
ξ

W (x, ξ, t) dξ
)2

dx
)1/2

≤
∫

R3
ξ

( ∫
R3

x

W (x, ξ, t)2 dx
)1/2

dξ = ‖W (t)‖L1,2 .

�
3.2. Local well–posedness. Our aim in this section is to investigate the existence of a

solution of the mild WPFP system (3.10) by means of a Banach fixed–point argument.
To this purpose, we first introduce the appropriate function spaces in which we shall
develop our theory.

Let T > 0 and consider the Banach space XT = C([0, T ]; L1 ∩L1,2) endowed with the
norm

‖W‖T := sup
0≤t≤T

(
‖W (t)‖L1 + ‖W (t)‖L1,2

)
.

Also define the following closed, bounded subset of XT :

XK
T = {W ∈ XT : W (x, ξ, 0) = W0(x, ξ) a.e. , ‖W‖T ≤ K}

and the map Γ : XK
T → XT by

Γ(W )(t) = G(t)[W0] −
∫ t

0

G(t − s)[(H ∗ξ W )(s)] ds .

We first note that Γ is well defined. Indeed, from Proposition 3.2(i), (iii) and (v) we have

‖G(t)[W0]‖L1 ≤ ‖W0‖L1 ,

‖G(t − s)[(H ∗ξ W )(s)]‖L1 ≤ C‖W‖T ‖W (s)‖L1 ,

where we estimated

‖H ∗ξ W‖L1 ≤ ‖H‖L1(R3
ξ)‖W‖L1
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196 J. L. LÓPEZ AND J. NIETO

by Young’s inequality. We observe that the same type of estimates are also true for the
L1,2 norm. Indeed, we have

‖G(t)[W0]‖L1,2 ≤ ‖W0‖L1,2 ,

‖G(t − s)[(H ∗ξ W )(s)]‖L1,2 ≤ C‖W‖T ‖W (s)‖L1,2 .

By appropriately choosing K > ‖W0‖T and T < 1/(2CK) it is clear that Γ is a contrac-
tive map from XK

T onto itself, thus it has a unique fixed point (i.e. there exists a unique
mild solution in the sense of Definition 3.1 for sufficiently small T > 0 only depending
on W0). Let us denote by Tmax the maximal existence time of the mild solution.

Under the additional hypotheses of Theorem 1.1, we shall actually prove in § 3.4 that
the mild solution belongs to C([0,∞); L1∩L1,2), so that global existence is attained. To
this aim we only need to observe that the norm ‖W‖T cannot blow up in a finite time T

(see [11] for details).
3.3. Regularity. This part of the proof is devoted to show some auxiliary regularity

properties and (intrinsic) smoothing effects of our system that will help us to reach the
global existence.

Lemma 3.3. Let 0 < T < Tmax and also let W be the mild solution of the WPFP
system with initial data W0 fulfilling the hypotheses of Theorem 1.1. Then, the following
inequalities hold:

(i) W ∈ C((0, T ]; L∞ ∩ L1,∞) and W ∈ C([0, T ]; L1,p0),
(ii) ‖n(t)‖L1(R3

x) = Q(t) ≡ Q = ‖n(0)‖L1(R3
x) and n ∈ L∞(0, T ; Lp0(R3

x)),

(iii) ‖∇xV (t)‖L∞(R3
x) ≤ C(Q)‖n(t)‖

2
3 (

p0
p0−1 )

Lp0(R3
x) , for all 0 ≤ t ≤ T ,

(iv) ‖∇xW (t)‖L1,2 ≤ C‖∇xW0‖L1,2 , for all 0 ≤ t ≤ T ,
(v) ‖j(t)‖(L1(R3

x))3 ≤ C for all 0 ≤ t ≤ T ,
(vi) |EK(t)| < ∞ for all 0 ≤ t ≤ T .

Proof. The first result is reached as a consequence of Proposition 3.2(ii) and (iv) by
noting that ‖G0(t)‖Lp ≤ Ct

6
p−6 implies ‖G0(t)‖Lp ∈ L1(0, T ) for p < 6

5 . We prove that
W (t) ∈ L∞ for all 0 < t ≤ T in seven steps. The first step consists of estimating

‖W (t)‖Lp ≤ C‖W0‖L1 t
6
p−6 + C‖W‖2

T

∫ t

0

(t − s)
6
p−6 ds < ∞ , 0 < t ≤ T .

Then, it is easily deduced that W ∈ C((0, T ]; Lp) for all p < 6
5 . The second step starts

from the choice of an arbitrarily small time ε > 0, that is, we rewrite W (t) for t > ε as

W (t) = G(t − ε)[W (ε)] −
∫ t

ε

G(t − s)[(H ∗ W )(s)] ds.

Then we can estimate ‖W (t)‖Lq with q < 3
2 as

‖W (t)‖Lq ≤ C(t − ε)
6
p−6‖W (ε)‖Lp + C‖W‖T

∫ t

ε

(t − s)
6
p−6‖W (s)‖Lp ds.

In the third step we consider r < 2 and t > 2ε and obtain

‖W (t)‖Lr ≤ C(t − 2ε)
6
p−6‖W (2ε)‖Lq + C‖W‖T

∫ t

2ε

(t − s)
6
p−6‖W (s)‖Lq ds .
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Analogously, we find that W ∈ C([3ε, T ]; Lσ) for all σ < 3 in the fourth step, W ∈
C([4ε, T ]; Lσ) for all σ < 6 in the fifth step and W ∈ C([5ε, T ]; Lσ) for all σ < ∞ in the
sixth step. Finally, a uniform bound for W in L∞ is reached in the seventh step. Note
that the intermediate regularities are linked by Young’s relations at every step. The
arbitrariness of ε allows us to conclude. The L1,p regularity is analogously deduced in
five steps by now observing that ‖G0(t)‖L1,p ≤ Ct

9
2p− 9

2 belongs to L1(0, T ) for p < 9
7 .

To end the proof of (i) we just take the L1,p0 norm of the Wigner function in the mild
formulation and obtain

‖W (t)‖L1,p0 ≤ ‖W0‖L1,p0 + ‖W‖T

∫ t

0

‖W (s)‖L1,p0 ds .

Then, Gronwall’s lemma allows us to conclude result (i).
The charge conservation in (ii) is straightforwardly deduced from the mild formula-

tion (3.10) of W , while ‖n(t)‖Lp0(R3
x) ≤ ‖W (t)‖L1,p0 is a consequence of Minkowski’s

inequality for integrals.
(iii) is a standard result concerning singular integrals of convolution type whose proof

can be found in [12].
We now prove (iv). Differentiating in (3.10) we get

‖∇xW (t)‖L1,2 ≤ ‖∇xW0‖L1,2 +
∫ t

0

‖∇x(H ∗ξ W )(s)‖L1,2 ds

≤ ‖∇xW0‖L1,2 +
∫ t

0

(
‖∇xH ∗ξ W (s)‖L1,2 + ‖H ∗ξ ∇xW (s)‖L1,2

)
ds . (3.11)

It is clear from (1.5) and the proof of Proposition 3.2(v) that

‖∇xH‖L1(R3
ξ) ≤ C

∥∥∥∥ξF−1
x�→ξV

(
2m

�
ξ, t

)∥∥∥∥
L1(R3

ξ)

≤ C
(
‖n(t)‖L1(R3

x) + ‖∇xn(t)‖L2(R3
x)

)
. (3.12)

Insertion of (3.12) into (3.11) and use of the fact that ‖∇n(t)‖L2(R3
x) ≤ ‖∇xW (t)‖L1,2

yields

‖∇xW (t)‖L1,2 ≤ ‖∇xW0‖L1,2 + t ‖W‖2
T + 2‖W‖T

∫ t

0

‖∇xW (s)‖L1,2 ds .

Thus, Gronwall’s inequality ends the proof of (iv).
To prove (v) we multiply Eq. (3.10) by ξ and take L1 norms. Then, we obtain

‖ξW (t)‖L1 ≤ ‖ξG0‖L1‖W0‖L1 + ‖G0‖L1‖ξW0‖L1

+
∫ t

0

‖ξG0‖L1‖(H ∗ξ W )(s)‖L1 ds

+
∫ t

0

‖G0‖L1‖ξH(s)‖L1(R3
ξ)‖W (s)‖L1 ds

+
∫ t

0

‖G0‖L1‖H(s)‖L1(R3
ξ)‖ξW (s)‖L1 ds

≤ g(t) + C‖W‖T

∫ t

0

‖ξW (s)‖L1 ds ,
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with

g(t) = C‖W0‖L1

√
t + ‖ξW0‖L1 +

2
3
‖W‖2

T t
3
2

+ C‖W‖2
T t + C‖W‖T

∫ t

0

‖∇xn(s)‖L2(R3
x) ds ,

where we estimated (cf. (3.12)) ‖ξH‖L1(R3
ξ) ≤ C(‖n(t)‖L1(R3

x) + ‖∇xn(t)‖L2(R3
x)) and

calculated the moments of G0 via Proposition 3.2(i) and (ii). Now, Gronwall’s inequality
applies to yield (v).

(vi) follows from Eq. (3.10) by integrating against |ξ|2 and estimating

EK [W ](t) = EK [W ](0) + C Q t +
∫ t

0

∫
R3

x

∫
R3

ξ

|ξ|2(H ∗ξ W ) dξ dx ds

= EK [W ](0) + C Q t +
∫ t

0

(∫
R3

x

j · ∇xV dx
)

ds, (3.13)

where we have used Proposition 3.2(iv). Then, (iii) and (v) allow us to conclude that
(vi) holds. �

3.4. Global well–posedness. We first remind the reader (see [11]) that the mild solution
achieved in § 3.2 is either global (Tmax = ∞) or Tmax < ∞, in which case

lim
T↗Tmax

‖W‖T = ∞ .

Of course, we need to show that the second option cannot occur. To control the ‖ · ‖T

norm for all T > 0 we shall use the following estimates.

Proposition 3.4 (A posteriori estimates). Let W be a mild solution of the WPFP
system with initial data W0 fulfilling the hypotheses of Theorem 1.1. Then, the following
properties

(i) ‖n(t)‖L2(R3
x) ≤ C Q

1
4 EK [W ](t)

3
4 ,

(ii) E(t) grows linearly with time: E(t) = E(0) + C Q t,
(iii) ‖H‖L1(R3

ξ) ≤ C(1 + t),
hold in the maximal existence interval.

Proof. Assertion (i) follows from application of a particular case of a generalization
of the Lieb–Thirring inequality (see [1]). To deduce (ii) we use the identity (3.13), the
Poisson equation (1.2) and the continuity equation ∂tn+div(j) = 0 (see [2]). Finally, (iii)
is a straightforward consequence of (i), (ii), Lemma 3.3(ii) and Proposition 3.2(v). �

By taking the L1 and L1,2 norms in the mild–formulated WPFP problem (3.10) we
get (as in § 3.2)

‖W (t)‖L1 + ‖W (t)‖L1,2 ≤ ‖W0‖L1 + ‖W0‖L1,2

+C

∫ t

0

‖H(s)‖L1(R3
ξ)(‖W (s)‖L1 + ‖W (s)‖L1,2) ds

≤ ‖W0‖L1 + ‖W0‖L1,2 + C

∫ t

0

(1 + s)(‖W (s)‖L1 + ‖W (s)‖L1,2) ds
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thanks to Proposition 3.4. We then conclude that

‖W‖T ≤ (‖W0‖L1 + ‖W0‖L1,2) eC T 2

via Gronwall’s inequality. Now we are done with the proof.
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