Global Solutions to the Coupled Chemotaxis-Fluid Equations

Renjun Duan

Johann Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences

This is a joint work with Alexander Lorz and Peter Markowich

Modern Topics in Nonlinear Kinetic Equations University of Cambridge, April 20-22, 2009

Outline

- Introduction
- Mathematical models under consideration
- The main goal of this talk
- Related results
- Free energy functionals
- Identity I
- Identity II
- Global existence of weak solutions
- Theorem I for the case when forcing is small
- Theorem II for the case when initial c_{0} is small
- Classical solutions near constant states
- Global existence of solutions
- Rate of convergence of solutions to constant states
- Final remarks

1. Introduction

1.1 Consider the coupled chemotaxis-Navier-Stokes eqns:

$$
\left\{\begin{array}{l}
\partial_{t} n+u \cdot \nabla n=\delta \Delta n-\nabla \cdot(\chi(c) n \nabla c) \tag{cNS}\\
\partial_{t} c+u \cdot \nabla c=\mu \Delta c-k(c) n \\
\partial_{t} u+u \cdot \nabla u+\nabla P=\nu \Delta u-n \nabla \phi \\
\nabla \cdot u=0, \quad t>0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

with initial data

$$
\left.(n, c, u)\right|_{t=0}=\left(n_{0}(x), c_{0}(x), u_{0}(x)\right), \quad x \in \mathbb{R}^{3}
$$

where

- unknowns:
chemotaxis variables - $n=n(t, x) \geq 0$ (cell density)

$$
c=c(t, x) \geq 0 \text { (substrate concentration) }
$$

fluid variables - $u=u(t, x) \in \mathbb{R}^{3}$ (velocity)

$$
P=P(t, x) \in \mathbb{R} \text { (pressure) }
$$

- given:

$$
\begin{aligned}
\text { constant coefficients }-\delta>0 \text { (cells diffusion) } \\
\mu>0 \text { (substrate diffusion) } \\
\nu>0 \text { (viscosity) }
\end{aligned}
$$

variable coefficients - $\chi(c)$ (chemotactic sensitivity) $k(c)$ (consumption rate)
potential function - $\phi=\phi(t, x)$ (external forcing)

- basic assumptions (A1):

$$
\begin{aligned}
& \text { (i) } n_{0}(x) \geq 0, c_{0}(x) \geq 0, \quad \nabla \cdot u_{0}(x)=0 \text {; } \\
& \text { (ii) } k(0)=0, k^{\prime}(c) \geq 0
\end{aligned}
$$

Remarks:
a) $-n \nabla \phi$ is the force exerted on the fluid by cells.
b) (ii) implies that $k(c) \geq 0$ holds for $c \geq 0$, that is the case of consumption of chemical substrates.
1.2 Our interest lies in

- the existence of the free energy functional;
- the global well-posedness of the Cauchy problem on (cNS);
- the large-time behavior of solutions and convergence rates.
So far, we can answer that
- any constant steady state $(n, c, u) \equiv\left(n_{\infty} \geq 0,0,0\right)$ is asymptotically stable under small perturbations, and the rate of trend to equilibrium can be obtained;
- \exists temporal free energy functionals $\mathcal{E}(n(t), c(t), u(t))$ and corresponding dissipation rate $\mathcal{D}(n(t), c(t), u(t))$ s.t.

$$
\frac{d}{d t} \mathcal{E}(n(t), c(t), u(t))=-\mathcal{D}(n(t), c(t), u(t)) \leq 0
$$

provided that

- the potential forcing is weak, or
- the substrate concentration is small.

1.3 Background of the model system:

- Bacteria live in thin fluid layers near solid-air-water contact lines
- Chemotactic Boycott effect in sedimentation:
- Bacteria swim up to the free surface between water and air (chemotaxis), and slide down the bottom;
- high concentrations of Bacteria are produced at two contact lines, and the oxygen in water is consumed;
- Bacteria at upper contact line slide down due to gravitational forcing;
- a vortex is formed in the water due to incompressibility
- This mathematical model consists of
- diffusion, chemotaxis and transport for bacteria;
- diffusion, consumption and transport for Oxygen;
- viscosity and incompressibility for fluid
1.4 Formulation of the boundary conditions: Let Ω be a bounded domain with smooth bdries. Then, on $\partial \Omega$,

$$
\begin{gathered}
\left.\left(\frac{\partial n}{\partial \nu}-\chi(x) n \frac{\partial c}{\partial \nu}\right)\right|_{\partial \Omega}=0(\text { no-flux on } n) \\
\left.c\right|_{\partial \Omega}=0 \text { (Dirichlet) or }\left.\frac{\partial c}{\partial \nu}\right|_{\partial \Omega}=0 \text { (Neumann), } \\
\left.u\right|_{\partial \Omega}=0 \text { (Dirichlet). }
\end{gathered}
$$

For the semi-dimension problem:

$$
\nabla \phi=g \mathbf{e}_{d}
$$

c takes the mixed boundary conditions:

$$
\begin{aligned}
& \left.c\right|_{\Gamma_{+}}=c_{+}>0 \text { Dirichlet on the upper bdy, } \\
& \left.\frac{\partial c}{\partial \nu}\right|_{\Gamma_{-}}=0 \text { no-flux on the lower bdy, }
\end{aligned}
$$

where

$$
\begin{aligned}
& \Gamma_{+}=\left\{x \in \partial \Omega: \mathbf{e}_{d} \cdot \nu(x)>0\right\}, \\
& \Gamma_{-}=\left\{x \in \partial \Omega: \mathbf{e}_{d} \cdot \nu(x)<0\right\}
\end{aligned}
$$

1.5 Related results:

- Chemotaxis for the angiogenesis system:

$$
\begin{aligned}
& \partial_{t} n=\Delta n-\nabla \cdot(\chi n \nabla c), \\
& \partial_{t} c=-c^{m} n, \quad t>0, x \in \Omega, \\
& (n, c)(0, x)=\left(n_{0}, c_{0}\right)(x), \quad x \in \Omega \subseteq \mathbb{R}^{d} .
\end{aligned}
$$

Rascle, Fontelos-Friedman-Hu, Guarguaglini-Natalini,
Corrias-Perthame-Zagg, ...

- Kinetic-fluid-coupled model:
kinetic equation: Vlasov-type
$+$
fluid dynamic equations: NS or Euler (C or IC)
Caflish-Papanicolaou, Hamdache, Jabin, Goudon, Carrillo-Goudon, Mellet-Vasseur, ...
1.5 Related results (cont.):
- Keller-Segel model (substrate is also produced by cells):

$$
\begin{aligned}
\partial_{t} n & =\Delta n-\nabla \cdot(\chi n \nabla c) \\
\partial_{t} c & =\Delta c-c+n .
\end{aligned}
$$

(recent progress only)

- Chalub-Markowich-Perthame-Schmeiser: the model was justified as a diffusion limit of a kinetic model
- Blanchet-Dolbeault-Perthame, Blanchet-Carrillo-Masmoudi: Parabolic-elliptic in \mathbb{R}^{2}
- Calvez-Corrias: Parabolic-parabolic in \mathbb{R}^{2}

2. Free energy functionals

2.1 To expose the idea, consider

$$
\left\{\begin{array}{l}
\partial_{t} n=\delta \Delta n-\nabla \cdot(\chi(c) n \nabla c) \\
\partial_{t} c=\mu \Delta c-k(c) n, \quad t>0, x \in \mathbb{R}^{d}
\end{array}\right.
$$

where the fluid component was ignored. Define

$$
\mathcal{E}(n(t), c(t))=\int_{\mathbb{R}^{d}} n \ln n d x+\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla \Psi(c)|^{2} d x
$$

with

$$
\Psi(c)=\int_{0}^{c}\left(\frac{\chi(s)}{k(s)}\right)^{1 / 2} d s
$$

Then, one has
Proposition (identity I)

$$
\frac{d}{d t} \mathcal{E}(n(t), c(t))=-\mathcal{D}(n(t), c(t))
$$

where the dissipation rate $\mathcal{D}(n(t), c(t))$ is given by

$$
\begin{aligned}
\mathcal{D}(n(t), c(t))= & \delta \int_{\mathbb{R}^{d}} \frac{|\nabla n|^{2}}{n} d x+\int_{\mathbb{R}^{d}} \frac{\chi^{\prime}(c) k(c)+\chi(c) k^{\prime}(c)}{2 \chi(c)} n|\nabla \Psi|^{2} d x \\
& +\mu \int_{\mathbb{R}^{d}}\left|\nabla^{2} \Psi-\frac{d}{d c} \sqrt{\frac{k(c)}{\chi(c)}} \nabla \Psi \otimes \nabla \Psi\right|^{2} d x \\
& -\frac{\mu}{2} \int_{\mathbb{R}^{d}} \frac{d^{2}}{d c^{2}}\left(\frac{k(c)}{\chi(c)}\right)|\nabla \Psi|^{4} d x .
\end{aligned}
$$

Moreover,

$$
\mathcal{D}(n(t), c(t)) \geq 0
$$

holds provided that

$$
\begin{equation*}
\chi(c)>0, \frac{d}{d c}(\chi(c) k(c))>0, \frac{d^{2}}{d c^{2}}\left(\frac{k(c)}{\chi(c)}\right)<0 . \tag{A2}
\end{equation*}
$$

Proof of Proposition: it follows from the direct calculations.■

Remarks:

a) Identity I is inspired by Tupchiev-Fomina (CMMP '04) for the study of the two-dimensional case, where some inequalities were derived.
b) A typical example for $\chi(c)$ and $k(c)$ satisfying the above condition is

$$
\chi(c)=\chi_{0} c^{-\alpha}, \quad k(c)=k_{0} c^{m}
$$

with constants $\chi_{0}>0, k_{0}>0$ and

$$
0<m<1, \quad 0 \leq \alpha<\min \{m, 1-m\} .
$$

c) When the transportation occurs, i.e.,

$$
\left\{\begin{array}{l}
\partial_{t} n+u \cdot \nabla n=\delta \Delta n-\nabla \cdot(\chi(c) n \nabla c) \\
\partial_{t} c+u \cdot \nabla c=\mu \Delta c-k(c) n, \quad t>0, x \in \mathbb{R}^{d}
\end{array}\right.
$$

one has

$$
\frac{d}{d t} \mathcal{E}(n(t), c(t))+\mathcal{D}(n(t), c(t))=-\sum_{i j} \int_{\mathbb{R}^{d}} \partial_{i} u_{j} \partial_{i} \Psi \partial_{j} \Psi d x
$$

2.2 Consider the (cNS), that is the coupled chemotaxis-Navier-Stokes, with

$$
\phi=\phi(x)
$$

independent of time t. Then one has
Proposition (identity II)

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{d}}\left(n \phi+\frac{1}{2}|u|^{2}\right) d x+\nu \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x \\
& =\delta \int_{\mathbb{R}^{d}} n \Delta \phi d x+\int_{\mathbb{R}^{d}} \sqrt{k(c) \chi(c)} n \nabla \Psi \cdot \nabla \phi d x .
\end{aligned}
$$

Proof of Proposition: it follows from the integration by parts and replacing $\phi u \cdot \nabla n$ by the eqn of n. \square

Remark. The r.h.s terms of identities I and II can be controlled provided that

- ϕ is small in some sense, or
- ϕ is bounded in some sense and c is small in L^{∞}.

3. Global existence of weak solutions

3.1 Consider the simplified model system of the coupled chemotaxis-Stokes equations:

$$
\left\{\begin{array}{l}
\partial_{t} n+u \cdot \nabla n=\delta \Delta n-\nabla \cdot(\chi(c) n \nabla c) \\
\partial_{t} c+u \cdot \nabla c=\mu \Delta c-k(c) n \tag{cS}\\
\partial_{t} u+\nabla P=\nu \Delta u-n \nabla \phi \\
\nabla \cdot u=0, \quad t>0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

with

$$
\left.(n, c, u)\right|_{t=0}=\left(n_{0}(x), c_{0}(x), u_{0}(x)\right), \quad x \in \mathbb{R}^{3} .
$$

Remark. The nonlinear convective term $u \cdot \nabla u$ may produce the new difficulty for regularity of u.

Theorem I Let assumptions A1- A2 hold and let $\phi=\phi(x) \geq 0$ be independent of t with $\nabla \phi \in L^{\infty}\left(\mathbb{R}^{3}\right)$. Suppose that

$$
\begin{gathered}
n_{0}\left(\left|\ln n_{0}\right|+\langle x\rangle+\phi(x)\right) \in L^{1}\left(\mathbb{R}^{3}\right), \\
c_{0} \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right), \quad \nabla \Psi\left(c_{0}\right) \in L^{2}\left(\mathbb{R}^{3}\right), \\
u_{0} \in L^{\infty}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)
\end{gathered}
$$

where $\langle x\rangle:=\sqrt{1+x^{2}}$. Then, $\exists \epsilon_{\phi}>0$, depending only on δ, μ, ν, $\left\|c_{0}\right\|_{L^{\infty}}$, s.t. if

$$
\sup _{x}|x||\nabla \phi(x)|+\sup _{x}|x|^{2}|\Delta \phi(x)| \leq \epsilon_{\phi},
$$

the Cauchy problem of $(c S)$ has a global-in-time weak solution (n, c, u), satisfying that

$$
\begin{gathered}
n(t, x) \geq 0, \sup _{t \geq 0}\|n(t)\|_{L^{1}} \leq\left\|n_{0}\right\|_{L^{1}} \\
c(t, x) \geq 0, \sup _{t \geq 0}\|c(t)\|_{L^{p}} \leq\left\|c_{0}\right\|_{L^{p}}, \text { for any } 1 \leq p \leq \infty
\end{gathered}
$$

and

$$
\mathcal{E}_{1}(t)+\int_{0}^{t} \mathcal{D}_{1}(s) d s \leq \mathcal{E}_{1}(0), \text { for any } t \geq 0
$$

where the free energy $\mathcal{E}_{1}(t)$ and its dissipation rate $\mathcal{D}_{1}(t)$ are given by

$$
\begin{aligned}
\mathcal{E}_{1}(t)= & \int_{\mathbb{R}^{3}}\left(n \ln n+\frac{1}{2}|\nabla \Psi(c)|^{2}+\frac{1}{\lambda_{1} \mu \nu} n \phi+\frac{1}{2 \lambda_{1} \mu \nu}|u|^{2}\right) d x, \\
\mathcal{D}_{1}(t)= & \frac{\delta}{2} \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x+\frac{\lambda_{0}}{2} \int_{\mathbb{R}^{3}} n|\nabla \Psi|^{2} d x+\frac{\lambda_{1} \mu}{2} \int_{\mathbb{R}^{3}}|\nabla \Psi|^{4} d x \\
& +\frac{1}{2 \lambda_{1} \mu} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\mu \sum_{i j} \int_{\mathbb{R}^{3}}\left|\partial_{i} \partial_{j} \Psi-\frac{d}{d c} \sqrt{\frac{k(c)}{\chi(c)}} \partial_{i} \Psi \partial_{j} \Psi\right|^{2} d x,
\end{aligned}
$$

for constants λ_{0} and λ_{1} depending only $\left\|c_{0}\right\|_{\infty}$, and moreover, for any $T>0$,

$$
n(|\ln n|+\langle x\rangle) \in L^{\infty}\left([0, T], L^{1}\left(\mathbb{R}^{3}\right)\right), \quad u \in L^{\infty}\left([0, T] \times \mathbb{R}^{3}\right)
$$

Theorem II Let the assumption A1 and also $k^{\prime}(c)>0$ hold, and let $\phi=\phi(x) \geq 0$ be independent of t with

$$
\sup _{x}(1+|x|)|\nabla \phi(x)|+\sup _{x}|x|^{2}|\Delta \phi(x)|<\infty .
$$

Suppose that

$$
\begin{gathered}
n_{0}\left(\left|\ln n_{0}\right|+\langle x\rangle+\phi(x)\right) \in L^{1}\left(\mathbb{R}^{3}\right) \\
c_{0} \in H^{1}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right), \quad u_{0} \in L^{2}\left(\mathbb{R}^{3}\right) \cap L^{\infty}\left(\mathbb{R}^{3}\right)
\end{gathered}
$$

Then, $\exists c_{*}>0$, depending only on δ, μ, ν and ϕ, s.t. if

$$
\left\|c_{0}\right\|_{L^{\infty}} \leq c_{*},
$$

the Cauchy problem of $(c S)$ has a global-in-time weak solution (n, c, u), satisfying that

$$
\begin{gathered}
n(t, x) \geq 0, \sup _{t \geq 0}\|n(t)\|_{L^{1}} \leq\left\|n_{0}\right\|_{L^{1}}, \\
c(t, x) \geq 0, \sup _{t \geq 0}\|c(t)\|_{L^{p}} \leq\left\|c_{0}\right\|_{L^{p}}, \text { for any } 2 \leq p \leq \infty
\end{gathered}
$$

and

$$
\mathcal{E}_{2}(t)+\lambda \int_{0}^{t} \mathcal{D}_{2}(s) d s \leq C\left(\left\|n_{0} \ln n_{0}\right\|_{L^{1}}+\left\|c_{0}\right\|_{H^{1}}^{2}+\left\|u_{0}\right\|_{L^{2}}^{2}\right)
$$

for any $t \geq 0$, where the free energy $\mathcal{E}_{2}(t)$ and its dissipation rate $\mathcal{D}_{2}(t)$ are given by

$$
\begin{aligned}
\mathcal{E}_{2}(t) & =\int_{\mathbb{R}^{3}} n(\ln n+\lambda \phi) d x+\lambda\left(\|c\|_{H^{1}}^{2}+\|u\|^{2}\right) \\
\mathcal{D}_{2}(t) & =\|\nabla \sqrt{n}\|^{2}+\|\nabla c\|_{H^{1}}^{2}+\|\sqrt{n} c\|^{2}+\|\sqrt{n} \nabla c\|^{2}+\|\nabla u\|^{2}
\end{aligned}
$$

and $\lambda>0$ is a small constant, and moreover, for any $T>0$,

$$
n(|\ln n|+\langle x\rangle) \in L^{\infty}\left([0, T], L^{1}\left(\mathbb{R}^{3}\right)\right), \quad u \in L^{\infty}\left([0, T] \times \mathbb{R}^{3}\right)
$$

3.2 Proof of Theorem I: (uniform a priori estimates)
a) From

$$
\begin{aligned}
& \partial_{t} n+\nabla \cdot(\delta \nabla n+n(u+\chi(c) \nabla c))=0, \\
& \partial_{t} c+u \cdot \nabla c=\mu \Delta c-k^{\prime}(\xi) n c,
\end{aligned}
$$

where $\xi=\xi(t, x)$ is between 0 and $c(t, x)$, by the assumption (A1), the maximum principle implies

$$
n(t, x) \geq 0, \quad 0 \leq c(t, x) \leq\|c\|_{L^{\infty}}=c_{M}
$$

for any $0 \leq t \leq T, x \in \mathbb{R}^{3}$.
b) Proof of the energy inequality: Denote $c_{M}=\left\|c_{0}\right\|_{L^{\infty}}$, and define

$$
\begin{aligned}
& \lambda_{0}=\min _{0 \leq c \leq c_{M}} \frac{\chi^{\prime}(c) k(c)+\chi(c) k^{\prime}(c)}{2 \chi(c)}>0, \\
& \lambda_{1}=\min _{0 \leq c \leq c_{M}}-\frac{1}{2} \frac{d^{2}}{d c^{2}}\left(\frac{k(c)}{\chi(c)}\right)>0
\end{aligned}
$$

by assumptions A1 and A2.

The r.h.s. of identity I is bounded by

$$
\frac{1}{2 \lambda_{1} \mu} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{\lambda_{1} \mu}{2} \int_{\mathbb{R}^{3}}|\nabla \Psi|^{4} d x .
$$

The r.h.s. of identity II is bounded by

$$
\begin{aligned}
& \delta \epsilon \int_{\mathbb{R}^{3}}\left|\frac{\sqrt{n}}{|x|}\right|^{2} d x+\epsilon\left(\sup _{0 \leq c \leq c_{M}} k(c) \chi(c)\right)^{1 / 2} \int_{\mathbb{R}^{3}} \frac{\sqrt{n}}{|x|} \cdot \sqrt{n}|\nabla \Psi| d x \\
& \leq\left(\delta \epsilon+\frac{\sup _{0 \leq c \leq c_{M}} k(c) \chi(c)}{2 \lambda_{0} \lambda_{1} \mu \nu} \epsilon^{2}\right) \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x+\frac{\lambda_{0} \lambda_{1} \mu \nu}{2} \int_{\mathbb{R}^{3}} n|\nabla \Psi|^{2} d x
\end{aligned}
$$

where one used the Hardy inequality

$$
\int_{\mathbb{R}^{3}}\left|\frac{\sqrt{n}}{|x|}\right|^{2} d x \leq 4 \int_{\mathbb{R}^{3}}|\nabla \sqrt{n}|^{2} d x=\int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x
$$

and

$$
\sup _{x}|x||\nabla \phi(x)|+\sup _{x}|x|^{2}|\Delta \phi(x)| \leq \epsilon .
$$

Then, $\epsilon>0$ is small $\Rightarrow \cdots$
c) Estimates on moments and $\|u\|_{L^{\infty}}$: Eqn of $n \Rightarrow$

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\langle x\rangle n(t, x) d x \leq & C \delta\left\|n_{0}\right\|_{L^{1}} T+C\left\|n_{0}\right\|_{L^{1}} T \sup _{0 \leq t \leq T}\|u(t)\|_{L^{\infty}} \\
& +\frac{1}{\lambda_{0}}\left(\sup _{0 \leq c \leq c_{M}} \chi(c)\right) \int_{0}^{T}\|k(c) n\|_{L^{1}} d s \\
& +\frac{\lambda_{0}}{4} \int_{0}^{T}\|\sqrt{n} \nabla \Psi\|^{2} d s,
\end{aligned}
$$

+ Eqn of $c \Rightarrow$

$$
\|c(t)\|_{L^{1}}+\int_{0}^{t}\|k(c) n\|_{L^{1}} d s \leq\left\|c_{0}\right\|_{L^{1}}
$$

+ Eqn of $u \Rightarrow$

$$
\|u(t)\|_{L^{\infty}} \leq C\left\|u_{0}\right\|_{L^{\infty}}+C\|\nabla \phi\|_{L^{\infty}} \int_{0}^{t} \sqrt{t-s}\|\nabla \sqrt{n}\|^{2} d s
$$

Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{3}}\langle x\rangle n(t, x) d x \leq & \frac{\left\|c_{0}\right\|_{L^{1}}}{\lambda_{0}} \sup _{0 \leq c \leq c_{M}} \chi(c)+C\left(\delta+\left\|u_{0}\right\|_{L^{\infty}}\right)\left\|n_{0}\right\|_{L^{1}} T \\
& +C\left\|n_{0}\right\|_{L^{1}} T^{3 / 2}\|\nabla \phi\|_{L^{\infty}} \int_{0}^{T}\|\nabla \sqrt{n}\|^{2} d s \\
& +\frac{\lambda_{0}}{4} \int_{0}^{T}\|\sqrt{n} \nabla \Psi\|^{2} d s
\end{aligned}
$$

Take the linear combination with the energy inequality \Rightarrow

$$
\begin{aligned}
& \sup _{0 \leq t \leq T_{0}} \mathcal{E}_{1}^{+}(t)+\frac{1}{2} \int_{0}^{T_{0}} D_{1}(s) d s \\
& \leq \mathcal{E}_{1}(0)+C+\frac{\left\|c_{0}\right\|_{L^{1}}}{\lambda_{0}} \sup _{0 \leq c \leq c_{M}} \chi(c)+C\left(\delta+\left\|u_{0}\right\|_{L^{\infty}}\right)\left\|n_{0}\right\|_{L^{1}} T_{0}
\end{aligned}
$$

for some small $T_{0}>0$, where
$\mathcal{E}_{1}^{+}(t)=\int_{\mathbb{R}^{3}} n \ln n \chi_{n \geq 1} d x+\int_{\mathbb{R}^{3}}\left(\frac{1}{2}|\nabla \Psi(c)|^{2}+\frac{1}{\lambda_{1} \nu} n \phi+\frac{1}{2 \lambda_{1} \nu}|u|^{2}\right) d x$.
Apply to intervals $\left[0, T_{0}\right],\left[T_{0}, 2 T_{0}\right], \cdots,\left[m T_{0}, T\right] \Rightarrow \cdots$
3.3 Proof of Theorem II: (uniform a priori estimates)
a) c_{M} is small. The direct energy estimates \Rightarrow

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(n \ln n+\lambda_{2}|\nabla c|^{2}+|c|^{2}\right) d x+\mu \min \left\{\lambda_{2}, 2\right\} \int_{\mathbb{R}^{3}}\left(|\nabla c|^{2}+\left|\nabla^{2} c\right|^{2}\right) d x \\
& \quad+\min \left\{1,2 \min _{0 \leq c \leq c_{M}} k^{\prime}(c)\right\} \int_{\mathbb{R}^{3}} n\left(|c|^{2}+|\nabla c|^{2}\right) d x+\frac{\delta}{4} \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x \\
& \leq \frac{\lambda_{2} c_{M}^{2}}{\mu} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x
\end{aligned}
$$

b) Identity II gives

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(n \phi+\frac{1}{2}|u|^{2}\right) d x+\nu \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x \\
& \leq \delta \sup _{x}|x|^{2}|\Delta \phi(x)| \int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x \\
& \quad+\frac{1}{2} \sup _{x}|x||\nabla \phi(x)| \sup _{0 \leq c \leq c_{M}}|\chi(c)|\left(\int_{\mathbb{R}^{3}} \frac{|\nabla n|^{2}}{n} d x+\int_{\mathbb{R}^{3}} n|\nabla c|^{2} d x\right) .
\end{aligned}
$$

c) Smallness of $c_{M}+$ linear combination of \mathbf{a}) and $\left.\mathbf{b}\right) \Rightarrow \cdots$

3.4 Remarks:

a) It is unknown that Theorems I and II could still hold for one of the following three cases:

- the smallness of both ϕ and $\left\|c_{0}\right\|_{L^{\infty}}$ is removed;
- the nonlinear convective term $\nabla \cdot(u \otimes u)$ is added;
- both $\chi(c)$ and $k(c)$ take the more general forms.
b) Similar results hold for the case of
- the space dimension $d \geq 2$, or
- the bounded domain with homogeneous boundary conditions

$$
\left.\frac{\partial n}{\partial \nu}\right|_{\partial \Omega}=\left.\frac{\partial c}{\partial \nu}\right|_{\partial \Omega}=0,\left.\quad u\right|_{\partial \Omega}=0
$$

However, it is not clear for the general biological non-homogeneous bdry conditions.

4. Classical solutions near constant states

4.1 Consider

$$
\left\{\begin{array}{l}
\partial_{t} n+u \cdot \nabla n=\delta \Delta n-\nabla \cdot(\chi(c) n \nabla c), \tag{cNS}\\
\partial_{t} c+u \cdot \nabla c=\mu \Delta c-k(c) n, \\
\partial_{t} u+u \cdot \nabla u+\nabla P=\nu \Delta u-n \nabla \phi, \\
\nabla \cdot u=0, \quad t>0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

with initial data

$$
\left.(n, c, u)\right|_{t=0}=\left(n_{0}(x), c_{0}(x), u_{0}(x)\right), \quad x \in \mathbb{R}^{3} .
$$

Suppose

$$
\left(n_{0}(x), c_{0}(x), u_{0}(x)\right) \rightarrow\left(n_{\infty} \geq 0,0,0\right) \text { as }|x| \rightarrow \infty
$$

Our goal is to prove
the constant steady state $\left(n_{\infty}, 0,0\right)$ is asymptotically stable under small smooth perturbations.

4.2 Reformulation of the Cauchy problem: Let

$$
n=\sigma+n_{\infty}, \quad \bar{P}=P+n_{\infty} \phi
$$

Then,

$$
\left\{\begin{array}{l}
\partial_{t} \sigma+u \cdot \nabla \sigma-\delta \Delta \sigma=-\nabla \cdot(\chi(c) \sigma \nabla c)-n_{\infty} \nabla \cdot(\chi(c) \nabla c), \\
\partial_{t} c+u \cdot \nabla c-\mu \Delta c+k^{\prime}(0)\left(\sigma+n_{\infty}\right) c=-\left(k(c)-k^{\prime}(0) c\right)\left(\sigma+n_{\infty}\right), \\
\partial_{t} u+u \cdot \nabla u+\nabla \bar{P}-\nu \Delta u=-\sigma \nabla \phi, \\
\nabla \cdot u=0, \quad t>0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

with

$$
\left.(\sigma, c, u)\right|_{t=0}=\left(\sigma_{0}(x), c_{0}(x), u_{0}(x)\right) \rightarrow(0,0,0) \text { as }|x| \rightarrow \infty,
$$

where $\sigma_{0}=n_{0}-n_{\infty}$.

Theorem III. Let $n_{\infty} \geq 0$, and the assumption (A1) hold with $n_{0}(x) \equiv \sigma_{0}(x)+n_{\infty} \geq 0$ for $x \in \mathbb{R}^{3}$, and $\phi=\phi(t, x)$ satisfy

$$
\sup _{t, x}(1+|x|)|\phi(t, x)|+\sum_{1 \leq|\alpha| \leq 3} \sup _{t, x}\left|\partial_{x}^{\alpha} \phi(t, x)\right|<\infty .
$$

Furthermore, suppose that $\left\|\left(\sigma_{0}, c_{0}, u_{0}\right)\right\|_{H^{3}}$ is sufficiently small. Then the Cauchy problem of (cNS) admits a unique classical solution (σ, c, u) with

$$
n(t, x) \equiv \sigma(t, x)+n_{\infty} \geq 0, c(t, x) \geq 0
$$

for $t \geq 0, x \in \mathbb{R}^{3}$, such that

$$
\begin{gathered}
\|(\sigma, c, u)(t)\|_{H^{3}}^{2}+\lambda \int_{0}^{t} \int_{\mathbb{R}^{3}}\left(\sigma+n_{\infty}\right)\left[k(c) c+k^{\prime}(0) \sum_{1 \leq|\alpha| \leq 3}\left|\partial_{x}^{\alpha} c(s)\right|^{2}\right] d x d s \\
+\lambda \int_{0}^{t}\|\nabla(\sigma, c, u)(s)\|_{H^{3}}^{2} d s \leq C\left\|\left(n_{0}, c_{0}, u_{0}\right)\right\|_{H^{3}}^{2}
\end{gathered}
$$

hold for some constants $\lambda>0, C$ and for any $t \geq 0$.
4.3 Proof of Theorem III: (uniform a priori estimates)
a) The maximum principle \Rightarrow

$$
\sigma+n_{\infty}=n(t, x) \geq 0, \quad 0 \leq c(t, x) \leq\|c\|_{L^{\infty}} .
$$

b) Energy estimates under smallness: (Zero-order)

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int_{\mathbb{R}^{3}}\left(|u|^{2}+d_{2} \sigma^{2}+d_{1} d_{2} c^{2}\right) d x+\frac{\nu}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} d x+\frac{d_{2} \delta}{4} \int_{\mathbb{R}^{3}}|\nabla \sigma|^{2} d x \\
+\frac{d_{1} d_{2} \mu}{2} \int_{\mathbb{R}^{3}}|\nabla c|^{2} d x+d_{1} d_{2} \int_{\mathbb{R}^{3}} k(c) c\left(\sigma+n_{\infty}\right) d x \leq 0,
\end{gathered}
$$

+ (high-order)

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \sum_{1 \leq|\alpha| \leq 3} C_{\alpha} \int_{\mathbb{R}^{3}}\left|\partial_{x}^{\alpha}(\sigma, c, u)\right|^{2} d x+\lambda \sum_{2 \leq|\alpha| \leq 4} \int_{\mathbb{R}^{3}}\left|\partial_{x}^{\alpha}(\sigma, c, u)\right|^{2} d x \\
& \quad+\lambda k^{\prime}(0) \sum_{1 \leq|\alpha| \leq 3} \int_{\mathbb{R}^{3}}\left(\sigma+n_{\infty}\right)\left|\partial_{x}^{\alpha} c\right|^{2} d x \leq C \int_{\mathbb{R}^{3}}|\nabla(\sigma, c, u)|^{2} d x,
\end{aligned}
$$

(linear combination) \Rightarrow uniform a priori estimates.
4.4 Convergence rates: There are three cases:

$$
n_{\infty}=0 ; n_{\infty}>0, k^{\prime}(0)=0 ; n_{\infty} k^{\prime}(0)>0
$$

Theorem IV. Let $n_{\infty}=0$, and all conditions in Theorem III hold.
(i) Assume $\sigma_{0}, c_{0} \in L^{1}\left(\mathbb{R}^{3}\right)$. Then, for any $1 \leq p<\infty$,

$$
\begin{aligned}
\|\sigma(t)\|_{L^{p}} & \leq C\left\|\sigma_{0}\right\|_{L^{1} \cap L^{p}}(1+t)^{-\frac{3}{2}\left(1-\frac{1}{p}\right)} \\
\|c(t)\|_{L^{p}} & \leq C\left\|c_{0}\right\|_{L^{1} \cap L^{p}}(1+t)^{-\frac{3}{2}\left(1-\frac{1}{p}\right)}
\end{aligned}
$$

(ii) Furthermore, assume that $u_{0} \in L^{q}\left(\mathbb{R}^{3}\right)$ and

$$
\phi \in L^{\infty}\left(\mathbb{R}^{+} ; L^{2 q /(2-q)}\left(\mathbb{R}^{3}\right)\right)
$$

for $1<q<6 / 5$. Then,

$$
\|u(t)\| \leq C\left(\left\|u_{0}\right\|_{L^{q} \cap H^{3}}+K_{0}\right)(1+t)^{-\frac{3}{2}\left(\frac{1}{q}-\frac{1}{2}\right)}
$$

for any $t \geq 0$, where K_{0} is defined by

$$
K_{0}=\left\|\left(\sigma_{0}, c_{0}\right)\right\|_{L^{1} \cap H^{3}}+\left\|\sigma_{0}\right\|_{L^{1} \cap L^{2}}\left\|c_{0}\right\|_{L^{1} \cap L^{2}}
$$

4.5 Proof of Theorem IV:

Energy-spectrum method (D.-Ukai-Yang '09)

a) Time-decay of c and n :

$$
\frac{d}{d t} \int_{\mathbb{R}^{3}} c^{p} d x+\frac{4 \mu(p-1)}{p} \int_{\mathbb{R}^{3}}\left|\nabla c^{p / 2}\right|^{2} d x \leq 0
$$

$+$

$$
\|c(t)\|_{L^{1}} \leq\left\|c_{0}\right\|_{L^{1}}
$$

(standard argument: interpolation inequality

$$
\|f\|_{L^{p}} \leq C\left\|\nabla|f|^{p / 2}\right\|^{\frac{2 \gamma_{p, q}}{1+p \gamma_{p, q}}}\|f\|_{L^{q}}^{\frac{1}{1+p \gamma_{p, q}}}
$$

with

$$
\gamma_{p, q}=\frac{3}{2}\left(\frac{1}{q}-\frac{1}{p}\right)
$$

+ Young inequality) \Rightarrow time-decay of c, and similarly for n.
b) Time-decay of u : (Three steps)

Step 1. Time-decay of high-order derivatives of (σ, c) : Use the high-order energy inequality

$$
\frac{d}{d t}\|\nabla(\sigma, c)\|_{H^{2}}^{2}+\lambda\|\nabla(\sigma, c)\|_{H^{3}}^{2} \leq C\|\nabla(\sigma, c)\|^{2}
$$

+ Use the mild forms of σ, c to obtain

$$
\begin{aligned}
\|\nabla \sigma(t)\| \leq & C\left\|\sigma_{0}\right\|_{L^{p} \cap H^{1}}(1+t)^{-\gamma_{2, p}-1 / 2} \\
& +C \epsilon \int_{0}^{t}(1+t-s)^{-5 / 4}\|\nabla(\sigma, c)(s)\|_{H^{1}} d s \\
\|\nabla c(t)\| \leq & C\left\|c_{0}\right\|_{L^{1} \cap H^{1}}(1+t)^{-\gamma_{2, p}-1 / 2} \\
& +C \epsilon \int_{0}^{t}(1+t-s)^{-5 / 4}\|\nabla c(s)\|_{H^{1}} d s \\
& +C(1+t)^{-5 / 4}\left\|c_{0}\right\|_{L^{1} \cap L^{2}}\left\|\sigma_{0}\right\|_{L^{1} \cap L^{2}}
\end{aligned}
$$

(Gronwall inequality) \Rightarrow

$$
\|\nabla(\sigma, c)(t)\|_{H^{2}} \leq C\left(\left\|\nabla\left(\sigma_{0}, c_{0}\right)\right\|_{H^{2}}+K_{p}\right)(1+t)^{-\gamma_{2, p}-1 / 2}
$$

for any $1 \leq p \leq 2$.

Step 2. Time-decay of high-order derivatives of u : Use the mild form

$$
u(t)=e^{\nu \Delta t} u_{0}+\int_{0}^{t} e^{\nu \Delta(t-s)}(-\mathbf{P}(u \cdot \nabla u)+\mathbf{P}(\phi \nabla \sigma)) d s
$$

with

$$
\mathbf{P}(\sigma \nabla \phi)=-\mathbf{P}(\phi \nabla \sigma)
$$

(Energy-spectrum method again + Riesz inequality) \Rightarrow

$$
\|\nabla(\sigma, c, u)(t)\|_{H^{2}} \leq C\left(\left\|u_{0}\right\|_{L^{p} \cap H^{3}}+K_{0}\right)(1+t)^{-\gamma_{2, p}-1 / 2}
$$

for $1<p \leq 2$.
Step 3. Time-decay of $\|u\|$: Again use the mild form and time-decay of high-order derivatives of u to get

$$
\|u(t)\| \leq C\left(\left\|u_{0}\right\|_{L^{q} \cap H^{3}}+K_{0}\right)(1+t)^{-\frac{3}{2}\left(\frac{1}{q}-\frac{1}{2}\right)}
$$

for $1<q<6 / 5$, where $\gamma_{2, q}+1 / 2>1$ was used.

5. Final remarks

Consider the more realistic mathematical model:

$$
\left\{\begin{array}{l}
\partial_{t} n+u \cdot \nabla n=\delta \Delta n-\nabla \cdot[\chi(c) n(\nabla c+\nabla \phi)] \\
\partial_{t} c+u \cdot \nabla c=\mu \Delta c-k(c) n, \\
\partial_{t} u+u \cdot \nabla u+\nabla P=\nu \Delta u-n[\nabla \phi+\nabla k(c)] \\
\nabla \cdot u=0, \quad t>0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

Here

- $\nabla \phi$ exhibit the effect of gravity on cells, and
- $\nabla k(c)$ exhibit the effect of the chemotactic force in the fluid equation.

Claim: Theorem II still holds if the smallness of both ϕ and $\left\|c_{0}\right\|_{L^{\infty}}$ is supposed. Theorems III and IV also hold.

Remark. It is the on-going work to extend the current results to the above realistic model.

Thanks for your attention!

