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Abstract. We introduce the study of global existence and blowup in finite time for

the heat equation with flux at the boundary governed by a nonlinear memory term. Via

a simple transformation, the model may be written in a form which has been introduced

in previous studies of tumor-induced angiogenesis. The present study is also in the

spirit of extending work on models of the heat equation with local, nonlocal, and delay

nonlinearities present in the boundary flux. Additionally, we provide a brief summary

of related studies regarding heat equation models where memory terms are incorporated

within reaction or diffusion.

1. Introduction. We investigate the global solvability and blowup in finite time for

the heat equation with flux at the boundary governed by a nonlinear memory law

ut = Δu on ΩT ,

∇u · n = uq

∫ t

0

up(·, s)ds on (∂Ω)T ,

u = u0 on Ω× {0}.

(1)

Here, p ≥ 0, q ≥ 0, and ΩT = Ω × (0, T ), where Ω is a bounded domain in RN

having piecewise smooth boundary ∂Ω with outward pointing unit normal n. The initial

condition u0 is a nonnegative, continuous function on Ω. Our primary result is that if
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0 ≤ p+ q ≤ 1, then every solution of (1) is global. On the other hand, if p+ q > 1, then

all nontrivial, nonnegative solutions blow up in finite time.

There are two main sources of motivation for the present study of (1). First, we

conduct our investigation in parallel to previous studies of the semilinear heat equation

model with memory,

ut = Δu+ uq

∫ t

0

up(·, s)ds on ΩT ,

u = 0 on (∂Ω)T ,

u = u0 on Ω× {0},

(2)

and the localized boundary flux version of (1),

ut = Δu on ΩT ,

∇u · n = uq+p on (∂Ω)T ,

u = u0 on Ω× {0}.
(3)

It is known that all solutions of (2) are global in the case 0 ≤ p+ q ≤ 1 [20, 29, 35, 37],

and the same result is also true for solutions of (3); e.g., see [26]. On the other hand,

while all nontrivial solutions of (3) blow up in finite time if p + q > 1 [28, 34], the

situation is slightly different for the model with memory terms in the reaction. In the

case p+ q > 1 with q < 1, all nontrivial solutions of (2) blow up in finite time, while in

the case p + q > 1, q ≥ 1, solutions of (2) which blow up in finite time and which are

global both exist depending upon the size of u0 [20, 29].

Our second source of motivation for the study of (1) originates with a model of capillary

growth in solid tumors as initiated by angiogenic growth factors [27]. In this reference a

model for the transmission of growth factors across a capillary wall is introduced in the

following form:

ut = ∇ · (∇φ(x, t, u) + f(x, t, u)) + h(x, t, u) on ΩT ,

(∇φ(x, t, u) + f(x, t, u)) · n = g(x, t, u, v) on (∂Ω)T ,

u = u0 on Ω× {0}
(4)

with gv ≥ 0 on (∂Ω)T ; gv ≡ 0 on (∂Ω \ Σ)T , and

vt = F (x, t, u, v) +G(u)t on ΣT ,

v = v0 on Σ× {0}.
(5)

Here, Σ is a relatively open subset of ∂Ω, which represents the capillary wall.

In (1), if we let

v(x, t) ≡
∫ t

0

up(x, s)ds

and Σ = ∂Ω, then the model may be seen to be of the type (4)-(5), with g = uqv,

F = up, G = 0, and v0 = 0. In previous works, we have studied existence, uniqueness,

and blowup in finite time for various forms of (4)-(5) [2, 3]. However, blowup results in

these references are only those which may be achieved through comparison with a related

localized model. With the present study, we intend to provide a more complete analysis,
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HEAT EQUATION WITH MEMORY BOUNDARY CONDITION 761

albeit for a specialized version of (4)-(5), via identification with a heat equation problem

involving memory flux at the boundary (1).

Considering the nonlinear time integral condition governing flux through the boundary,

the model (1) involves a continuous time delay, often referred to as an integrodifferen-

tial system or a memory condition in the literature. Models involving memory terms in

reaction have arisen in studies of nuclear reactor dynamics [24, 32] and population dy-

namics [25], specifically in the case of logistic growth models involving both nondelayed

and hereditary effects [7, 40]. Local/global existence, stabilization, and blowup in finite

time of solutions for a variety of generalizations of such models have subsequently been

investigated within a number of previous works, e.g., [6, 12, 36, 38, 39].

Memory terms in diffusion have been studied as well, arising in models of viscoelastic

forces in non-Newtonian fluids [18, 31] and resulting from a modified Fourier law applied

to an anisotropic, nonhomogeneous media [41]. Numerical studies of closely related mod-

els and also those involving a form of the Fisher equation with memory may be found in

[4, 5, 8]. It is useful to note here that fractional order time derivatives, as memory oper-

ators, have been studied in a memory formalism of D’Arcy’s law and molecule transport

across a biological membrane. See [9, 10] and the references therein. Memory terms in

diffusion and reaction have additionally been introduced in the context of climate models

[15, 19].

Despite the volume of work done on models incorporating memory in reaction, dif-

fusion, or both, there appear to be very few appearances in the literature of diffusion

models in which such terms are present in the boundary flux. In [11], a linear mem-

ory term of the type in (1), with q = 0, p = 1, is introduced as arising in hereditary

boundary conditions of Newtonian radiation and calorimetry. Similar hereditary bound-

ary conditions have been employed in models of time-dependent electromagnetic fields

at dissipative boundaries [16]. Boundary conditions incorporating convolution in time

have been studied more extensively in the case of wave equation models arising in shock

problems involving a linear viscoelastic bar; see, e.g., [30, 33] and the references therein.

We have been able to locate only one general study of existence of weak solutions for a

quasilinear parabolic system in which memory terms are incorporated in diffusion, re-

action, and boundary flux conditions [1]. Owing to our need for comparison results for

classical solutions, we have developed these fundamental results for (1) herein.

The plan of the paper is as follows. In Section 2 we present the local existence and

the comparison principle. In Section 3 we prove that for p+ q ≤ 1, every solution of (1)

is global, while for p + q > 1, all solutions blow up in finite time. In Section 4 we show

that for p > 1 or q > 1, blowup can occur only on the boundary.

2. Local existence and comparison results. In this section, we establish the

existence of classical solutions, along with sub- and super-solution comparisons for (1).

While these arguments are fairly standard, we provide them here as a way to introduce

the Green’s function formulation, to be utilized later, and to present comparison results

as applicable even in the non-Lipschitz cases p, q < 1. For such purposes, we begin by

defining GN (x, y, t, τ ) as the Green’s function for the heat equation with homogeneous

Neumann boundary condition. u(x, t) ∈ C2,1 (ΩT )∩C
(
ΩT

)
is a classical solution of (1);
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i.e., u is C1 in t, C2 in x on Ω× (0, T ) and continuous on Ω× [0, T ] if and only if

u(x, t) =

∫
Ω

GN (x, y, t, 0)u0(y)dy

+

∫ t

0

∫
∂Ω

GN (x, y, t, τ )uq(y, τ )

∫ τ

0

up(y, s)dsdSydτ
(6)

for all x ∈ Ω, 0 ≤ t ≤ T .

We prove local existence of solutions of (1) via a fixed point argument. Despite the

presence of a memory term, the necessary steps are nearly identical to well-known results

for corresponding localized problems [17]. Thus, we do not repeat all of the details here.

Although presented in the context of (1), the work below may be applied to more general

uniformly parabolic models and nonlinear memory terms. We restrict this discussion to

nonnegative solutions; however, such a condition may also be removed.

Given u ∈ C(Ω× [0, T ]), define

T [u](x, t) ≡
∫
Ω

GN (x, y, t, 0)u0(y)dy

+

∫ t

0

∫
∂Ω

GN (x, y, t, τ )uq(y, τ )

∫ τ

0

up(y, s)dsdSydτ

and

M0 ≡ sup
Ω

|u0|.

Continuing in a manner also similar to [13], let

κ(t) ≡ sup
x∈Ω,0≤τ≤t

∫ τ

0

∫
∂Ω

GN (x, y, τ, η)dSydη.

We note that κ(t) ≤ 2C0

√
t for constants ε0, C0 > 0 with t < ε0 [22]. Fix T̂ < ε0 and

M > M0 so that

Mq+pT̂ κ(T̂ ) ≤ M −M0.

If |u| ≤ M and 0 ≤ t ≤ T̂ , then

|T [u]| ≤ M0

∫
Ω

GN (x, y, t, 0)dy +Mq+pT̂ κ(T̂ )

≤ M0 + (M −M0) .

So, T : K → K, where

K ≡
{
u ∈ C

(
Ω× [0, T̂ ]

)
: ‖u‖∞ ≤ M

}
.

The continuity and compactness of T follow from the same arguments as in [17].

Therefore, T has a fixed point, which is a solution of (1), and, by standard results, is a

classical solution and may be continued unless ‖u‖∞ becomes unbounded.

Uniqueness and comparison results for (1) may be developed using the same techniques

as used in [3] for the transmission model (4) − (5). Nevertheless, we herein provide an

adaptation of this more general work to the case of classical sub- and super-solutions,

towards a more complete comparison theory than is currently known for the case of

nonlinear diffusion models addressed in this reference. In such respect, our treatment
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here actually bears a great deal more similarity to that of [29] in the use of classical

maximum principles and development of the comparison results.

Consider w(x, t) ∈ C2,1 (ΩT ) ∩ C
(
ΩT

)
such that

wt ≥ Δw on ΩT ,

∇w · n ≥ aw + b

∫ t

0

cw(·, s)ds on (∂Ω)T ,

w ≥ 0 on Ω× {0}

(7)

with bounded continuous functions a and b, c ≥ 0. For a positive smooth function ξ,

which satisfies ∇ξ · n ≥ αξ on ∂Ω, let

w(x, t) = eλtξ(x)W (x, t).

The positive constants α, λ are chosen to satisfy

α > 1 + T‖b‖∞‖c‖∞
and

λ >
Δξ

ξ

on Ω.

Standard calculations show that

Wt ≥ ΔW +
2∇ξ

ξ
· ∇W +

(
Δξ

ξ
− λ

)
W

in ΩT . Therefore, W cannot assume a negative minimum anywhere within Ω × (0, T ].

Similarly, if W (x0, t0) = minW < 0 for some x0 ∈ ∂Ω, at the point (x0, t0) it follows

that

∇W · n ≥ −W (x0, t0)

[
∇ξ · n− ξ − e−λtξb

∫ t

0

ceλsds

]
> 0,

which is a contradiction. Therefore, W ≥ 0 on ΩT , and hence w ≥ 0 also.

Now, for a (classical) supersolution ū and a subsolution u of (1), we have that w ≡ ū−u

satisfies (7), where

[ūq(x, t)− uq(x, t)]

∫ t

0

ūp(x, s)ds ≡ a(x, t)[ū(x, t)− u(x, t)],

b(x, t) ≡ uq(x, t),

and

ūp(x, t)− up(x, t) ≡ c(x, t)[ū(x, t)− u(x, t)].

Provided ū ≥ δ > 0 and u ≥ 0, a, b, c will be bounded for all cases p ≥ 0, q ≥ 0. It

follows that if ū(·, 0) ≥ u(·, 0), then ū ≥ u.

Considering a solution uδ of (1) with initial condition u0 + δ, we see that the limit

U(x, t) ≡ lim
δ→0+

uδ(x, t)

exists and yields a maximal solution of (1). In the case p, q ≥ 1, this is, in fact, the unique

solution of the problem. Furthermore, if ū is a supersolution and u is a subsolution of

(1) such that ū ≥ δ for some positive constant δ and u ≥ 0, then ū(·, 0) ≥ u0 ≥ u(·, 0)
implies ū ≥ U ≥ u on ΩT .
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3. Global existence and finite time blowup. In this section, we begin with the

global existence for solutions of (1), that is, for any T > 0, u(x, t) ≤ C(T ) < ∞ in ΩT

with some positive constant C = C(T ).

Theorem 3.1. If p+ q ≤ 1, then every solution of (1) is global.

Proof. We seek a global supersolution ū of (1). From [14], there exists a function

ϕ(x) ∈ C2(Ω) satisfying

0 < ϕ(x) ≤ 1 in Ω and ∇ϕ · n ≥ 1 on ∂Ω.

Let m1 = max
Ω

|∇ϕ| and m2 = max
Ω

|Δϕ|. We define

ū = Meλt+ϕ,

where

M = max
{
‖u0‖L∞(Ω), 1

}
,

λ = max
{
m2

1 +m2, 1/p
}
.

Then ū satisfies

ūt ≥ Δū on ΩT ,

∇ū · n ≥ ūq

∫ t

0

ūp(x, τ ) dτ on (∂Ω)T ,

ū(x, 0) ≥ u0(x) on Ω̄× {0}.

(8)

Hence, ū is a desired supersolution. �
We then establish the blowup result. To this end, we first consider the following

problem:

ut = Δu on ΩT ,

∇u · n = c

∫ t

0

uμ(·, s)ds on (∂Ω)T ,

u = u0 on Ω× {0},

(9)

where c, μ are positive constants. From now on, without causing any confusion, we may

use ci, Ci or c̃i (i = 0, 1, 2, ...) to denote various positive constants.

Lemma 3.2. For any c > 0, if μ > 1, all nonnegative solutions of (9) blow up in finite

time.

Proof. The solution u of (9) satisfies

u(x, t) =

∫
Ω

GN (x, y, t, 0)u0(y)dy

+ c

∫ t

0

∫
∂Ω

GN (x, y, t, τ )

∫ τ

0

uμ(y, s)dsdSydτ
(10)

for all x ∈ Ω, 0 ≤ t ≤ T . As in [22], one can show that∫
∂Ω

GN (x, y, t, τ )dSx ≥ c0 > 0 for y ∈ Ω, T > t > τ ≥ 0. (11)
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By (10), (11) and Jensen’s inequality, we have∫
∂Ω

u(x, t)dSx ≥ c

∫
∂Ω

(∫ t

0

∫
∂Ω

GN (x, y, t, τ )

∫ τ

0

uμ(y, s)dsdSydτ

)
dSx

≥ cc0

∫ t

0

∫ τ

0

∫
∂Ω

uμ(y, s)dSydsdτ

≥ c1

∫ t

0

τ1−μ

(∫ τ

0

∫
∂Ω

u(y, s)dSyds

)μ

dτ.

(12)

On the other hand, by (10) and (11),∫
∂Ω

u(x, t)dSx ≥
∫
∂Ω

∫
Ω

GN (x, y, t, 0)u0(y)dydSx

=

∫
Ω

u0(y)

∫
∂Ω

GN (x, y, t, 0)dSxdy

≥ c0

∫
Ω

u0(y)dy

≥ c2 > 0.

(13)

Set

F (t) =

∫ t

0

∫
∂Ω

u(x, τ )dSxdτ for t > 0.

From (12) and (13), it follows that F (t) satisfies

F ′(t) ≥ c4 + c3

∫ t

0

τ1−μFμ(τ )dτ for t > 0. (14)

Integration of the above inequality over (0, t) then yields

F (t) ≥ c4t+ c3

∫ t

0

∫ τ

0

ζ1−μFμ(ζ)dζdτ

≥ c4t+ c3

∫ t

0

(t− ζ)ζ1−μFμ(ζ)dζ

≥ c4t+ c3t
1−μ

∫ t

0

(t− ζ)Fμ(ζ)dζ

(15)

for t > 0. Assume to the contrary that (9) has a global solution u. Then for any positive

number T , we have

F (t) ≥ c4T + c5T
1−μ

∫ t

T

(t− ζ)Fμ(ζ)dζ for T ≤ t ≤ 2T.

Thus, by comparison, F (t) ≥ H(t) on [T, 2T ], where

H(t) = c4T + c5T
1−μ

∫ t

T

(t− ζ)Hμ(ζ)dζ for T ≤ t ≤ 2T.

Clearly, H(t) satisfies

H ′′(t) = c5T
1−μHμ(t), T < t < 2T,

H(T ) = c4T,

H ′(T ) = 0.

(16)
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Multiplying the equation in (16) by H ′(t) and integrating from T to t, we obtain

H ′(t) = c6T
(1−μ)/2(Hμ+1(t)−Hμ+1(T ))1/2.

Integration of this relation over (T, 2T ) then leads to

c6T
(3−μ)/2 =

∫ H(2T )

H(T )

(zμ+1 −Hμ+1(T ))−1/2dz

≤ (μ+ 1)−1/2H−μ/2(T )

∫ 2H(T )

H(T )

(z −H(T ))−1/2dz

+ 2(μ+1)/2

∫ ∞

2H(T )

z−(μ+1)/2dz

= 2[(μ+ 1)−1/2 + 2(μ− 1)−1]c
(1−μ)/2
4 T (1−μ)/2,

which is equivalent to

T ≤ 2[(μ+ 1)−1/2 + 2(μ− 1)−1]c
(1−μ)/2
4 /c6. (17)

For sufficiently large T , inequality (17) yields a contradiction, which completes the proof.

�
We now consider the general case that p+ q > 1.

Theorem 3.3. If p+ q > 1, then all nonnegative solutions of (1) blow up in finite time.

Proof. We consider two cases.

Case 1 (q < 1). By the maximum principle, u(x, t) > 0 for x ∈ Ω and t > 0. Let

z = Mu1−q,

where M = ‖u0‖qL∞(Ω). Then z satisfies

zt ≥ Δz on ΩT ,

∇z · n = M
1−p−q
1−q (1− q)

∫ t

0

z
p

1−q (x, τ ) dτ on (∂Ω)T ,

z(x, 0) ≥ u0(x) on Ω× {0}.

(18)

z is a supersolution of problem (9). Since p/(1 − q) > 1, by Lemma 3.2, z blows up in

finite time, and so does u.

Case 2 (q ≥ 1). Because the solution of the heat equation with homogenous Neumann

boundary condition is a subsolution of (1), for a small σ > 0, there exists a constant

cσ > 0 such that the solution u of (1) satisfies

u(x, t) ≥ cσ for x ∈ ∂Ω, t ≥ σ > 0. (19)

Let q = α+ γ, where γ < 1 and γ + p > 1. Then we have

uq = uα+γ ≥ cασu
γ for x ∈ ∂Ω, t ≥ σ > 0.
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Consider the following problem:

ut = Δu on Ω× (σ, T ),

∇u · n = cασu
γ

∫ t

σ

up(x, s) ds on ∂Ω× (σ, T ),

u(x, σ) ≤ u(x, σ) on Ω.

(20)

Proceeding analogously as in the proofs of Lemma 3.2 and case 1 of Theorem 3.3, we can

show that u blows up in finite time. Since u is a supersolution of (20), u cannot exist

globally. �

4. Blowup on the boundary. In this section, we show that for problem (1) in the

case p > 1 or q > 1, blowup cannot occur at the interior domain. For definiteness, we

may assume that T is the blowup time.

Theorem 4.1. If p > 1, q = 0 or p ≥ 0, q > 1, then blowup can occur only on the

boundary.

Proof. We consider two cases.

Case 1 (p > 1, q = 0). Following the general idea of [21], we set

J(t) =

∫ t

0

∫ τ

0

∫
∂Ω

up(y, s)dSydsdτ.

By (6), (11) and Jensen’s inequality, we find

J ′′(t) ≥ cp0|∂Ω|1−pJp(t).

Multiplying both sides of the above inequality by J ′(t) and integrating over (0, t), we

obtain

J ′(t) ≥ c7J
p+1
2 (t),

which, upon integration over (t, T ), yields∫ ∞

J(t)

s−
p+1
2 ds ≥ c8(T − t),

or equivalently,

J(t) ≤ c9(T − t)−
2

p−1 for t ∈ [0, T ). (21)

We now take an arbitrary Ω′ ⊂⊂ Ω with dist(∂Ω,Ω′) = ε > 0. For this Ω′, we then take

Ω′′ ⊂⊂ Ω such that Ω′ ⊂⊂ Ω′′, dist(∂Ω′′,Ω′) ≥ ε/3 and dist(∂Ω,Ω′′) ≥ ε/3. It is well

known that for any ε > 0,

0 ≤ GN (x, y, t, τ ) ≤ Cε for |x− y| ≥ ε

3
, x, y ∈ Ω, 0 < τ < t < T, (22)

where Cε is a positive constant depending on ε. Then by (6), (21) and (22),

max
Ω

′′
u(x, t) ≤ C0 + CεJ(t) ≤ C1(T − t)−

2
p−1 .

Proceeding similarly as in the proof of Theorem 4.1 of [23], we have

u(x, t) ≤ C3

[ψ(x) + (C2 + 1)(T − t)]
2

p−1

in Ω
′ × [0, T ), (23)
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where ψ(x) ∈ C2(Ω
′
) satisfies

ψ(x) > 0 in Ω′, ψ(x) = 0 on ∂Ω′,

Δψ − p+ 1

p− 1

|∇ψ|2
ψ

≥ −C2 in Ω′

for C2 > 0. Inequality (23) shows that u(x, t) cannot blow up in Ω′ × (0, T ).

Case 2 (p ≥ 0, q > 1). We now set

J̃(t) =

∫ t

σ

∫
∂Ω

uq(y, τ )

∫ τ

σ

up(y, s)dsdSydτ,

where 0 < σ < T/4. In view of Case 1, it suffices to prove that J̃(t) satisfies a similar

estimate as (21). More precisely, if we can show that

J(t) ≤ c̃(T − t)−β for T/2 ≤ t < T, (24)

where c̃, β > 0, then u(x, t) must blow up on the boundary. By (19), we have that for

y ∈ ∂Ω and t ∈ [T/2, T ),∫ t

σ

up(y, s)ds ≥ cpσ(t− σ) ≥ cpσT/4.

Let c̃0 = cpσT/4. Then ∫ t

σ

up(y, s)ds ≥ c̃0. (25)

On the other hand, by (11) we find∫
∂Ω

u(x, t)dSx ≥
∫
∂Ω

(∫ t

0

∫
∂Ω

GN (x, y, t, τ )uq(y, τ )

∫ τ

0

up(y, s)dsdSydτ

)
dSx

≥ c0

∫ t

0

∫
∂Ω

uq(y, τ )

∫ τ

0

up(y, s)dsdSydτ

> c0

∫ t

σ

∫
∂Ω

uq(y, τ )

∫ τ

σ

up(y, s)dsdSydτ

= c0J̃(t).

(26)

Combining (25), (26) and applying Jensen’s inequality, we further find that

J̃ ′(t) =

∫
∂Ω

uq(y, t)

∫ t

σ

up(y, s)dsdSy

≥ c̃0

∫
∂Ω

uq(y, t)dSy

≥ c̃1

(∫
∂Ω

u(y, t)dSy

)q

≥ c̃2J̃
q(t).

Integration of the above inequality over (t, T ) yields∫ ∞

J̃(t)

s−qds > c̃2(T − t),
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which gives

J̃(t) ≤ c̃3(T − t)−
1

q−1 for t ∈ [T/2, T ).

Hence, the proof is completed. �
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