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Abstract. We are mainly concerned with the Dirichlet initial boundary value prob-
lem in one-dimensional nonlinear thermoelasticity. It is proved that if the initial data
are close to the equilibrium then the problem admits a unique, global, smooth solu-
tion. Moreover, as time tends to infinity, the solution is exponentially stable. As a
corollary we also obtain the existence of periodic solutions for small, periodic right-
hand sides.

1. Introduction. This paper is concerned with global existence, uniqueness, and
asymptotic behavior of solutions to the equations of one-dimensional nonlinear ther-
moelasticity subject to Dirichlet boundary conditions for both temperature difference
and displacement. Moreover, the question of existence of periodic solutions is ad-
dressed.

The reference configuration is represented by the interval Q := (0, /), I being a
fixed positive number.

The equations for the displacement u = u(t, x) from the reference configuration
and the temperature difference Q = 6{t, x) = Ta(t, x) - zQ , where Ta is the absolute
temperature and r0 is the constant reference temperature, read as follows:

uH-S(ux, d)x = fx in [0, oo) x Q, (1.1)

{6 + tq)N(ux, d)t - Q(ux, 6X, 6)x = f2 in [0, oo) x Q. (1.2)

Here S is the Piola-Kirchhoff stress tensor, N is the specific entropy, and Q is the
heat flux.
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Introducing

dS , dS dN
a '~ dux' dd' C:~~d6'

g:'WT70 (for |0| < tq) ,

observing -dS/dd = dN/dux (cf. [12]), and assuming Q = Q{6X) for simplicity,
we may rewrite the equations as

utt - a(ux , 6)uxx + b{ux , 6)dx = f, (1.3)
c{ux, d)dl + b(ux, 0)utx — d(6, 8x)6xx = g. (1.4)

Considering first the Dirichlet initial boundary value problem, u and 6 are subject
to the following boundary and initial conditions respectively:

u{t,0) = u(t,l) = d(t,0) = 6(t,l) = 0 in [0, oo], (1.5)

u(0, x) = u0(x), ut(0, x) = ux{x), 6(t = 0) = 60(x) inQ, (1.6)
with prescribed data uQ, u] , and 60 .

Slemrod proved in [15] the global existence and asymptotic stability of solutions
if u and 6 satisfy Neumann-Dirichlet (ux = 6 = 0) or Dirichlet-Neumann (u =
6x = 0) boundary conditions (see also Zheng [16]). The Dirichlet-Dirichlet case (1.5)
remained open until Racke and Shibata recently proved in [12] the global existence
of small smooth solutions using spectral analysis methods. Polynomial decay rates
as t —> oo depending on the smoothness of the initial data were also obtained.

On the other hand, Munoz Rivera recently proved in [ 1 ] the exponential decay of
solutions to the Dirichlet-Dirichlet initial boundary value problem in linear thermoe-
lasticity, using the energy method and a tricky treatment of some boundary terms.

The main aim of this paper is to use Munoz Rivera's idea to improve the results
of Racke and Shibata [12], The improvement is threefold: we obtain an exponential
decay result, less regularity of the data is required, and the proof is much simpler.
Moreover, the existence of periodic solutions is obtained as a corollary.

We wish to mention that Shibata [13] and Jiang [6] recently discussed the corre-
sponding Neumann problem, the latter also for £2 being the half-line, where decay
rates are only given in [13] proving polynomial decay. Previously, the Cauchy prob-
lem Q = K was investigated by Kawashima and Okada [8], Kawashima [7], Zheng
and Shen [17], and Hrusa and Tarabek [3], proving the global existence of small so-
lutions. The blow-up for large data was shown for the Cauchy problem by Dafermos
and Hsiao [1] and Hrusa and Messaoudi [2]. The case of a half-line assuming the
same boundary conditions as Slemrod was discussed by Jiang [4] as well as recently
the Dirichlet-Dirichlet case in [5], without giving any decay rates.

The following assumption is made throughout the paper.

Assumption 1.1. a, b, c, d are C -functions of their arguments. There exist posi-
tive constants aQ, cQ, dQ, K , with K < tq , such that if \ux\ < K , |0| < K , 18J < K
we have

a{ux,d)>a0, c{ux, 6) >cQ, d(6,6x)>d0, (1.7)
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b(ux,e)? 0. (1.8)
/, and /2 satisfy:

/,, f2 e C2([0, oo), L2) n c'([0, oo), //'). (1.9)

Remark. The conclusion of the Main Theorem still remains valid if fx, f2 also
depend on higher-order (quadratic , ...) terms in u and 6 up to their second deriva-
tives.

Since we are looking for the solution in a K-neighborhood of the origin, we can
assume without loss of generality that the functions a, b, c, d and their derivatives
are bounded.

Let
u2 := utt{t = 0), Qx := 6t(t - 0)

be given formally through the differential equation, explicitly in terms of the initial
data uQ, w,, dQ :

u2 = a(u0 x, 00)u0 xx + b(u0 x, e0)60 xx + f(t = 0), (1.10)

~ ~c{Uq ' ^o,x)^o,xx ~ b{u0x > 0O)M1 ,x + — 0)}. (1-11)

.2.
|0o(x)| < t0 in Q
Assumption 1.2. Suppose un e H3 ,u. e H1, u7 e H1, 0n e H3, 6, e H2, and

u0 = ul = u2 = 0 on <9Q, (1-12)

0o = 01=O on^O. (1.13)
Then we have the

Main Theorem. Let X{t) := £j=o \\D\fx, f2){t, -)||2 + ||0,2(/,, f2)(t, -)\\2 +
\\dtdx{fx, f2)(t, -)ll , and suppose that Assumptions 1.1 and 1.2 are satisfied. Then
there exists a small constant eQ > 0 suc^ that if

IIwoll2 + llMiH2 + II ̂2II1 + II^0II2 + ll^iH2 + SUP^(0 ̂ eo/>o

then the initial boundary value problem (1.1), (1.2), (1.5), (1.6) admits a unique
global solution

3 1

u £ p| Cj([0, 00), H3~J), 0 e f)CJ([0, 00),//3_y), 6 € C2([0, 00), L2).
7=0 7=0

Moreover, there are constants cl, c2> 0 such that for t > 0

3 2

^ \\Dju{t)\\2 + £ \\DJ6(t)\\2 + \\etxx(t)\\2 + \\0xxx(t)\\2
7=° 7=0 (1.14)

l"oll2 + KII2 + IM? + ll^olll + \\eiA + dr. -c,<
< 2
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Remark. It should be noticed that

Jo
supe 2 / e 2 -i(r) dr < eJc2 (1-15)
f>0

holds. This is needed for the corollary on periodic solutions below.
By using the technique of Matsumura from [10], exploiting the exponential stabil-

ity, we obtain the existence of global, small periodic solutions provided /, and f2
satisfy the following additional assumption.

Assumption 1.3. fx and f2 are periodic with respect to t with period co > 0
arbitrary:

fk(t + a>, •) =fk{t, ■), k= 1,2, for all t > 0. (1-16)
Then we have the following

Corollary. Suppose Assumptions 1.1 and 1.3 are satisfied. Then there exists a
small constant > 0 such that if

l

sup^ll^C/;, -)ll + \\df(.fx, f2)(t, -)|| + \\dtdx{fx, f2)(t, -)||2 < e,
'-0 j=0

then the problem (1.1), (1.2), (1.5) admits a unique solution
3 1

«ef) C7([°, oo), H*~j), 0ef]CJ([O,oo),//H),
j=o j=o

9 e c2([0, oo), L2),
which is periodic with period co.

The notation in this paper is as follows: The usual L2-space on £2 and its norm
are denoted by L2 and || • || respectively. Hm , m e N, denotes the usual Sobolev
space

Hm := {v G L21 |M|m = ||v|| + ||w(1)|| + • • • + ||«(m)|| < oo},

where vu\x) := {d/(dx))jv(x), 1 < j < m. DLv(t,x) = djd^i>(t,x), j + k =
L e N0, where df = (d/(dt))J , d* = (d/(dx))k . Differentiation is mainly indicated
by indices: ut = dtu, ux = dxu, and so on. The L°°-norm is denoted by | • loo •

L 2C (I, B) (resp. L (/, B)) denotes the space of ^-valued functions that are L-times
continuously differentiable (resp. square integrable) in I, / c R an interval, B a
Banach space, L e N0 .

2. Proof of the Main Theorem. The proof of the Main Theorem consists in com-
bining the following local existence and uniqueness theorem with uniform a priori
estimates.

Theorem 2.1 (Local existence and uniqueness). Suppose Assumptions 1.1 and 1.2
are satisfied. TheR there exists T > 0 depending only on a bound for X3,=o llM,ll3_7

+ Ej=o I|0;ll3-; > l^oloo andon

sup \ y, \\DJ(f;, f2)(t, on + n^2(/,, f2)(t, on + iiw/i .
j=0t> o
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such that the initial boundary value problem (1.3)-(1.6) admits a unique solution
(u,0) in [0, T] x Q.

u and 6 satisfy

3 1

ue fl^dO, T],H3~j), 6ef]CJ([0,T],H3-J), 6 e C2([0, T], L2),
7=0 7=0

16{t, x)\ < t0 for (t, x) € [0, T] x fi.

If
\u0 J<K/2, |0O| < K/2, \e0 J<K/2 infl,

then

\ux\<K, \6\<K, \8x\ <K in[0,r]xn. (2.1)

Since Theorem 2.1 can be proved by standard methods—energy method and con-
traction mapping principle—we omit its proof (cf. [12] and Slemrod [15] for the case
of the Dirichlet-Neumann boundary condition).

We now proceed to get uniform a priori estimates.
Multiplying (1.3) by ut and (1.4) by 6 , then adding together and integrating with

respect to x , we obtain

1 d
iTt ut\\2 + f an2 dx + [ cd2 dx | + [ dd2dx

Jo Jo J Jo
fl 2 2 f1

= / [ka.u - a u u. + b u.d - dx6d + \ct6 ]dx + / (fut + gd)dx
Jo Jo

= R{+[ (fut + gd)dx. (2.2)
Jo

(The parameters t, x are mostly dropped here and in the sequel.)
Differentiating (1.3), (1.4) with respect to t once and twice, respectively, we obtain

with the same (energy) method as before:

44: I llujr + I au,„dx +2 dt [ au2dx+ [ cd2 dx ) + [ dd2dxJo tx Jo J Jo

f1 2
/ tL2atu,x ~ axu,tutx + atutluxx - bfixutt + bxutt8t - bfixutt
Jo

btd,u,x - dxe,6tx + dtetexx - \cte]]dx

+ [ Iftu +g6 )dx
Jo

r2+ (ftu,t + Sfit)dx,
Jo

(2.3)
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respectively

1 d_
2 dt

i ii2 ,\umW + [ auttxdx+ f c02ttdx) + [ dd2ttxdx
J 0 jO / Jo

4 - axumuitx + 2atu,tiutxx + - b„dxum

+

- ict°l - cudteu+bxeuum - bttutxe„ - 2V„A
- dxdt,dt,x + dt,exxett + 2d,d,xxd^ dx

f ^f,tun, + Sttett)dxJo

= R3+ [ ((2-4)
Jo

Remark. The differentiation with respect to t twice is formally not allowed, for
example, utm is not defined. But smoothing the initial data here and going to the
limit in the final energy estimates justifies (2.4) and similar calculations below. Ob-
serve, for example, that only ||«(((|| will appear in the energy estimate.

Differentiating (1.3), (1.4) with respect to x, multiplying it by utx and 6x, re-
spectively, then adding together, and integrating with respect to x, we get

1 d n
2 dtVU + Jo auxxdx + J c02xdxj+J dd2xxdx

= [ \.l2a,Ulx + lC/x - Cx6tdx - bxdxUtx\dx
Jo

+ dexexx\'o + fuJo+ [ (fxulx + SxOx)dx
Jo

= [ + \CtG\ - Cxetex - bxdxUtx\Jo

+ bu,xdx\'o +fUJO'S9x\'o+ [ UxUtx +8x6x)dxJo

= R4 + butx6x\'0 + futx\'0 - gdj0 + f (fxutx + gxex) dx.
Jo

(2.5)

Here we used

butx-g-d0xx\'o = -c6t lo = 0.

In order to deal with the boundary terms we use a technique due to Munoz Rivera
[11] (for the linear case). We remark that an important aspect in [11] is to consider
the once-differentiated equation. This leads to second-order energy terms, which are
needed to get decay information for the first-order energy and then for the second-
order energy too. Here we shall also consider the third-order energy terms because
of the regularity assumptions in the local existence theorem.
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We differentiate (1.3) with respect to t, multiply it by {x -l/2)utx , and integrate
with respect to x to obtain

Jo (X ~~ O U'x{U"' ~ aU'xx ~ a'U™ + b<9* + bd'x ~ ft) ̂  = °' ' (2'6)

Tt /0' (* ~ l) U'*U" * ~ Jo (X " O U"U"X * ~ \ Jo {X - D a{U<x)* *
= J (* - [a,UtxUxx - bt6xUtx - Utxb6tx 1 dx + J (* - f,Utx <&.

(2.7)

It turns out that we have
/
41 (aulix=i+auL\x=0)

+L ix ~ 0 ++
-a X-1-) ftutx dx

(2.8)

= JtJ (X ~ l) U'xU'ldx + l11""1'2 + 5 /

+ / {X~^)bu,x°,x~ Jo (X~'2)f'UtxdX + R5
with

*5 := JQ (x - 0 tK"L - (2.9)
Similarly, differentiating (1.3), (1.4) with respect to t and x, then multiplying it by
uttx and 6fx, respectively, adding together, and integrating with respect to x, we
obtain

1 d_
2 dt || u "2ttX I + [ auixdx+ [ + [ dQ]xxdx

Jo Jo J Jo

i]xx dx + autxxuttx\'o
1 [' 2

= 2Joa<U>-

+ [ latxUxxU„x - bxetxUttx + atuxxxuttx - btxexUt,x (2-10)Jo

- btdxxUttx - lCtdtx - Ctx6tx6t - Cx6t,dtx
+ btUtx6,xx-dtdxxd,xx]dx

+ [ (ftxut,x + 8,xdtx)dx + St6tx\lo■
Jo

In deriving (2.10) we used the relation

d^txx - but,x + dt6xx - btuj0 = £-t(ddxx - buxx)\'o = -gt\'o-
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Differentiating (1.3) with respect to t, we obtain

U,tt - au,xx - a,uxx + b,°x + b6,x = ff (2-1 1)

Thus it turns out with the help of the boundary condition that

*txx lo (2.12)

Similarly to (2.8) we have

^(awLU/+<™LU))

= JTtJ0 {x'^)uttxuutdx + l\\u„,W2+\foau2uxdx (2-13)

+ i (X-{)bU"xeuxdx + Jo {X-{)fttU,txdx + R 6

with

*6 := L (X~ 0 [*a*U'u ~ a"U**U"x ~ 2a'U"xU,xx + 2btdtxuttx + buexUttx\dx-
(2.14)

The strategy in the sequel consists in estimating u in terms of 6 and its derivatives.
Using the second differential equation (1.4) and Poincare's inequality we have

IM2<*i(ll0JI2 + IIM2 + ll£ll2)- (2-15)
Here and in the sequel K2, K3, ... denote positive constants.

\\uf<K2(\\6J2 + \\0xx\\2 + \\g\\2). (2.16)
/ 2In order to produce a f0 aux rfx-term, we use the differential equation (1.3):J 0

d_
dt au2 dx

<

This implies

[' uutdx+ [',
Jo Jo

— llMJ|2 - / axuuxdx- / bu6xdx + / uf dx
Jo Jo Jo

^(IKII2 + l|0J|2) + i [ auxdx- [ axuuxdx+ [ uf dx.
2 Jo Jo Jo

(2.17)

4^11 **

with

d f' a ^ 1 [' 2 aj- / uu dx + - / audx
dt Jo 2 Jo

< K3(\\utf + \\9X\\2) - [ axuuxdx+[ uf dx
Jo Jo

<k4(II0,J2 + IIM2 + IIM2 + II/II2) + *7

(2.18)

Jo
/?,:=-/ auudx. (2.19)
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Similarly we have

[ u u dx - ||w ||2 + [ au2txdx+ [ bdlxuldx+ [ utftdx + Rs = 0 (2.20)
"t Jo Jo Jo Jo

*„:=/ [axututx-atuxxut + btOxut]dx. (2.21)
Jo

with

Thus it turns out that

Kir <k4 ^J + ii&tx l|2) + Tt t: utundx + J utftdx + R&

/ uIuttdx+ / utftdx + Rs,
Jo Jo

(2.22)
<Ks(ii«„ii!+ii0„ii2) + ^

where we have used (2.15) and Poincare's inequality. Using the differential equation
(1.3) once more, we get

< *6(||l»,l|2 + ll«„l|2 + l|9„H2 + ll/ll2) + ^ £ u,u„dx + R,. (2.23)

With the help of the differential equation (1.4) we conclude

IKJI2 < a:7(||0J2 + l|0(xJ2 + lis,II2 + R9) (2.24)
with

R9 := || - ctdt + btutx + dt6xx||2. (2.25)
Similarly we have

,2\Ko
with

= Tti U"U">dx + lo au2,tx dX + lo bU"6"x dX + fo U"f" ̂ + R>0 (2'26)

*10 := [ Kut,x - 2atutxx - anuxx + b,fi* + 2bfiJUu dx- (2.21)
Jo

This implies

H"»'"2- Tti

+ fll«„ll2 + ll»,„ll2 + lie,,#2 + lie,J2 + §, [ »,»„ dx + rA

+ [ uttfttdx + Rl0. (2.28)
Jo

The differential equation (1.4) differentiated with respect to t and to x, respectively,
yields

\Kx\\2 + \Kxx\I2 < ̂ (ll^ll' + ll^f + ll^f + ll^ll' + H/Jl' + ll/Jl'+i?,,) (2.29)
with

*11 ;= WatUxx-btdx + axUxx-bxex\\- (2-3°)
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Differentiating the differential equation (1.4) with respect to x leads to

II^J2 < ̂ .odl^JI2 + H^xll2 + H^ll2 + Rn) (2-31)
with

*12 := Wcx9t + bxutx~dxdxj2- (2-32)

The boundary term bulx6x\'0 in (2.5) can be estimated as

(2.33)
L n >' ^ 1/2 / , 2 , , 2, ^ „ -1/2,a2. , Q2, .
butxex\0^e 4(aU<x\x=l + aUtx\x=o) + KHe (6x\x=0 + dx\x=l)

< <■'" +"<4u>+*,2<«"2ii»jij+*~3/2iie,ii2)-

Using (2.12) we can estimate the boundary term aulxxutlx\'Q in (2.10) as

autxxullx\'o ̂  £l,2l(aUlx\x=l+aUlx\x=o) + K13(El,2\\6txx\\2+E~V2\\0tx\\2+RlJ (2*34)

with

We now define
*13:= Wbfix-Wxxt- (2-35)

Xl(t)e [||m,|| + ||w(/|| + ||"„,|| + [ a{u +u +u )dx + f c{62 + d*+9l)]
Jo Jo

[ a("L + "L)dx+f c(d2x
Jo Jo+ II" Jl2 + IK J2 + Jo + mL) dx + Jo c^2x + dl) dx

"£'/2 So {x~'2)u'xu"dx~el,21 (*~ l) ^

+ e1/4/ - e'/4 / ututldx-el/4 uttumdx
Jo Jo Jo

with a small positive constant e .
It is easy to see that there exists e* > 0 such that for 0 < e < e* there are

constants AT,, K2 such that

KxX2{t) < X{(t) < K2X2{t) (2.37)

where

X2^) '■= +£ ll^ll2+ll"»<ll2+KJ2+\\ulxx\\2+ll^xll2+ll0«ll2- (2-38)
7=0 7=0

Multiplying (2.2), (2.3), (2.4) by e~2, adding together with (2.5), (2.10), multiplying
(2.8), (2.13) with e1/2 and (2.18), (2.22), (2.26) with el/4, and taking e small
enough, we obtain, using the estimates on the boundary terms in (2.33), (2.34) (resp.
(2.8), (2.13)) as well as the estimates (2.15), (2.16), (2.22), (2.23), (2.24), (2.28),
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(2.29), (2.31):

^ + KlAx2(t) + k15(\\uxxx\\2 + \\exx\\2 + \\etJ + \\etxx\\2 + ll^^ll2)

< *>6 (e i*,i + £ ' /2)c- on2 + n^2 (/,, w, on2 (239)

+ \\d,dx{fl,f2){t,2

or, using (2.37),

ft ^ + ̂ 17*1 W + ̂ isdl^xll2 + ll^xJI2 + II^HxIl2 + ll0ml|2 + ll0xxxl|2)

(13 1

Sl^-l + Ell^/i'W.OII2 (2-40)
j= 1 j=o

II^Vi.W.OIl' + IIW/i.W. x"2

By Sobolev's embedding theorem (//' «-► L°°) we can easily get
13

£ |*,| < ^20(^3/2 + X2 + x;/2x3) (2.41)

7=1

where

V
Observe that all terms in /? , j = I, , 13, contain derivatives of the coefficients
a, b, c, or d; hence, they are at least cubic terms. As examples for the proof of
(2.41) we consider a few typical terms in R{ , R6, and -R]0 :

In R\: Jo fl(M* ̂ (Cf* (2-2))" = Uu Utx + •

*3« := H^JI2 + H^JI2 + H^ll2 + H^xll2 + H^JI2- (2-42)

This implies

I a,U
Jo

\dx < K^luJ^HiWuJ + Kll + 110,11) < K21x\'\ (2.43)

In R6: fobttdxuttxcbc (cf. (2.14)). btt = bUxUu2tx + buuttx + bee02t +be8tt. This
implies

rl
h a „ ^ ^ ^23U«„loo„"x„

/o b,tdxUttxdx

+ l^looll»fJ2 + l®jLll®JIII»,ttll + l«xl0oll««x..
<K2A{x] + x\l2 + xxx\'2)
< K25(X2 + x]'2 + X,1/2x3). (2.44)
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In Rl0: Jqaxuttxuttdx (cf. (2.27)). ax = au uxx + agdx. This implies

< ̂ (KUI" Jl KJ + \oxLKLSi\KJ)
Jo

axuttxu,tdx

+ X,)
< 1

If we now assume a priori
<k2 %(X\'2 + X\I2XJ.

and, hence,

where

Now let

If

k. := supe
s>0

(2.45)

^(s) < 1 for 0 <.?</, (2.46)
we conclude from (2.40)

+ K„Xx (s) < K29{x\'\s) + X(s)), (2.47)

where

l(s) = ||D\fx, f2)(s, -)||2 + ||0,2(/,, f2)(s, -)||2 + ||dtdx{fx, f2)(s, -)||2.
;=o

If additionally a priori

(2-48)

is assumed, then we obtain

</Ai;'V) ' Ar?.V.(.v) < K,J.(s) (2.49)
ds 2 >v y - 29

Xx (s) < e~vX. (0) + K,9e'ClS [ evHr) dr, (2.50)
J o

c2:=K]7/2. (2.51)

f eCirA.(r) dr.
Jo

^(0)+^.<K^)2' (2-52)
where the right-hand side is assumed to be less than 1 without loss of generality, then
(2.46) and (2.48) hold for 0 < s < /, for some /, > 0; hence, (2.50) holds in s = t{ ,
which is the desired a priori estimate.

Now the usual combination of the local existence and uniqueness theorem with
the above uniform a priori estimate yields the Main Theorem (cf., e.g., [9, 12, 14]
for this standard argument); the exponential decay claimed there follows from (2.50)
observing that \WXXX\\2 + \\6xx\\2 + \\6txx\\2 + \\6xxx\\2 can be bounded by Xx and that

X,(0) < *3o(IKH2 + IK II2 + \\u2\\] + ||0OH2 + ||0, II2 + ||/,(f = 0)||2 + IIg,(t = 0)||2)
holds. □
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