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GLOBAL SOLUTIONS TO THE LAKE EQUATIONS WITH
ISOLATED VORTEX REGIONS

CHAOCHENG HUANG

ABSTRACT. The vorticity formulation for the lake equations in R? is studied.
We assume that initial the vorticity has the form w (z,0) = wo (z) xq,,, where
the initial vortex region Qg is a C1T% domain and wo € C* (Qo) . It is shown
that the Cauchy problem can be formulated as a integral system. Global exis-
tence and uniqueness of C1+® solution to the integral system are established.
Consequently, the lake equation admits a unique weak solution, global in time,
in the form of w (z,t) = w (x) Xg,, Where w () € CF (Q¢) and 9 € C*.

1. INTRODUCTION

Consider the circulation of an inviscid fluid in a very large shallow basin with
a varying bottom. Let x = (x1,75) € R? be the horizontal position inside the
basin and ¢ be the time, then the evolution of vertically averaged fluid velocity
vector u (z,t) = (uy (x,t),us (z,t)) € R? is governed by the great lake equations
[2, 10, 11]

1
vt:uJ‘V/\v+V<h—2|u|2+u-v),V~(bu):0,

1 1 1.
v=u+4" ((u~Vb)Vb+2b(V~u)Vb%V(b2u~Vb)Sbv(b"V~u)>,

where h (x,t) is the surface height variation, b(x) is the depth of the basin, ut =
(ug, —u1), VAu = drus — dauy, and 9§ is the aspect ratio: the ratio of vertical to
horizontal length scales. In the Oth order approximation in 62, we obtain v = w.
The great lake equation then reduces to the lake equation

1
ut:uLV/\v+V<h—2|u|2+u-v>, V- (bu) = 0.

Introducing the potential vorticity w = b~'V A« and applying the curl in the first
equation above, we arrive at the following system:

(1.1) we (x,t) +u(x,t) - Vw (x,t) =0,
(1.2) b(z)w(z,t) =V Au(z,t),
(1.3) V-(b(z)u(z,t)) =0.

We refer to [11] for detailed description about the great lake equations and lake
equations.

The system (1.1)-(1.3) is closely related to the 2D incompressible Euler equa-
tion. In fact, when b(x) = 1, this system reduces to the vorticity equation for
the 2D Euler equation. Hence, system (1.1)-(1.3) may be viewed as the vorticity
formulation of the lake equation. The lake equation in a bounded domain €2 has
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been studied in [9, 10, 11, 13]. In those papers, the authors analyzed even more
general systems in which (1.2) is replaced by u = Kw for certain linear operators
K. They established global existence of solutions in the Sobolev spaces WP and
in the space of analytical functions. For the studies of the 2D Euler equation, we
refer to [12] and references therein.

We are interested in the situation when the basin is very large with an isolated
initial vortex region. This case may be approximated by the vorticity formulation
of the lake equation (1.1)-(1.3) in the whole space with the initial vorticity of the
form

(1.4) w (z,0) = wo (%) Xa,>

where xgq, is the characteristic function of Qo, the closure of a domain €, and
wo () > 0 is a given function. We assume that the initial vortex region € is a
bounded C'** domain, and that wq (z) is a—Holder continuous in Q. Note that
wo () may be extended to the whole space. Hence, the last assumption is equivalent
to wp (z) being a—Holder continuous in R%. We also note that when wq (x¢) > 0
for some xy € 98, the initial vorticity w (z,0) is discontinuous at zo. Hence, the
initial condition (1.4) includes, in particular, an interesting situation that the initial
vorticity may be discontinuous across the boundary 9y of .

For the 2D Euler equation, existence of global weak solutions for general initial
data was established in [14]. For the Cauchy problem with initial data (1.4), the
problem of global regularity for weak solutions was proposed by Majda in [12].
In particular, when wq (z) is a constant, a weak solution is referred as to a con-
stant vortex patch. Global regularity of constant vortex patches was established
by Chemin [3]. Roughly speaking, Chemin asserts that the initial regularity of the
vortex region for a constant vortex patch will persist for all time. A simpler proof
of the same regularity result was later demonstrated in [1].

In this paper, we are concerned with global existence and stratified regularity of
weak solutions to (1.1)-(1.4). The main purpose is to extend Chemin’s regularity
result to the lake equation. We shall present an integral equation approach to the
Cauchy problem for the lake equation. In this approach, the vorticity equation will
be formulated as a non-local integral system in Qg x [0,00). We shall show that
there exists a unique C1*% solution ® (z,t) to the integral system for all ¢+ > 0.
This O+ solution ® (z,t) will naturally produce a unique weak solution to the
lake equation (1.1)-(1.4) by w (z,t) = wo (2 (z,t)) xq,, where Q, = ®(Q, ) is
the vortex region. Clearly, this implies immediately that the vortex region is a
C'** domain and the vorticity enjoy the stratified regularity of Holder types, i.e.,
w(-,t) € C*(Q), for any fixed ¢ > 0.

The integral equation method was previously used to study dynamics of charged
particles in [5] and superconductor vortices in [7]. The method employed in [1] for
2D constant vortex patches is essentially an integral equation method, though the
authors there did not explicitly deal with the integral equation for ® (z,t) . For local
existence, we shall use a fixed point argument as in [5]. However, the integral system
for the lake equation is structurally different from those in [5]. Some additional
non-trivial technical treatments are necessary in order to establish existence and
uniqueness of solutions of (1.1)-(1.4) for a short time. The treatment for global
existence and regularity is inspired by an idea in [1]. As we demonstrated in [5],
existence of global solutions for this type of integral systems depends on the their
structures and initial data. Fortunately, for the lake equation, the singular part of
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the integral kernel is similar to the one for the Euler system. Though the initial
vorticity wo (x) is no longer a constant here, we are still able to establish various
estimates that show, for some 0 < 8 < «, the logarithmically superlinear growth for
the f—Holder norms of the vorticity and the boundary of the vortex region. These
estimates then lead to d pridri estimates for the a—Holder norms of the above
quantities. The results on global existence and regularity follow immediately.

The paper is organized as follows. In the next section, we shall derive the integral
formulation for the lake equation (1.1)-(1.4). We shall show that in a certain sense,
a solution of the integral equation will produce naturally a weak solution to (1.1)-
(1.4). In section 3, we shall study short-time existence, uniqueness, and regularity of
solutions to the integral equation. Finally in section 4, we shall establish existence
and regularity for all ¢ > 0.

2. INTEGRAL SYSTEM FORMULATION

In this section, we shall formulate the system (1.1)-(1.4) as a non-local integral
system in the sense that any solution of the integral system defines a unique weak
solution. To illustrate this integral formulation, we may assume that w (z,¢) is a
smooth solution of (1.1)-(1.4) with the smooth velocity field w (z, t) . This is the case
when wq (z) in (1.4), defined only in €, is smooth and has a compact support in Qg
(hence w (x,0) is smooth), and when b (z) € C;* (the space of smooth functions with
bounded derivatives) and b (z) > by > 0 for some constants by. Since V - (bu) = 0,
there exists a potential function ¢ (z,t) such that

def

(2.1) b(z)u(z,t) =V (z,1) = (0 (2,1), 0 (2,1)) .
By (1.2), this potential satisfies

VAu=VA (b—lvﬂp) = bw,
or equivalently, the following elliptic equation
(2.2) —A¢ (x,t) + Viogh (z) - Vi (2,) = b(x)’ w (x,1),

for fixed ¢, with the growth condition at infinity: ¢ (x,t) — O (log |z|) as |z| — oc.
Suppose that the elliptic operator —A + Vlogb -V in (2.2) has the fundamental
solution, say K (z,y). Then
(2.3) Y (z,t) = K (2,2)0* (2)w(2,t) dz.
Rn
Next, we define the fluid particle trajectory ® (x,t), for fixed x € R?, by
oP

(2.4) o = U (®,t), ®(z,0)=u=z.
It follows from (1.1) that w (® (x,t),t), for fixed x, solves the equation

do _

dt
Hence w (® (z,t) ,t) = w(z,0), or w(z,t) =w (®7' (2,¢),0) . Set

Q=@ (Qo,t) ={P(2,t) : 26Qq}.

Then, we may write the vorticity in the form

(2.5) w(z,t) =wo (27" (z,1)) xq,-
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Substituting (2.1), (2.3) and (2.5) into (2.4), we obtain the dynamical system

(2.6) 8@;:,75) =3 @ (la:,t)) /ViK (@ (x,t),2)b(2)* wo (@' (2,1)) de,
Q
O (z,0) =z,

where ®~! is the inverse of the mapping x+—® (x,t) for any fixed ¢. This system is
non-local in the sense that the value ® (z¢,t) at x¢ depends on @ (z,t) for all z.
This equation can also be written equivalently as the integral system

t 5 .
(2.7)  (z,1) =x+//ViK@ (2,5),2)b(2) wo (271 (2,9))
0 Q

b(® (z,5))

This integral system clearly depends only on ® (z,t) in Qg x [0, 00). It is easy to see
that the above procedure can be reversed. In other words, suppose that @ (z,t),
defined in Q x [0,00), is smooth and it solves (2.7). Define w by (2.5), ¢ by
(2.3) and then u by (2.1). A direct computation shows that (w,u) solve (1.1)-(1.4).
Hence, for smooth initial data, the integral system (2.7) is equivalent to (1.1)-(1.4).

In general, for the initial vorticity w (z,0) in (1.4) that has jump discontinuity
along 0, one expects from (2.5) that w (z,t¢) also has jump discontinuity along
0% Since the kernel V& K (z,y) in (2.7) is singular as  — y, the integral on the
right-hand side of (2.7) may not be smooth as = crosses 9€y. Hence, we shall look
for solutions of (2.7) with less regularity. To this end, we need to introduce some
notations.

For any family of open subsets {G;},~, in R?, integer m > 0, and 0 < o < 1,
denote by C™t (G,) the set of all functions f (z,t) defined for # € Gy such that
f (-,t) and all the spatial derivatives up to mth order are a—Hélder continuous in
Gy. Denote by C"™ (G, ) the set of extensions to G of all functions in CI" (G,).
Denote by |f (¢)] the Holder semi-norm defined as

FOlyn=  sup S @0 =075,

@
z,y€Gy, |v|]=m |z -yl

m—ta

)

where v = (71,7,) is a multi-index, 9, = 97! 9,2. The Holder norm is denoted by
1f Ollga = sup |05 f @)+ [f (D) s

z€Gy, [y[<m
Sometime we shall use the notations |f (t)|,,,,.q, and [[f ()., 4.q, to specify the
dependence on the domain G;. For convenience, we introduce the notation

. = inf .
Lf Blint 06, Lout |f (z,1)]

We shall also adopt the notation W,”:* for the local Sobolev spaces.

Definition 2.1. We call ® (z,t) a C** solution of (2.7) in Qo x [0,T) if ®,0,® €
CLlt (Qo), and @' € CL () for t < T, and if (2.7) holds everywhere in Qg x
[0,T).

There are several ways to define weak solutions to (1.1)-(1.4). We shall adopt
the following natural definition.
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Definition 2.2. A weak solution to (1.1)-(1.4), for t < T, is defined as a couple
(w,u) € L2 x WL such that (1.2) and (1.3) holds in the sense of distributions, and

loc

T
(2.8) /O [ @@ -V (7 w.0) de

- _/()T/R?w(x,t)gt(x,t)d:cdt—/Qowo(m)ﬁ(%O)W

for any test function & (x,t) that has a compact support in R? x [0,T).

Proposition 2.1. Suppose that wq (x) is bounded, b(x) € C* and by < b(z) < by
for some positive constants by and by. Let ® (z,t) be a C*** solution of (2.7) in
Qo x [0,T). Define w(x,t) by (2.5), ¢ by (2.3) and u by (2.1). Then (w,u) is a
weak solution of the Cauchy problem for the lake equation (1.1)-(1.4).

Proof. Since wy is bounded, we know from (2.5) that w (x,t) is bounded. We also
know that Q; = ® (Qo, t) is a domain that is bounded uniformly in ¢ < T} for any
T} < T. By the regularity theory for the elliptic equation (2.2), we have ¢ € Wi’f

for any p > 1, and consequently u € Wllo’f . Obviously, the relations (1.2) and (1.3)
hold in the sense of distributions. It suffice to show (2.8) with T being replaced by
Ty. By (2.3) and (2.1), we may write (2.7) as

@(m,t):er/O u (P (z,s),s)ds.

It follows that ® (z,¢) solve (2.4), i.e.,
d® (x,t)
dt
Denote by J (® (z,t)) the Jacobian of the mapping @ (-, t) . By (2.5), w (® (x, 1) ,t) =
wo (7) Xq,- Multiplying this equation by
dg (@ (x,1) 1)
dt ’
where £ is a test function such that £ (z,77) = 0, and then integrating over g x
(0,T1), we obtain

=u (D (x,t),t).
J(® (z,1))

dt

//Q (@ (2,1) 1) J (B (.1))
e x

/ /me)J((I)(x,t))dedt
0 Qo

n 4J (@ (z,1))
_ A /QO wo () Tf (P (x,t),t) dedt — / wo () € (z,0) de,

Qo

where we have performed integration by parts and have used the fact that ® (x,0) =
x. By (2.4) and (1.3), we have (see [4, p. 25])
dJ (P (x,t
YRWI) _ (v wy (@007 @)
= b (V- (bu) = (Vb) - u) (P (2,1) ) J (D (1))

= — (71 (Vb)) (@ (x,8) 1) J (@ (2,1)).
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It follows that

// w(® (2,1),1) J (@ (x,1)) %dmdt
0 Qo

T
/0 /Q wo (@) (57'Vb - u) T (® (2, £)) € (P (. ) , 1) dadt

—/ wo () & (2,0) dx
Qo

T
(29) = /0 /Qtw(x,t)(b Vb-u)f(sc,t)da:dt—/Qowo(a:)f(a:,O)dx.

In deriving the last equality, we have changed variables y = ® (z,¢). On the other
hand, the left-hand side of (2.9) can be expressed as, after performing the same
changes of variables,

T T
/ /w((b(z,t),t)wj@(x,t))dmt
Qo

/I/Q )& (P (2,t) 1) J (P (2, 1)) dedt
T )
/ / 1) (VE) (2 (=, )t)'wﬂfb(x,t))dxdt
Qo

T
/0 /Q (W& (P (x,t) ,t) + (wu - VE) (P (x,t),t) J (P (x,1)) dedt

T
/ /Q w0 (@,1) (€ () + (1~ VE) (2, 1)) dadt.

From this and ( , we obtain

/Tlf /Q (2.1) (& (@,0) + (u- VE) (2,1)) dadt

T
= — wo (T x X w(x -1 cu) (x x xdt.
= [ wo@eEnars [T [ wen @V @ (e dua

This is the same as (2.8). Hence, the couple (w,u) is a weak solution to the lake
equation. 0
3. SHORT-TIME SOLUTION FOR INTEGRAL SYSTEM

Throughout the paper, we assume that by < b(z) < by, for some positive con-
stants bg, by, that b (z) € C** (R?), and that the elliptic operator —A+Vlogb-V
in (2.2) has the fundamental solution K (x,y) of the form

(3.1) K (z,y) = blog |z — y| + K (2,9),

where b is a positive constant depending only on b(z), and K (z,y) is positive
C3 (R? x R?) function satisfying

(3.2) |z —y|| K1 (z,y)] + | V2K (z,9)] + |[VEK: (2,9)] < co,

where and throughout the paper the symbol ¢y is reserved for constants depending
only on the given initial data. However, it may vary in different places. Existence of
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such fundamental solutions is discussed in details in [8]. In particular, when b (z) =
b(Jz]) is radially symmetric, the fundamental solution K (z,y) = K (| — y|) can
be found simply by solving the ordinary differential equation K’ (r) = bob (r)r~!,
where bg is a constant. We also assume that wg € C* (QO) for some 0 < o < 1, and
that g is a bounded C'T® domain. For simplicity, we assume that there exists
¢y € C1F such that Qg = {2 € R?: ¢, (z) < 0} and Vi, # 0 on 9.

Let Q be a C'T domain such that Q = {z : ¢ (z) < 0} for some C'T¢ functions

¢ (x) with Vi (x) # 0 for € 9Q. We define
(3.3) 0g=——">.
|V<P|inf,asz

This quantity 0o may be understood as a C'*t< character of the C'*® domain.
Sometimes we shall use dq o = 0o to emphasize the dependence on . Consider the
Newtonian potential

o(z—y)
Viz)=PF, | ——5 dy,
(z) Q/x_y| y

where P, means the principal value of the following singular integral,

o(x) 1 (23 —2% 229 )
i

=V2log|z| = — <
ER glel x|t \ —2z122 zi — 23

and

Gy = [ TC7Y (@) - g()dy.
J |z — y|

It is well-known that the principal value of the integral in defining V' () exists. We
need the following lemma.

Lemma 3.1. Suppose that 0Q € C*< and g € C* (Q) .Then

(3.4) [Vlpo < clog (2 + dad (52)),
(3.5) Vg < cdalog (2 +dad(Q)),

(3.6) Glag < elglaqlog (2+ dad (),

(3.7) Gloo < clglyalog (2+a'd(@)lgl,.0)

where d () is the diameter of Q, and ¢ is a constant independent of 0, « and g.

Proof. The proof of (3.4)-(3.6) can be found in [5, Lemma 3.1]. An estimate similar
to (3.7) can also be found there. However, the dependence on « is not explicitly
given in [5, Lemma 3.1]. Since this dependence plays an essential role in establishing
global regularity in the next section, we need to show (3.7). Let € > 0 and B. ()
be the ball centered at x with radius e. We write G () = k1 () + k2 (x) , where

ki) = T 0@ gy
Q\Be () Y
b = [ @ swi

Be(z)
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Since |o ()| < ¢, where ¢ is a constant independent of Q, o and g, we have

Ik (z)] = ¢ / lo@-9@l,

2
=y
Q\B: () | |
()

1
cloloa [ vdr=clglyalos

|]€2(.’L’)| - ¢ / |g($)_g2(y>|dy

d(2)

)
e

IN

P k|
€
1 -1 «
< C\Qb,g/ﬂ*“:ca 19]a,0 %
0
The estimate (3.7) follows directly by choosing e* = a/[g], - O

Lemma 3.2. Suppose that 92 € C*+*, w (z) € C¢ (Q) , and that v s the potential
associated with w through (2.3), i.e.,

Y (z,t) = K (z,2) 6% (2) w (2) dz.
Rn
Then
(3.8) Volpo < cllwllyqd(€),
(39 [V%lyq < clwloglog (2+00d () + a7 ull,0d (@),
(3.10) V2], g < ¢ (Ilollao + Illog 0 ) log (2 + 8od (€2)

where d () is the diameter of 0, and ¢ is a constant independent of Q, o and w.

Proof. According to (3.1), we write
(311) 0@ = [ K@ 2P () ds =y (@) + 1 a).
where
Yo (z) = I;/ log |z — 2| b(2)° w (2) dz
Q

Yy () = Ky (2,2)b(2)*w(z) dz.
Q

Since VK (z,y)] < co |z —y|™", we have

Vo (2)] = /Q’vz((x,z)b(z)%(z) dz

—1
< c||w||0’Q/Q|x—z| iz
Q)
< cllwllon / dp = cllwllg.0 d(©).
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This is the assertion (3.8). To establish the rest of the estimates (3.9) and (3.10), we
note that the second derivatives for the Newtonian potential 1, has the expression

(3.12) V2, (z) = 13/ "(L? (b(z)Qw (2) = b(z)’w (x)) dz
Q |z -z
+7bb? () w () Iy 4+ bb () w (2) V (z),
where the function V (z) is defined in Lemma 3.1 and I is the identity matrix in

R?. The estimates (3.9) and (3.10) follows directly from Lemma 3.1 and (3.2). O

Theorem 3.1. There exists a unique C'T solution ® (z,t) of (2.7) for 0 <
t < T, for some T > 0. Consequently, if we define Q = @ (Qo,1), w(x,t) =
wo (71 (2,t)) xq,. ¥ by (2.3) and uw by (2.1). Then (w,u) is the weak solution to
the lake equation. Furthermore, w (-, t) € C* (), Q € C*T*, fort <T.

Proof. For any M,T > 0 to be chosen later on, define a set B (M, T) of R? value

functions in Qg x [0, T) as follows:
B(M,T)={®(z,t) € R*: [®(®)l 100, <M,
||(I)(£L',) < M7 |V@(1’,t)-]2‘§1/2, CD(LL',O):.’E}
We then define a mapping F' from B (M, T) to a functional space by

la <

t

(3.13) F(®)(z,t) = z—l—/u (®(x,s),s) ds,
0
where
(3.14) u(z,s) = Wlx) /ViK (x,y)wo (<I>_1 (y,s)) dy,
Qs

Qs = ®(Qo,s), K (x,y) is the fundamental solution in (3.1). By (3.1), we may
decompose u as

(3.15) u(z,s) =ug(x,8) +u (z,s),

where

(3.16) uo (z,s) = b(bx) /Vi log |z — y|wo (7" (y,5)) dy,
Qs

(3.17) uy (z,8) = ﬁ/v;m (z,y)wo ((I)‘l 2 8)) dy,
Qs

and K satisfies (3.2). Since |[V® — I| < 1/2, @71 (-,¢) exists and maps Q; onto
Q. The mapping F thus is well defined. The rest of the proof is divided into four
steps.

Step 1: The mapping F maps B (M, T) into itself for some M, T.

For any ® € B (M,T), by Lemma 3.2, since wo is bounded and wq (@7 (y,1)) €
C* (Q), we have u (-, t) € CT () , and

(318)Vu ()lgq, < colog (2 +80,d () + o |wo 0 @7 ()], d(Qt)> :

A

BAVu (), < e (Hwo 0@ o+ 5Qt) log (2 + 8,d ().
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Let ¢, be such that Qo = {py < 0}. Set ¢ (z,t) = ¢, (27! (2,t)). Then Q, =
{¢ (z,t) < 0}. From the definition (3.3), it is easy to see that, for & € B(M,T),
we have,
5Qt < COM4+aa d(Qt) <2 |(I) (t)|o <2M,
and
lwo (@75 )4 0, < lwollag, 12710, < cod™,

where ¢g is a constant independent of ®, M, and T It follows from (3.18) and (3.19)
that

IV (® (), )40,

IN

IVu(®)lo0, +1Vu®)lyq, 2@ q,
coM* 2 log (2 + M) .
By (3.13), the gradient VF (®) can be expressed as

IN

(3.20) VF (®)(x,t) =15+ /Vu (®(z,8),s) VP (z,s) ds.
0

Hence, for t < T,
IF(®) (D)1 400, < co+ T M *log (24 M).

Analogously we can derive, for fixed z € Q,
IF (@) (z,)]l, < T~ M

[
and

|VE (®) (2,t) — Is] < coTM?log (2 + M).
It is now easy to see that if we choose M =1+ 2co, T = (M°?*log (2 + M))_1 ,
then F'(®) € B(M,T) for any ® € B(M,T). We have just proved that the map-
ping F' maps B (M, T) into itself.

Let M and T be fixed so that F' maps B (M,T) into itself, and ® and ®* be any
two functions in B (M, T) . In the rest of the proof, ¢y is a constant depending only
on the initial data and the chosen M,T.

Step 2: Estimates of |(F(®) — F (2%)) (t)]o.q, -

Set

p(z,t) =@ (x,t) — D" (x,t).
By (3.13), we have
t ¢

F(®)(z,t) — F(®") (x,t) = /u(@ ($7s)7s)ds—/u* (D* (z,5),s)ds,
0 0

where v is defined in (3.14) and u* is defined accordingly. By changes of variables
z=0"1(y,s) and z = ®* "1 (y, s) in (3.14) for u and u*, respectively, we have

x = 71 C K(x,®(z,s O (2,8 2w z P (z,s dz
* X = 71 C K (x (I)* z,S q)* zZ, S Zw z (I)* zZ,S dz

where J (® (z,s)) is the Jacobian of the mapping ® (-, s) . It follows that
(3.21) u (@ (2,5),8) —u (D" (z,5),5)| <[lp(s)ll1 0, + |m (z,5)],
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where
m(z,s) = co/ ‘VJ‘K (® (x,5),®(2,5)) — VIK (®* (z,5), D" (2, s))‘ dz.
Qo

We write m = my + mo, where, for small € > 0 to be chosen later,

mo= a0 [T @), @ (0) - VK @ (59,07 (5)|
Q0\B: (z)
me = g / VK (®(z,8),®(2,5) — VEK (O (2,5), D" (2, s))‘ dz.

Be(x)

By (3.2) and the fact that V&1 (z,s) and V®*~! (z,s) are bounded , we have
s
i (2, 8)] < ¢o / o (s)

I
g dads < ol (5) 0, 1+ g
Qo\BE

and

|m2 (SC,S)| < CQ/ |JC — y|_l dz < CoE.
Be

By taking € = min (1, Ilp (8)”1,90) , we obtain
Imy (z, 5)] + [ma (2, 5)|
o 1o (5) ., (1+ 108110 (5) 1.,
Inserting this into (3.21), it follows

[u(®(2,5),5) —u (P (z,5),5)|
(3.22) < allp®)lhg, (14 oglo (5)l,.0,

Therefore,

Im (2, 5)]

VANRVAN

) ds.

[F (@) (z,1) = F(27) (2, 1)|

/0|u<<1><x,s>,s>—u*(@*(x,s>,s>|ds

) ds.

IN

A

t
< o [ Io@la, (14 ozllo @l q,

Step 3: Estimates of [(F'(®) — F (2%)) ()], q, -
From (3.16) and (3.12), we have

(3.23) Vg (,5) = bV / Vilog |z — ylw (y,s) dy

Qg

oty

=b | —— (w(y,s) —w(x,s)) d
[|x_y|2 (0 (.9) — (@) dy
+7Tl;w(x,s)[2l+l;/0l($y)

Qs

5~ dyw (z,5),
|z -y

11
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where

1 2.2

o~ (z) L L [ —2xy29 af — a3

=VV-loglz| = — ,
|x|2 g| | |$|4 ( .T% _ l'% 2m1x2

and
Vui (z,5) = | VVTK] (z,y)w(y,s) dy.
Qs

Accordingly, u* = uj+uj and the derivatives have the analogous expressions. Using
(3.2) and the same techniques as used in deriving (3.22), it follows that

(3.24) [Vuy (@ (2,5),5) = Vuy (27 (2, 5),5)] < collp(s)ll,q, -
By changes of variables, we have

/UL (@ (z,5) —y)

w(y,s) —w(®(x,s),s)) d
Bl @) e ().9) dy

s

- /UL (@ (2,5) — @ (y,5)) (wo (y) —wo (z)) J (® (y, ) dy

@ (2, 5) — P (y, )]

0

and

ol (®* (2.5) —
/ ((I) ( ) ) y) (w* (y,s)fw* ((I)* (1-75)75)) dy

P+ —y
g 19 (z,5) =yl

s

_ /JL@W%@—¢W%$
[ (2, 5) — & (y.5)

(wo (y) —wo (x)) J (27 (y,5)) dy.

0

Note that [J (® (y,s)) — J (®" (y,5))| < co [lp ()] o, » and that

o (D (z,5) — P (y,s5) o (P (z,5) — P* (y,5))
|® (,5) = ® (y,5)|” | (2, 5) — ®* (y, 5)[*
< oo |(® (z,8) — B (y,5)) — (27 (,5) — D" (y,9))| [x —y|
< o), lz -yl
It follows that the quantity
/Ul (®(z,5) —y)
|® (2, 5) —yl*

(3.25)

(w (y’ S) —w (CI) (.1?, S) ) 8)) dy
;/aL@wL@—w
[ (2,5) 9]

(W™ (y,8) —w™ (7 (2,5),5)) dy
oy

s

is bounded by, since wg € C?,

|wo (y) — wo ()]
co ||P(S)||190/x_|2dy
Qo y

1
< lo@ho, [ Tt =colo (o,
Qo y
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Hence, we obtain from (3.23) that

(3.26) |Vug (P (z,8),s) — Vug (D" (z,5), 5)]
< allp($)liq, + 1k (2, 8)| + [k (2, 5)]
where
N 1 _
ki(z,s) = b g %Y <I>((I) (2,5) 2y)
oo @) Y
3 ot (2 (z,5) — )
P* (x,s) — 2 ’
Q\@*(B:(2),s) 17 (@, 5) ~yl
1
. i) —
k2 (ZC, S) = ) g ( (.’IJ, 5) 2y)
@ (z,5) -yl

P(QoNBe(x),s)

. L (p* _

G rEenoy,
|®* (2,5) — y|

)

P*(QoNBe(x),s)

and ¢ is a positive constant to be determined later. By changes of variable, we have

@ (y,s)) dy

ki(z,s) = b / Ul(q)(x’s)_@(y’S))J(

P(z,s)— D (y,s 2
o, 2@ =00

. ol (D% (z,8) — ®* (y,5)) -,
-b J(® , S dy.
/ @ (z,5) — & (y,5)]” sy

Qo\Be (z)
Hence, by (3.25),
d(€0) 1
b @) < colo@lig, [
€
(3.27) < allp(9)ll,q, (1 +[logel) .

To estimate ks (x,t), we consider first the case that z € Qg and
dist (x,000) > €.
For this fixed z, B, (z) C . Since

ot (y)
lyl?

dy=0, r>0,

B-(0)
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we have
" ot (D (z,5) —y) - ot (D% (z,5) — )
falee) =0 / Sy " / o (os) o
@(B.(),s) ’ ®*(B.(z),s) '
1
- U|y|(2y> dy
(®(Be(2),5)~B(,5))\ Ba(a) (0)
R iR
- . |(2y)d
(@* (B (x),5)~* (2,5))\ Ba(a) (0)
1 . il
(3.28) = W) gy b / 7 (Qy) dy,
g |y
where

d(x) = min (dist (P (z,s),0P (B: (z),s)), dist (" (x,s),09" (B: (z),s))),
and

1= [(@(B:(2),5) — ®(z,5) \Ba) (0)] \ [(2" (B: (2) ,5) — @ (2,5))],
S o= [(@7(B:(2),5) — 2" (2,5)) \Buga) ()] \ (2 (B: () ,5) — @ (,9))].

Since ® € B (M,T), it is easy to see that there exist two positive constants ¢;
and co depending only on M, T such that

(3.29) cre < d(z) < cae.
For any unit vector v € R?, set
A w)=sup{r:mveX}, i(v)=if{r:rve;}, i=12.
By (3.29), \; (v) > d(x) > cie. Let o1 € B. (x) such that
AN (WV)v = (z1,8) — P (z,5) =V (y1) (1 — 2),

where y; is a point lying in the line segment connecting x and x;. Without loss of
generality, we may assume that there exists x € 9B, (x) such that

A (V) v =" (27, 5) — @7 (2,5) = VO (y7) (27 — ),

where y7 is a point lying in the line segment connecting x and x7. Hence,

—1 —1
M@ -N@) = [VeE) | e ol - [V @ Ty et - e

([vou | - [voran o)

< coa‘Vé (y1)~ Ly —voer (y7)~ IV’
< ce|Ve(y1) -V ( Dl
< coelyr — yi|" < coe
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It follows that

A (v)

1

/ g (2y) dyl < / / %rdrdu < / log (Al (V)) dv
Y| 0B:(0), r 9B1(0) A1 (v)

1 1(V

A1 (V) — )\1 (V) v
/631(0) A1 (v) I

IA

Co S C()E-Za .

Analogously, we have

i
/g (Qy)dy < coe”.
|yl

2

Inserting this into (3.28), we obtain
|k2 (2, 8)] < coe®™.
Substituting this and (3.27) into (3.26), we obtain, for dist (x,0Q0) > ¢,
(Vo (® (2, 5),5) = Vug (7 (2, 5),5)[ < collp(5)ll1,0, (1 + loge]) + coe®.

Since Vug and Vuj belong to C%, the above estimate remains true for all = € Q.
We now choose e = [|p(s)[|; o, - The above inequality, together with (3.24) and
(3.15), leads to

Vu (@ (2,5),5) = Vu* (8 (2,5), )] < collp (5)ly0, (1+ |08 10 (510,

Hence, by (3.20),

(3.30) [VE (D) (x,t) — VF (D) (z,1)]

t
< [ 1o, (1+ ozl (),

) ds.

Step 4: F has a unique fized point.
We can now define a sequence {®,,} by

Py (z,t) =z, Ppy1 (z,t) = F (D) (2,1).
Set

P () = [[(@ni1 = Pn) (D)1 g, -
By (3.22) and (3.30), we have

prsi () = [(VF @n1) — VF (2,)) (D)l
(3.31) < o / P (5)10g (2 + p, (5)) ds.
0

By [6, Section 9], this implies that there exists a positive number T* < T such that
sequence is convergent in C () norm, for ¢+ < T*. By (3.22), this limit is a fixed
point of the mapping F. The above inequality also implies that the fixed point is
unique. This fixed point is clearly the solution of (2.7). The proof is complete. [J
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Remark 3.1. For the integral system studied in [5], it was shown that the sequence
{pn (t)},,—1 defined by

P (1) = [(@rs1 = Pn) (D)l 0

satisfies inequality (3.31). Hence Step 3, i.e., the estimate of VF (®) — VF (9)
is not needed in proving local existence. For 2D Euler system, the authors of [1]
actually assumed local existence based on a result in [3].

From the proof of Theorem 3.1, we can see that the existence time 7" depends only

on the Holder norms of the initial data. Hence, @ priori bounds on [|® (¢)[|;, o,

and||®~1 (¢) Hl o,for t < T will guarantee that the solution can be extended beyond
T. In fact, we have

Corollary 3.1. Let ® (z,t) be the C*T% solution of (2.7) for t <T. If
0 =sup || (¢ +sup [[@F (¢
s 9 ()0, + 500 07 (0], g,
is finite, then the solution ® (x,t) may be extended fort < T + Ty for some positive
constants Ty depending only on 6.

Proof. Let T* < T be a constant, and let w* (z) = wq (¢! (z, 7)) , where ® (z, )
is the O+ solution of (2.7) for t < T. Consider the mapping

F* (0% (2,t) = ® (2,T7)

t ; L * 2 w1
—|—0/Q[b(q)* (m,s))v K (®* (z,5),2)b(2)"w* (2" (2,5)) dzds,

defined in the set

B*(M,T1) = {®"(z,t) € R+ [|®" (D]l 1100,, 12" (2, )4 < M,

O (2,0) = & (x,T"), |[VO* (2,t) — V& (,T%)| < %}.

For any ®* € B* (M, T), we have

]vqﬁ (z,1) (VO (2, T%)) " — 12]
< |VeTH(@ (2, T7),T)| [VO* (2,t) — VO (2,T%)| < 1/2.

Therefore, ®* (-, 1) is invertible and || ®*~* (t)”1 0, < coM?, where ¢y is a constant
independent of T" and M. Using the same method as in the proof of Theorem 3.1, one
may show that there exists a M and T} depending on 6 (but not on the particular
choice of T%) such that F* maps B* (M, T) into itself and that F* admits a unique
fixed point ®* (x,t). Now we select Ty = 371 /4. and T* = max (T' — T1/4,0) . The
mapping ®* (z,t) is then the extension of ® (z,t). O

4. GLOBAL EXISTENCE OF C1t® SoruTtion

In this section, we shall show that the C'*® solution obtained in the previous
section can be extended to all ¢ > 0.
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Lemma 4.1. For any T > 0, there exist positive constants n(T) and 5 (T) with
B(T) < a, depending only on T' and the initial data 0g,a, |lwoll,. o, and b(z) such
that for any C1T< solution ® (x,t) of (2.7) for t < Tp, we have

d () + llw Ol g7y 0, <n(T)  (fort <min(Ty,T) ),
where w (z,t) = wo (271 (z,t)) and d () is the diameter of the region ;.
Proof. Since w (z,t) = wo (7 (z,1)) , it follows |w (z,1)| < [wollg.q, - By (2.7) and
(3.15), we write

t

¢
@(m,t):x—&—/uo(@ ds+/u1 t) ds,
0 0
where uy and u; has the expressions (3.16) and (3.17). It is easy to see that

()
luo (,1)] gco/‘Vi‘logM—y\‘ dygco/ ds = cod (£2)
0
Q

for a constant ¢y dependent of the initial data only. By (3.2), we have

i (@0 <o [ [V @) dy <o (@@ +1)
Q¢
Hence, for x € Qg,

t
|(I>(x,t)|§|x|+/|u(<1>(m,s D] ds<co+co/ (@) +1)d
0

It follows that
t

(4.1) d(Qy) = wsu% |D (z,t) — @ (y, )] <o+ co/ (d () +1)ds.
RS )

The Gronwall lemma guarantees that d (Q;) < 1 (T), where n (T') = coe®®” depends
only on T and the initial data. In what follows, 7 (T') may vary. But it depends
only on T and initial data.
By the well-known results in [14] (see also [12]), ug is quasi-Lipschitz, i.e.,
|u0 (xvt) — Uo (yvt)l < co |.’L‘ - yl |log|x - y|| ’
for |x —y| < 1/2. By (3.2), we have, for |z —y| < 1/2

@t —u ] < eolon, b7 @ -5 @) [[VEEK @2 &

ol 107 0] [ V3K (02) = ViE (0,2) df
Qy
< (@)l -yl
It follows that

d|<I>(x,t)dt—‘I>(y t)l’ < (@ (1), t) — u(® (y,1),1)|

<n(T)[® (z,t) — @ (y,1)] [log |® (2,) — @ (y,1)]],
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for |® (z,t) — @ (y,t)] < 1/2. By the Gronwall lemma, we deduce that
n(T) |z =y < |@ (2,0) = @ (4,0)] < 0 (T) o~y

for | — y|“(t) < (2n(T))™", where p(t) = exp(—n(T)t). Since 1 (z,t) € Q
is bounded, this inequality implies that H<I>_1 (t)HM(t) 0, <1 (T') . Combining this
with the fact that ® (z,t) is bounded (due to (4.1)), since p (T) < p (t) for t < T,

we obtain ||®~! (t)HH(T)79t < n(T). We now choose

B(T) = o (T).
Since w (z,t) = wo (P (x,t)) , it follows that
oo @y, < 0 ool 127 0]y g, < 7T

The assertion follows from this inequality and (4.1). O

Lemma 4.2. Let ® (z,t) be the C1T* solution (2.7) for t < T, and w(z,t) =
wo (<I>_1 (z, t)) . Suppose that there exist constants m > 0 and 0 < § < « such that
fort <T,

(4.2) d (%) + |lw )50, <n < oo
Then
(4.3) 197 ®)]l,.q, +Fus < c(n,B,T),

where §q, 5 is defined as dq, in (3.3) in which the a-Hélder seminorm ||, is replaced
by B-Holder seminorm ||ﬁ , and ¢ (n,8,T) is a constant depending only on n, 3, T,
and the wnitial data.

Proof. Let Qo = {¢, < 0} for some C'*® function ¢, such that Vg, # 0 on
980. We recall that Q; = {¢ (-,t) < 0} where ¢ (z,t) = ¢, (7' (z,1)). Let u =
uo + up be the velocity as in (3.15)-(3.17). By (3.23), we have

Vu (2,£) V4o (. 1) = bV / V- log |z — ylw (3,1) dy Vo (2, t)

Q4

L _
=5 [T o) — o () d T (1)
t |z — yl

i
+ bw (2,8) Vip (2, ) + b / ‘w dyVr o (@, ) w (x, 1)
Q¢

=k + ko + ks.

Note that V*o (z,t) is weakly divergence free in §2; and tangent to 9€2;. We obtain
from [1, Corollary 1] that

kg = b/w (va(m) _vgp(w)) dyw (2,1) ,
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and consequently that, by Lemma 3.1 and (4.2),
hly < co (I ()15 1V (D)l + o ()]0 [V (D))
Jog (24 871 [V (1) 5 4/() +d () b, 5
< e IVe (B)lylog (2+ Ve (B)ly +a.6)

where ¢ (1, 8) depends only on 7,3, and the initial data. In particular, ¢ (n, ) is
bounded by ¢(n)log 3", for a constant ¢ (1) depending only on 7 and the initial
data. In the above inequality, as well as in what follows, we may omit the subscript:
[ls = lIll5.q, - Analogously, we have

kaly < o (Jo By IV ()l + | (D)o IV (1))
dog (24 57w (D] () + d () 3o, )
¢(1,8) [V (D] 10g (2 + G5

IN

It follows
(18 |[VuVre | <em.8) Ve lslos (24 1V (0]l +ba,5)
By (3.2), it is easy to see that

Vs (B)] < (0, 6).

Hence
[Vave )] <em.8) Ve @),

and consequently, this and (4.4) leads to
Vuv o )] <e@.B) Ve 0)lslo (24 [V W)l +da,s)

The same argument also shows that ‘V’UJVLQD (t)’ is bounded by the right-hand
0

side of the above inequality. Hence,
(5)  |[vavre®| <em.8) Ve Wlslos (24170 (Ol +ba,5)

Next, by differentiating ¢ (P (z,t),t) = ¢, () with respect to ¢, we obtain

0p (x,t)

ot +u(z,t) - Ve (z,t)=0.

Hence V¢ solves

oV

5 T V) Ve=—(Vu)' Vo,

(4.6)

where (Vu)—r is the transpose matrix of Vu. It follows that
t

Vo (B (a,t) ) = Vigg (z) - / (V)" Vo) (@ (@,5) ,5) ds
0
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or equivalently,
t
(4.7) Ve (z,t) =V, (7" (z,t) — / ((Vu)—r V@) (@ (2" (,1),5),5) ds.
0
Note that (4.6) holds only in the distribution sense since ¢ € C1T<. By using test

functions as we did in the proof of Proposition 2.1, one may verify that (4.7) holds.
Since
OV (x,t)
ot
It follows that, for 0 < s < ¢,

(4.8) exp (/|Vu (M)lo dT)

= Vu (P (z,t),t) VD,

IN

|V (<I> (<I>71 (z,t) ,s))|

exp (/t Vu (7)), dT) .

S

IN

Therefore

EPIANTC
Ve (t)lg < [Vools [VET ()]

+/‘(VU)T VSD(S)‘B V(2 (27" (1),5)) g ds
0

= ’vl%’ﬁe}(p (5/|Vu (™o dT)

0
+/‘(Vu)T V@(S)‘Bexp (ﬂ/|Vu(7-)|0 dT) ds.
0 S

It is obvious that, by (4.7),

t
Ve bl < Feoly+ [ [(V0) Ve ()], ds.
0
We have arrived at

t
4.9 IVels < [IVeollgexp (ﬂ/IVU(T)lo dT)
0

t

+/H(Vu)T Vo (S)HBeXP (5/|Vu(7)|0 dT) ds.

0

Introducing the notation (a,b)™ = (b,a), a direct computation leads to

((Vu)T w)l = (V-u) Vip — Vuvio.
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Since V - (bu) = 0, we have
V-u=>0"'V-(bu)+bu-Vb ' =bu-Vb L
Hence,
T + -1 1 1
(4.10) ((vu) V(p) = (bu- Vb)) Vip — VuVte.

It follows from Lemma 3.2 that

IN

[u- v ) Ve, < e d) (lu®ls Ve @)
< c0.8) V¢ (1)l5108 (2 + b0, 5).

Combining this with (4.5) and (4.10), we obtain

B

|(v0)" Ve )] < em.8) Ve 0l los (24 V¢ ()5 +a.5)
Substituting this into (4.9), it follows that

IVe@®lls < IVeollgexp (ﬂ/IVU(T)lo dT) +

0

t
+e08) [ 196 (5)ls0, 108 (24 196 (90, + do.)
0

- exp (5/ |Vu (1)l dT) ds.

S

t
Multiplying by exp (5 JIVu(r), dT) , the above inequality leads to
0

Ve (£)]] 5 exp (ﬁ/IVU ()l dT) <IVeoll
0

t

(4.11) +e(n,B) / oxp (ﬁ / Vu ()] dT) 1% ()] 5.0,
0

0
1og (2+ 1V () 5.0, +d0.5) ds.

Recall that, by definition (3.3) and (4.8),

Ve (t)‘ﬁ < Ve (t)|[5
‘VQO (t)|inf,aﬂt a |vq>_1v@0 ((I>_1 (t))|inf,69t

Co exp |Vu (1) d’l’) Vo (t)] ;-
[frene) o

00,8

(4.12)

IN
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Introduce the functions
t
9 :ﬂ/|Vu (7)o dr,
0

F@) = [IVe®lga,exp(=h(t) +1.
From (4.11) and (4.12), we thus arrive at the following inequality

FO) < a+ens) /  (s)log (24 [V ()] 5.0, +55) ds
< co+c(nh) /f )log (2+ f (s)exp ((1+57") h(s))) ds
<

co+ ¢ (. B) /fs 1+ h(s) +log f (s)) ds
0

Denote by ¢ (t) the function on the right-hand side of the above inequality:

g(t) =co+en /f (1+ h(s) +log f () ds

Then

g @) = cmB)fE)A+nh(t)+]logf (1)
< e B)g ) (L+h(t)+logg (1))

o~

It follows

S logg (1) < e(m,8) (1+h(6) + (0, /) logg (1),

Integrating this inequality, we obtain,
t

logg (t) < c(n,B) ec(mp)t (1 + / (1+h(s)) e c(n:B)s ds) .
0
Since f < g and b (t) is increasing, it follows that, for ¢ < T,

logf(t) < ¢(n,B,T) (1 + h(t) /6%(77)5 ds)

(4.13) c(n,B,T)(L+h(),

where ¢ (n, 8,T) depends only on ¢ (n, 8) and T Using this inequality and recalling
the definitions of h (t) and f (¢) and applying Lemma (3.2) and (4.12), we arrive at
t

t):ﬁ/Wu o, ds < c(n /6’)/10g(2+695,/3)ds

0

t t
0.8) [ (log 7 (5)+ h(s) ds < (. 8.7) [ (14+h(s
0 0

IN
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The standard Gronwall’s inequality implies

h(t)<c(n,pB,T).

Therefore, by (4.13), f(t) < ¢(n,8,T). Consequently, by the definitions of f (¢)
and h(t), and by (4.12), we find that dq, g is bounded by c¢(n,5,T), a constant
depending on 7,3 and T . Taking s = 0 in (4.8), it follows that |®~* (t)], q, <

exp (ﬁ_lh (t)) < c¢(n,B,T). The proof is complete. |

Remark 4.1. For 2D constant vortex patches, since w(x,t) is constant in O,
Lemma 4.1 holds automatically, and Lemma 4.2 can be established directly for = «
using the incompressibility condition V -u =0 (see [3].)

Theorem 4.1. Then there exists a unique global C*+* solution ® (x,t) of (2.7) for
allt > 0. Consequently, there exists a unique global weak solution (w,u) for the lake
equation. Furthermore, the solution has the regularity w (-,t) € C* (), u(-,t) €
Otte (Qt) , 0Q, € C1F for all t > 0.

Proof. Tt suffices the show that for any 7' > 0, there exists a unique C'** solution
® (z,t) of (2.7) for all t < T. By Theorem 3.1, we know that there exists a unique
C1+e solution @ (z,t) of (2.7) for t < Ty for some Ty > 0. We assume T < T, since
otherwise the proof is complete. By Lemma 4.1 and 4.2, there exist 0 < 5 (T) < «
and ¢ (T) > 0, depending only on the initial data and T such that

() + v Ollgery 0, + 127 O, g, +0,50r) < e(T).

Let u be the velocity defined in (3.15). By Lemma 3.2 with 3 (T') replacing «, the
above estimate implies [Vu (), o, < ¢(T). It follows that

Ve (t)]o.q,

IN

t
co + / Vu(s)lgqa, VP (5)lg.q, ds
0

t

co+c(T) / V@ (5)].q, ds-
0

IN
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Hence, [V® (t)|) o, < c(T) for t < Ty < T. Using this and Lemma 3.2 again, we
obtain

t
V0 (£)],.0, < o + / T (® (5),5)lg 0 [VD ()], 0, s
0

t
4 / VU (®(,5),5)] g [V (5)]o.00, d5

0
1og (2+ [lw (5) 0.0, + 300 ) ds.
Note that w (z,t) = wo (P! (z,t)) and, by definition (3.3),
5Qt~a: = , plx,t) =9 (I)il x,t)) .
" Ve Ol 750 T D)
By (4.8), we have

IN

[w0la.0, VO (B} g, < (D),

w ®)la,,

IN

t
S < Vo)l exp [ [Vu(s)lgq, ds < (D) VO (D), 0,
0

Therefore,

t

VO (1), 0 gc0+c(T)/(1+\vq> (o ) 108 (24 [V ()], , ) ds.
0

This inequality implies that [V® (t)], o, < ¢(T). It then follows from Corollary
3.1 that there exists a 773 > 0, depending only on ¢(7') and the initial data such
that the solution ® (x,t) can be extended, still in the class of C'*, to t < Ty +T}.
We emphasize again that c¢(7") depends only on T and the initial data. Since
Ty is independent of Ty, we may repeat this procedure to extend the solution to
t < T+ nT, until Ty +nT; exceeds the given T, where n is a positive integer. The
proof is complete. (I
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