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GLOBAL SOLVABILITY OF A DISSIPATIVE
FREMOND MODEL FOR SHAPE MEMORY ALLOYS.

PART I: MATHEMATICAL FORMULATION AND UNIQUENESS

By

ELENA BONETTI

Dipartimento di Matematica "F. Casorati", Universita di Pavia, Via Ferrata 1, 27100 Pavia, Italy

Abstract. The mathematical formulation of a dissipative Fremond model for shape
memory alloys is given in terms of an initial and boundary values problem. Uniqueness
of sufficiently regular solutions is proved by use of a contracting estimates procedure in
the case when quadratic dissipative contributions are neglected in the energy balance.
The related existence result is only established while its proof will be detailed by the
author in a subsequent paper.

1. Introduction. This paper deals with a macroscopic thermomechanical model de-
scribing the solid-solid martensitic transformation in shape memory alloys (SMA). Shape
memory materials are characterized by the fact that they can be permanently deformed
under mechanical stresses and then recover their original shape just by thermal means.
The striking and well known properties of shape memory alloys result from these links be-
tween mechanical and thermal actions (cf. [26, 32]). This phenomenon can be ascribed to
a structural phase transition between two different configurations of the metallic lattice,
one symmetric phase appearing at high temperature, called austenite, and one twinned
organized phase prevailing at low temperature, called martensite (cf. [30, 16, 29, 1]). Let
us note in advance that even if in the realistic situations 24 different crystallographically
equivalent variants of martensite are present, being concerned with a macroscopic de-
scription of the thermomechanical behavior of SMA, and in agreement with the different
symmetries of the two phases, the model we are dealing with considers only one variant
of austenite and two variants of martensite and it is assumed that they may coexist at
each point (cf. [22]). Nonetheless, we point out that this approach is sufficient to provide
a consistent and exhaustive description of the SMA peculiar behavior. We also recall
that SMA stress-strain relations are strongly dependent on temperature and they include
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hysteretic branches (cf. [17, 21, 34]). Indeed, the shape memory effect results from tem-
perature dependence of hysteresis loops, as the thermal and mechanical actions modify
the phase composition of the material.

We aim to investigate a model proposed by Fremond which describes the shape mem-
ory effect in terms of thermodynamics and continuum mechanics laws and accounting for
micromechanics in order to achieve the estimate of the interaction energy due to phase
transition. In addition, this model, which can refer to any dimension of space, forces the
internal quantities to be submitted to mechanical constraints in order to guarantee the
physical consistence of the phase variables and it includes microscopic movements and
diffusive effects in the power of interior forces. In past years, several papers have investi-
gated the Fremond model (cf. [17, 18]) from a mathematical point of view, but only for
some approximated version (cf. [11]). Indeed, in these papers the corresponding PDE's
system has been written by neglecting dissipative effects and microscopic movements in
the power of interior forces. In particular, some viscosity terms were added to provide a
good description of the evolution of the phase parameters. Moreover, in a first instance,
only diffusionless martensitic phase transitions have been considered. Our approach is
rather different, as we aim to derive the complete dissipative model accounting for mi-
croscopic velocities and diffusive phase transformations (cf. [22, 21]). We will detail in
the next section how the model is derived in terms of two functionals, the free energy
and the pseudo-potential of dissipation. Now, for the sake of completeness, we aim to
present some results related to the above approximated version of the Fremond model.
The associated initial boundary values problem is written in terms of the temperature
(Kelvin), the small deformations, and the phase proportions of austenite and martensite.
In this framework, the model is recovered by the free energy functional, which is given
by the sum of the specific free energies of the phases and an interaction energy term (cf.
[11]). Constitutive equations, along with the second principle of thermodynamics and
the universal conservation laws for energy and momentum, lead to an evolution prob-
lem for three partial differential equations, completed by suitable initial and boundary
conditions. In addition, we point out that, since the model by Fremond accounts for me-
chanically induced phase transformations, mechanical actions are described by means of
the second gradient theory (cf. [25]), even if a simpler setting is considered by restricting
to diagonal components of the strain tensor. Nevertheless, this formulation supplies a
useful fourth-order term in the momentum balance. Yet in this simplified version, the
resulting system is highly nonlinear, especially due to three terms in the energy balance
equation coupling displacements, temperature, and phase fractions, whereas such equa-
tion has a parabolic character whenever one assumes the standard Fourier law for the
heat flux. Concerning this first approximated form of the model, we now present some
related works. An existence and uniqueness result has been proved in [11] for a first
version of the resulting initial boundary values problem, in the case when all the nonlin-
earities in the balance of the energy are neglected and the momentum balance equation
is assumed in the quasi-stationary form. Next, let us briefly review some results concern-
ing the solvability of the problem in which nonlinear terms are retained in the energy
balance. We now refer to this model as the complete one, even if the approach we are
going to introduce in the remainder of the paper will extend this setting by accounting
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for dissipative effects and microscopic forces in the power of interior forces and by retain-
ing some diffusion terms for the phase dynamics. The full one-dimensional model turns
out to be well-posed both in the quasi-stationary case as in the more delicate case of a
hyperbolic momentum equation. For the first result see [13], while the existence proof
for the latter has been presented in two independent papers [14] and [33]. Moreover, a
related uniqueness result is given in [8]. Finally, we point out that the full quasi-static
three-dimensional model admits a unique solution under suitable regularity and compat-
ibility assumptions on the thermal expansion coefficient, which are verified by realistic
data (cf. [10] and [8]). Concerning the thermodynamical coherence of the above model,
we recall that it is based on the positivity assumption on the temperature. In [12], under
rather weak assumptions on the data of the system, it is proved that any sufficiently
smooth solution of the governing field equations has, indeed, the property that the ab-
solute temperature variable attains positive values almost everywhere. We finally recall
a recent paper (cf. [6]) in which we have investigated the Fremond model in the case
when a diffusive phase transformation and dissipative thermal effects are assumed, i.e.,
the heat flux law is specified in the framework of the Gurtin-Pipkin theory.

The problem we aim to investigate in this paper is rather different since we present
the complete three dimensional dissipative model proposed by Fremond for which, to
our knowledge, no analytical results have been obtained. Hence, we derive a related
initial and boundary values problem that we study from the point of view of existence
and uniqueness of a solution. In particular, in this paper we can state uniqueness of
sufficiently regular solutions of the corresponding PDE's system in the case when we
neglect higher order dissipative terms in the energy balance. Next, the existence of a
solution fulfilling the required regularity will be presented in a subsequent related paper,
even in the case when one retains some quadratic dissipative terms in the actual power
of interior forces.

2. The dissipative model. In this section we derive the initial and boundary values
problem which is related to the complete macroscopic thermomechanical model proposed
by Fremond (cf. [22, 21]) to describe shape memory behavior and including dissipative
effects and microscopic velocities in the constitutive equations as well as microscopic
forces in the principle of virtual power. In the above physical framework, the internal
constraints on the state quantities will play an important role and account for most of
the striking properties of the shape memory materials, so that they will be included in
the free energy functional.

We take a sample of SMA located in a bounded smooth domain C R3 and consider
the thermomechanical evolution of this system, during a finite time interval [0,T\. We
write the model in terms of the absolute temperature 6, the strain tensor e(u) (u being
the vector of small displacements), and the volumetric fractions of the variant of austenite
/?3 and the two variants of martensite (01,02). In order to achieve a precise description
of the phenomenon, we have to take into account both the equilibrium and the evolution
of the system, which are described by two functionals: the free energy defined on the
state variables, and the pseudo-potential of dissipation <3>, defined on dissipative variables.
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It is known that the state of equilibrium of a thermomechanical system is characterized
by the fact that the state variables do not vary in time. Thus it is straightforward that
this notion depends on the choice of the set E of the state variables. We make precise E
as follows:

E:= {0,e(u),Vtr e(u),Vft.Vft.Vft}. (2.1)
With regard to the choice of E, let us point out that the presence of the gradients
of the phases V/3t corresponds to assume that the microstructure of the material at
one point is influenced by its neighborhood. Analogously, due to the presence of the
diffusive term V tre(u), which on the contrary is usually neglected in the first gradient
theory, we are accounting for mechanical actions exerted 011 surfaces, but we restrict to
a simple formulation involving just the diagonal components of the strain tensor. Hence,
we introduce the free-energy functional <£ defined on E. Due to the composition of
SMA, we write the free energy as the sum of the specific free energies of the phases

= 1,2,3, where the indexes correspond to that of volume fractions), weighted with
their proportions 3i, and an interaction energy term Ie (see e.g. [5, 23] for other examples
of mixture free energy). For the sake of simplicity, in the sequel we assume the material
to be isotropic and fix its density as p = 1, so that the free energy can be written as
follows:

3

tf(£) = ^/?i& + Je. (2.2)

Let us first address the specific free energies of the austenite and the two martensite
variants,

V'l = tre|2 — a(6) tre — cs6 log#, (2.3)

ip2 = + T^l^7 tr e|2 + a{6) tre — cs6 log#, (2.4)

ip3 = ^eRe + ^|V trej2 - A(0) - cs6\og9, (2.5)

where R denotes the elastic tensor, cs the heat capacity of the phase transition, v is a
positive constant, and a and A two real functions of the temperature, whose properties
will be specified in a moment, the first accounting for the thermal expansion energy and
the latter for the energy associated to the phase transition. The function a is assumed
to be nonincreasing and positive, but vanishing over a critical temperature 0C (the so-
called Curie temperature), while A is nondecreasing and it vanishes for the transition
temperature 0* < 0C. In the original Fremond model A was an affine function of the
absolute temperature. Let us observe that the assumptions on a correspond to the fact
that at high temperatures SMA present mainly an elastic behavior (cf. [31]). We also
recall that, as it is usually in elasticity theory, the following relation holds (cf. [9]):

Rs(u) = XL trel + 2fiLe(u), (2.6)

where \i and m stand for the Lame constants and 1 for the identity matrix.
Next, we have to specify the interaction energy term Ie in (2.2) in which, in particular,

we include internal mechanical constraints forcing the phases to attain only meaningful
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values, in the sense that no void or overlapping can occur. To this aim, we prescribe
3

0<A<1, i = 1,2,3 and £> = 1. (2.7)
<=i

Note that, by (2.7), we could write the model only in terms of the martensite phase
proportions, as (3\3 can be derived by the relation

03 = 1 - 01 - 02. (2.8)
In terms of the only martensitic variants, (2.7) is equivalent to require that (Pi, fa)
belong to the convex of R2:

C := | (71,72) G R2: 0 < fa < 1 and (3j < 1 j . (2.9)

Thus, in the following we restrict the set E of the state variables (cf. (2.1)) by including
only the phase parameters (Pi, Pi)- Hence, by considering (2.7) as a material property,
it is written in <3/, and more precisely in the interaction energy term /e, as it involves
both the phases. We proceed by extending to be defined for any values of the phase
proportions, including those that are physically impossible (i.e., (Pi, fa) ^ C), but we
assign the value +00 in correspondence to these cases. To this aim, we introduce the
indicator function Iq of the convex C, which is defined by:

Ic(li,li) = 0 if (71,72) G C and Iq(71,72) = +00 otherwise.

In agreement with the above position, the interaction term can also be written only
in terms of the martensite variants, as it is straightforward to deduce by (2.8) that
V/?3 = — V(/?i + fa)- We globally write (cf., i.e., [22, 21])

2

Je=fE|Vft|2 + Jc(/3i,ft), (2.10)
2 = 1

r] being a nonnegative diffusive parameter. Note that, in the case r] = 0, we recover a
diffusion free martensite phase transition model, in which the gradients of the phases are
not actually included in the set E of the state variables (cf., i.e., [11]).

Thus, by the free energy, constitutive equations can be derived for the nondissipative
physical quantities, while dissipation of the shape memory behavior is concerned with the
variation of internal quantities, i.e., the phase proportions of austenite and martensite.
We include dissipation in the model by following the approach proposed by Moreau (cf.
[28]) and introduce the pseudo-potential of dissipation <3> as a real function characterized
by the fact that

$(0) = 0,
$>0, (2.11)
$ is convex with respect to the dissipative variables.

To make precise the set of the dissipative variables 5E, we first observe that (cf. (2.8))
fat = —(Pit + fat)- Thus, in a general situation, we fix

SE := {Pit, fat, V/?it, V/?2t}, (2.12)
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and
2 2

$(6E) := | ^(At)2 + I £ IVAtl2, (2.13)
i= 1 2=1

C and 6 being nonnegative parameters.
Hence, a PDE's system describing the thermomechanical model can be written, in

accordance with the second principle of thermodynamics (cf. [24]), in terms of the free
energy and the pseudo-potential of dissipation owing to the universal balance laws, i.e.,
the energy balance and the principle of virtual power. The main feature of Fremond's
model is given by the inclusion of microscopic forces and dissipative effects in the principle
of virtual power. Thus, accounting also for microscopic forces, the energy balance is
specified by (for the notation used for the products we refer to [22])

et + divq = r + aet + M • Vtre( + B ■ (3t + H ■ V/?t, (2-14)

where /? stands for the vector with components (/?i, ^2) and some of the above quantities
include dissipative effects. Now, we aim to make clear the physical meaning of the
ingredients of (2.14). By e we denote the internal energy, by q the heat flux vector,
for which we will state later a suitable boundary condition, and the right hand side of
the above relation includes the actual power of interior forces. More precisely, r is a
rate of heat production, the terms involving the stress tensor a and the vector of forces
M correspond to macroscopic mechanically induced heat sources, while heat sources
induced by microscopic forces are collected by the last two terms involving the vectors
B and H, whose physical meaning will follow by the principle of virtual power written
for microscopic movements as well as boundary condition prescribed on H.

Next, we write explicitly the principle of virtual power. We restrict our analysis to the
case when the acceleration forces are zero, so that denoting by Pi the power of interior
forces and by Pe the power of exterior forces, the principle of virtual power turns out to
be written as (cf. [24, 21, 20])

Pi + Pe = 0, (2.15)
where P, and Pe will be specified in a moment.

For any domain DCS} and for any virtual macroscopic velocity v and microscopic
velocity c, as virtual power of interior forces we set (cf. [22])

Pi{D, v, c) = — [ cre(v) — I M • V tre(v) — [ Be- [ H • Vc, (2.16)
J d Jd Jd J D

and for the exterior

Pe(D,v,c)= / G v + / g v+ Ac +
Jd Jod Jd

[ ac, (2.17)
J 3D

where G and g stand for volumic and surfacic, respectively, force vectors applied to
the body and involving macroscopic displacements, while A and a denote the amount
of volumic and surfacic mechanical energy provided on the domain by external actions
involving only microscopic movements. However, for the sake of simplicity, we will put
A = a = 0. Thus, if we let c = 0 in (2.16) and (2.17), from (2.15) we can recover the
classical quasi-static equilibrium equation

div( — (divM)l + a) + G = 0, (2-18)
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and then specify associated suitable boundary conditions. In particular, letting dQ. =
T = To U Ti, we prescribe that

u = 0 on T0 x (0,T), (2-19)

(—(divM)l + cr) ■ n = g on Ti x (0,T), (2.20)

M ■ n = 0 on F x (0, T), (2.21)

where n stands for the normal unit vector to the boundary T. We point out that (2.20)
corresponds to assume that a known traction g acts on a part of the boundary, while
the body is fixed on the other one by (2.19). Hence, (2.21) means that no double forces
occur on the surface.

Analogously, we can get v = 0 in (2.16)-(2.17) and recover from (2.15) the principle
of virtual power written for microscopic movements,

B — div H = 0, (2.22)

coupled with the boundary condition

H • n = 0 on T x (0, T), (2.23)

from which we can deduce the mechanical meaning of the vector H, which indicates a
work flux vector, while B is a vector collecting microscopic forces.

Now, it remains to state the constitutive equations of the model and substitute them
in the balance laws (2.14), (2.18), and (2.22). We first recall that the internal energy e
is related to the entropy s, as it is usual, by

e = $ + 0s, (2.24)

s being specified by the Helmotz relation

—W <2'25>

As we do not consider dissipation for the macroscopic stresses, we state

" = (2.26)

M = tJ?—. (2.27)
dV tre

On the contrary, we include dissipative effects both in B and in H (cf. (2.12)-(2.13))
and prescribe that they are given by the sum of a dissipative and a non-dissipative
contribution. Precisely, we specify B as

B = Bnd + Bde-- + (2.28)

and H as

H = H- + H^_ + —. (2.29)

Let us note that by abuse of notation (cf. [22]), we have denoted B and H as a scalar
and a vector quantity, respectively, while dealing with two phase variables B is actually
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a vector and H a matrix. Finally, the heat flux vector q in (2.14) is assumed to fulfill
the standard Fourier law

q(a:, t) = -fc0V6»(x,t), (x, t) £ SI x (0, T), (2.30)

with k0 > 0, and coupled with Neumann boundary condition

—q ■ n = h in F x (0, T), (2.31)

which corresponds to prescribe a known heat flux h through the boundary.
In order to show that the model we have just introduced satisfies the second principle

of thermodynamics, i.e., the Clausius-Duhem inequality (cf. [19]), it is more convenient
to follow the approach by Fremond and introduce formally the heat flux vector q as a
dissipative quantity defined by <5. Thus, we let V# belong to SE and <3? depend also on
the absolute temperature (cf. [22, 21]), i.e.,

SE := {ftt,fot, V/Ju, V/?2t, V0}, (2.32)
and

2 2

*{8E,0) = ^ + I lV^!2 + (2.33)
2 — 1 1=1

for ko > 0. Hence, we introduce a new dissipative quantity

so that letting
q = 0Qd (2.35)

yields the Fourier relation (2.30). Then, if one substitutes (2.25)-(2.29) and (2.34)-(2.35)
in (2.14), by the chain rule, some terms cancel and we can equivalently write the energy
balance as follows:

6st + 0 div Qd -Rd = —Qd • V0 + Bd ■ pt + Hd ■ V/3t, (2.36)

where (recall that 6 is the absolute temperature) R = r/6. Thus, after observing that
by (2.28), (2.29), and (2.34) the right hand side of (2.36) corresponds to

/ <9$ <9$ 9$ \
W^9Va)-<VM''V«' <"7»

we get (cf. (2.32))
-Qri • V6> + Bd ■ (3t + Hd ■ Vpt = Fd ■ SE > 0, (2.38)

where
, / <9$ 5$ <9$ \

<9<3? denoting the subdifferential of $ with respect to the dissipative variables. Indeed,
as (2.11) holds, the subdifferential of $ turns out to be a maximal monotone operator
and (2.38) follows by standard monotonicity arguments and the fact that 0 £ <9$(0)
(cf. (2.11) and (2.39)). Finally, dividing (2.36) by the absolute temperature 6 yields the
second principle of thermodynamics, namely (cf. (2.38))

St + div Qd — R = ^-Fd ■ SE >0. (2.40)
0
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Now, we can write the system of PDE's in terms of the unknowns, by substituting in
(2.14) (or in its equivalent version (2.36)), (2.18), and (2.22) the constitutive equations
of the model specified by the free energy and the pseudo-potential of dissipation. In
particular, by (2.25) (recall (2.2)-(2.5) and (2.10)), we deduce

s = cs(l + log9) - a'(0)(ft - ft)tre(u) + A'(0)(1 - (ft + ft)), (2.41)
and, by (2.26)-(2.27) and (2.6),

a = AL(tre(u))l + 2^Le(u) + a{9)(/32 - ft) 1, (2.42)
M = tre(u). (2.43)

Finally, we write the vectors of microscopic forces (2.28) and (2.29) on account of the
free energy and (2.13):

(2-44)

H = 7/

In particular, let us point out that die in (2.44) stands for the subdifferential of the
indicator function of the convex C and it is obtained as a generalized derivative with
respect to (ft,ft) of the nonsmooth function Iq in (2.10). From a mechanical point
of view, it represents a thermodynamical reaction accounting for the internal constraint
(2.7). Indeed, <9/c(ft,ft) is not an empty set if and only if (ft,ft) € C, which ensures
that (2.7) holds (cf. (2.9)). Moreover, the thermodynamical reaction <9/c(ft,ft) is zero
if (ft,ft) belongs to the interior of C, while a normal reaction force appears in (2.44)
if (ft,ft) lies on the boundary of C, as d/c(ft,ft) coincides with the cone of normal
vectors to the boundary at the point (ft,ft).

Now, recalling also (2.30), by virtue of (2.41)-(2.45), we are in the position of deducing
the complete PDE's system originating from (2.36) (cf. (2.14), (2.18), and (2.22)):

(cs - 0a"{9) tre(ft - ft) + 9\"{9){\ - (ft + ft)))0t - k0A9
= r + 0a'(0)(ft - ft) tret + 9a'(0) tr£(ft - ft)t + 0A'(0)(ft + ft)t

2 2

+ cE^)2 + ,5Elv^l2' (2-46)
i— 1 i= 1

+ r';2'tI£,+^>) 3 . (2.47)
a(9) tie + X(9) J \0y

div(—vA tre(u)l + Al tre(u)l + 2/iL£(u) + a(0)(ft - ft) 1) + G = 0. (2.48)
Actually, we deal with a slightly modified version of the above system, as we consider
( = i5 = 0 in (2.46). From a mechanical point of view, this corresponds to require that
dissipative quadratic effects on the phases are negligible in the power of interior forces
with respect to the other mechanically induced heat sources, which is reasonable in the
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framework of small perturbations assumption (we refer to [24] for a detailed presentation
of this subject). However, let us point out in advance that in a subsequent paper we
will prove an existence result for a system obtained by (2.46)-(2.48) in the case when
<5 = 0 in (2.46) but £ ^ 0, i.e., we do not neglect quadratic dissipative contributions of
the phases but only of their gradients in the actual power of interior forces.

remark 2.1. Let us point out that the gradients of the phase proportions have been
introduced in the model to provide a more sophisticated description of the microscopic
phase transition phenomenon. Indeed, the presence of the gradients accounts for local
structural interactions between the phases (cf., e.g., [22, p. 17]). This position has been
fully justified in the framework of thermomechanical macroscopic modelling for different
phase transitions phenomena described via continuum mechanics laws (the reader can
refer, e.g., to [21] and references therein for a detailed argumentation, also in relation
with experimental results).

REMARK 2.2. Let us briefly discuss the fact that we neglect in (2.46) higher order
dissipative contributions, while we retain the corresponding terms in (2.47). After as-
suming the small perturbations assumption, our position turns out to be reasonable from
a mechanical point of view, once recalling that even if one assumes that the mechanically
induced heat sources by microscopic movements or their gradients are negligible in the
energy balance (in which we have also macroscopic contributions), the same terms are
relevant in the description of phases dynamics, which are obviously related to microscopic
velocities. From a mathematical point of view, these dissipative contributions seem to
be necessary to get some global solvability of the system and uniqueness of the solutions.

In this concern and in relation with the results in the literature on the Fremond
model, let us observe that we have introduced the mathematical derivation of the com-
plete model, i.e., writing the principle of virtual power in a generalized form including
microscopic forces, which is, to our knowledge, a new modeling approach. Moreover,
under suitable thermomechanical assumptions, we investigate two slightly approximated
versions, in which only dissipative quadratic terms are neglected in the energy balance.
In addition, let us point out that we are able to state a global existence result in the case
when we retain some of these quadratic higher order nonlinearities.

Then, we complete the previous statement by suitable Cauchy conditions for the
temperature and the phases

0(0) = 0O, (2.49)

ft(0) =/?«>, * = 1,2, (2.50)

and natural boundary assumptions derived from (2.19)—(2.21) and (2.23)

u = 0 on r0 x (0, T), (2.51)

((—f A tre(u) + \L tre(u) + a(0)(/?2 - /3i))l + 2^Le(u)) • n = g

on Tj x (0,T), (2.52)

dn tre(u) = 0 on T x (0,T), (2.53)

dnPit=dnpi = 0, i= 1,2 on T x (0,T). (2.54)
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In addition, by virtue of (2.30), we can write (2.31) as follows

k0dne = h onT x {0,T). (2.55)

3. Abstract formulation and main results. For the sake of simplicity, we write
the system (2.46)-(2.48) in terms of two new phase variables (cf. [11])

Xi := Pi + P2 and X2 := P2 - Pi, (3.1)

and, to simplify notations, we substitute £ and S in (2.13) and ry in (2.10) by 2£, 2(5, and
2r], respectively. Hence, recalling (2.9), we construct a new convex K

K:={(7i,72) GR2: |X2| <Xi < 1}, (3-2)

obviously obtained by C in view of (3.1). We also recall that e(u) denotes the usual
linearized strain tensor, i.e., £ij(v) = \(dXivj + dXjVi), so that it is straightforward
tre(u) = divu. Thus, the system (2.46)-(2.48) can be rewritten as follows (recall that
we take £ = 6 = 0 in (2.46)):

(cs - 9a"(6)x2 divu + 0A"(0)(1 - Xi)Wt - fc0A6> = r + 0a'(6)x2 div ut
+ 0a/(6,)divux2t +0X'{9)xit, (3-3)

c &) -{ (aS;) -" (£;)+9 U$L«) ■ (3-4»
div((—t'Adiv u + \l div u + a(9)x2)1 + 2/i£,e(u)) + G = 0, (3.5)

and it is associated to the natural initial and boundary conditions derived from (2.49)-
(2.50) and (2.51)-(2.55). In particular, we substitute (2.50) by

Xi(0) = XiO i= 1,2, (3.6)
where XiO are, obviously, specified by (cf. (3.1))

X10 = P10 + P20 and X20 = P20 — P10, (3-7)

and (2.54) by
dnXit = dnXi = 0 on Y x (0,T), i = l,2. (3.8)

In addition, let us recall that the subdifferential dlis a maximal monotone operator in
R2 defined as follows:

y J £dlx(x 1.X2) if and only if (xi,X2)&K and y^/yl(xl - Xi)<0V(ii,i2) € K.
i=i

(3.9)
In particular, let us point out that \dl-^ — dlj^ (as | > 0).

Our analysis refers to an abstract version of the above problem. Thus, we start by
introducing the Hilbert triplet V •-* H V' (cf. [27, p. 202]) with

V := #x(fJ) and H := L2(fi), (3.10)

where H is identified as usual with its dual space H' and the above inclusions are con-
tinuous and compact. Next, we denote by (•,•) the duality pairing between V' and V
and, by abuse of notation, by || • ||# the norm both in H and in HN, with N > 1.
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Whereas the results we intend to present refer also to lower dimensional spaces (and
sometimes they could be improved), we have restricted our investigation to the three-
dimensional framework as it turns out to be more meaningful from a physical point of
view. Thus, let

o C R3 and Q := x (0, T), (3.11)
where T is a fixed final time. We assume that the domain is smooth and such that its
boundary T is partitioned into two measurable sets Fo and T i, with the surface measure
of r0 being strictly positive. Hence, we consider a further Hilbert space W, defined by

W := {v G V3: v = 0 on Tq and div v G V}, (3-12)

and endowed with the norm (cf. [10])
3

= f |Vdivv|2+^ f (dXiVj)2, v = (wi,«2,U3)eW. (3.13)iw
in ,J=1 Jn

In addition, let us introduce a bilinear continuous symmetric form on W x W, specified
by

a(w,y) — i/ / V div w • V div v + / div w div v
Jn Jn

+ 2^lY1 [ (3.14)i,j=i Jn
By virtue of the Korn's inequality (cf. [15]), it is easy to deduce that a is W-elliptic, in
the sense that there exists a positive constant C such that, for any v G W, there holds

o(v, v) > C||v||yv. (3.15)

On the other hand, it is a standard matter to check that (cf. [10])

a(v, v) > i/||Vdivv||# + (AL + 2/iL/3)|| divv||^, (3.16)

for any v € W.
Hence, we introduce a convex subset of H2 corresponding to K (cf. (3.2)). Let

K := {(71,72) € H2: (71,72) G K a.e. in f2}, (3.17)

and note that there exists a positive constant Ck, depending only on A", such that for
any (71,72) G K, there holds

(7i(z)2+72 (z)2)1/2<ck, (3.18)

for a.e. x G fi. We point out that, whereas we can find an explicit bound for the phases
as the form of K is known, we use the notation ck in (3.18) since we could extend
our argumentation by considering instead of K any bounded convex subset of R2 (with
0 G K). Finally, to put the problem (3.3)-(3.5) in the abstract setting of the above
mentioned Hilbert spaces, we introduce the operators

A: V V', (3.19)

H: W^W' (3.20)
W', (3.21)
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specified by

{Au,v) = f Vm • S7v u,v e V, (3.22)
J n

w'(Hw,v)w^a(w,v) w, v £ W. (3.23)

w'{Bu, v)w = [ udivv ueH.ve W. (3.24)
Jn

Now, we set the hypotheses on the data prescribed in our analysis. Actually, in this
paper we treat only the uniqueness of a solution for the initial and boundary values prob-
lem associated to the above model and thus we could avoid fixing regularity assumptions
on the data of the problem, as it would be sufficient to prescribe some regularity of the
solutions. Nonetheless, for the sake of completeness, we aim to derive the formulation
of the problem with the regularity assumptions, we need to state the related existence
result, and then prove uniqueness of the solution in this framework. Hence, concerning
the Cauchy conditions (2.49) and (3.6), we assume

eQ eHl{n), (3.25)

(xiO) X20) € H2(Q)2 fl K, dn\io = 0 i— 1,2 on i . (3.26)

Then, we recall that the function a in (2.3) and (2.4) is a smooth nonnegative bounded
function, nonincreasing, and vanishing over the interval (0C, +oo). More precisely, we let

a € C2(R), {£ € R: a'(0 ^ 0} C [OA],
|a"(£)| < cQ V£eR, (3.27)

for ca > 0. Let us point out that (3.27) implies in particular that

K(£)|<cq0c, |Ca'(0| < ca62c. (3.28)
Analogously, to get global existence of a solution for the complete system, we need to
restrict the choice of A in (2.5) to the nondecreasing bounded functions, with A(0„) = 0
and A strictly increasing on a neighborhood of 6>*. In addition, we prescribe

A € IV2'°°(R)nC2(R),

||A||W2,cc(r) + \X'm < CA, |A"(0£l < Ca, e R. (3.29)
for c\,c\ > 0 (cf. [7]). Note, in particular, the additional boundedness requirements in
(3.29) with respect to the natural bound of the functions in W2'°°. Let us point out
that the first of the above assumptions (3.27) is justified by the elastic behavior of SMA
at high temperature, while the latter (3.29) can be read as a smooth truncation of the
standard position (cf. [17])

A(0) = ^(0-0„), (3.30)

where L > 0 denotes the latent heat associated to the phase transition. However, (3.29)
is physically consistent as we are interested in studying the shape memory effect in a
neighborhood of the critical phase transition temperature 0*. Indeed, we could retain
A linear as in (3.30) near 9* and then truncate it as required by (3.29). Finally, we
should set some compatibility conditions on the involved quantities, but for the sake of
clarity, we will specify them later. Nonetheless, as they regard ca and c\, which have to
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be smaller than other constants, we can postulate in advance (cf. [10, 8] for analogous
assumptions)

ca and ca are sufficiently small. (3.31)

From now on, to simplify the notation in (3.3) and (3.4), we let S = ( = r; = ko = 1, as
these constants are here assumed to be strictly positive, and include the factor \ in the
subdifferential operator.

REMARK 3.1. We have to remark at once that in order to prove that the above model
admits existence and uniqueness of the solution, we are not able to deal with a strong
version of (3.3)-(3.5). In particular, we cannot deal with the natural H2 x H2 extension
of the subdifferential dli.e., the subdifferential din of the convex K C H2. Hence,
we are led to impose the internal constraint (xi,X2) £ K in the (V')2 x V2 framework.
We consider the convex subset of V2 given by K fl V2 (where K has been introduced
in (3.17)), and denote by dlx,v the maximal monotone operator corresponding to the
subdifferential (V)2 —> (V')2 of the indicator function Ikhv of K fl V2, namely (cf. [3])

(6,6) e (V)2 belongs to dIK,v(xi,X2) if and only if
2

(Xi,X2)eA'nV2 and 5>,7i-*><0, V(7i,72) £ K n V2. (3.32)
2=1

Finally, concerning the regularity of the data, we prescribe that

r £ L2(0,T-L2(Q)), (3.33)
h £ Wu(0,T;L2(r)), (3.34)

G £ H\0,T\L2(n)3), (3.35)
g£/f1(0,T;L2(r1)3), (3.36)

and introduce two functions 1Z and Q specified by

(11, v) = (7li,v) + {TZ2,v) = rv + hv\r v £ V,
Jo. J r

w'(0,v)w= / G • v + / g • V|F
Jn Jvx

(3.37)

v G W, (3.38)

so that, by (3.33)-(3.36), it is natural to postulate

K = 1ll +TZ2 £ L2(0,T;i/) + WAl'1(0,T;y'), (3.39)

G£H1( 0,T;W'). (3.40)

Here is a precise formulation of the problem we are dealing with (cf. (3.3)—(3.5), (2.49),
(3.6), (3.8), (2.51)-(2.53), and (2.55)).

Problem P. Find 9, u, Xi, and \2 satisfying

6(0) =0O, (3.41)

Xi(0) = Xio * = 1,2, (3.42)



SHAPE MEMORY ALLOYS, I: MATHEMATICAL FORMULATION AND UNIQUENESS 773

and fulfilling a.e. in (0, T)

F{0, u,xi,x2)0< +A0= TZ + 6\'(6)xu + 9a'(9) divux2t
+ 0a'(0)x2 div u( in V' (3.43)

xiA MxiA (axA + (h\( -KO) \ . ,v,s2
X21) \AX2t) \Ax2J W \-a(e)dwu) (V > '

for some ( ^ ) G dIK,v{xu X2), (3-44)

Wu + B(a(0)x2) = 0 inW', (3.45)

where F in (3.43) is specified by

F(0, u,xi,X2) =cs- 6a"(9) div 11x2 + 6IA"(6>)(1 - xi)- (3.46)

remark 3.2. Notice that the variational inclusion (3.44) governing the dynamics of
the phases is written in the abstract setting of the (V)2 — V2 duality pairing. Nonetheless,
even if it cannot be written a.e. in Q, it retains its physical consistence since it forces
the phases to attain only meaningful values. Indeed, the abstract relation (£1,^2) G
dli<,v{x 11X2) means (cf. (3.32)) that (xiiX2) G KCI V2 and consequently (cf. (3.17))
(Xi,X2) G K a.e. in Q.

remark 3.3. We point out that since in our case 1^: R2 —> [0,+00] is a proper,
convex, lower semicontinuous function, whenever (^1,^2) G 91k,v{Xii X2) and (£1,^2) G
H2 a.e. in (0, T) we have G 0Ik(x 1>X2) a-e- In particular, in this
situation we would be allowed to deduce also that (£1,62) G dljfixI1X2) a.e. in Q.
Indeed, by the result proved by [4, Proposition 2.5], we can infer that dlx = H2ndlK,v-
Nonetheless, for the sake of completeness, we should observe that this last relation cannot
be extended to general functional, as the reader can verify by referring to the example
presented in [4].

Theorem 3.1. Let (3.25)-(3.26), (3.27), (3.29), (3.31), and (3.39)-(3.40) hold. Then,
there exists a quadruple of functions (#, u, \i,X2) solving the Problem P and fulfilling

9 G -H'1(0, T; H) n L°°(0, T; V), (3.47)

u G ff1(0, T; W) with div u G H\0,T-, H2(Q)) (3.48)
Xi G W1>oo(0,T; V) nL°°(0,T;H2(fl)), i = 1,2. (3.49)

In particular, there exists a positive constant Ci depending only on C, ck, |M|i«»(r),
l|£|U°°(o,T;w) and such that

|| divu||Loc(Q) < ci. (3.50)

remark 3.4. We omit the proof of the above statement for which we refer to a
subsequent paper where the existence result will be extended to a system where some
quadratic dissipative terms are retained in the energy balance. On the other hand, we
point out that in this latter case a uniqueness result seems very difficult to recover,
since the highly nonlinear quadratic terms in the energy balance allow us to estimate
the difference of two values for the temperature only in terms of the difference of the
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phases' time derivatives, which seems difficult to be treated only by using (3.44), due
to the presence of the subdifferential operator. On the contrary, for the solutions of P
fulfilling (3.47)-(3.49) we can state a uniqueness result, which is presented in Theorem
3.2.

Notice that by virtue of (3.50) we can now make precise the assumption (3.31) as
follows:

c2 := cs - cA(l + cK) - 0ccaCiCK > 0, (3.51)

(0ccacK(0c + l))2 < c2(XL + 2^/3). (3.52)

In particular, let us point out that the first of the above assumptions (3.51) corresponds
to require that the specific heat of the phase transition, which is represented by the
coefficient F of 0t in the energy balance, is a.e. positive, as the reader can easily verify
after observing that due to (3.18), (3.27), (3.29), and (3.50), there holds (cf. (3.46))

F{0, u, Xh X2) > cs ~ ca(1 + ck) — 0ccac\CK a.e. in Q. (3.53)

Hence, the following uniqueness theorem holds.

Theorem 3.2. Let {9, u, X11X2) be a solution of the problem P fulfilling (3.47)-(3.49)
(and (3.50)), and assume that (3.27), (3.29), and (3.31) (i.e. (3.51)-(3.52)) hold. Then,
this solution is unique.

4. Proof of Theorem 3.2. In this section, we aim to prove the uniqueness result
stated by Theorem 3.2; i.e., wc show uniqueness of the solution to the system (3.43)-
(3.45) with the regularity specified by (3.47)-(3.49) and fulfilling (3.50). First, let us
make some remarks about useful notations we will use in the following. We assume that
the problem P admits two solutions

Si = {0i, ux, XUj X21} and <S2 = {02, u2, Xi2> X22}, (4-1)

with regularity (3.47) (3.19), (3.50), and fulfilling the Cauchy conditions (3.41)-(3.42).
In the sequel, we will denote by / the difference of two functions fi and /2, i.e.,

7 = fx - h (4-2)
and make use of two trivial identities

a\b\ - a262 = ab = ab2 + aib — abi + a26, (4.3)

so that, without loss of generality, we can rewrite (4.3) and subsequent computations
omitting subscripts, i.e.,

ab = ab + ab. (4-4)

We first write (3.43) in the following equivalent way:

cs6t + ((a(0) - da'(6))x2 div u)t + {{OX'(9) - \{9)){1 - \i))t + A6
= 11 + u{6)x2 div u( + a{6) divu\2f + A(4.5)
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Hence, we take the difference of (4.5), written for S\ and 1S2, and integrate it in time:

cs6 + (a(0) - 0a'(0))x2 div u + {OX'(6) - A(0))(1 - xi)

+ 1 * AO = 1 * a{0)x21 div u + 1 * a{0)x2 div ut

+ 1 * A(0)xit, (^-®)

where by * we denote the usual convolution product over the interval (0,f), namely

(a*b)(t) = f a(t — s)b{s)ds. (4.7)
Jo

Hence, by use of the equality (4.4) and exploiting some integrations by parts, from (4.6)
we get

cs0 + (a(0) - 0a'(0))x2 div u + (0A'(0) - A(0))(1 - Xi) + 1 * AO
= ~{a{6) - 0a'(0))xJdivu - (a(0) - 0a'(0))x2 divu + (0A'(0) - X(0))xT

+ 1 * a(Q) div u^2t + 1 * a(0) div \1x2t + 1 * ot(0)x2 div ut

+ 1 * a(0)x2 div ut + 1 * A(0)xit + 1 * A(0)xit
= 0a'(0) divux2 + 0a'(0)x2divu + OX'(0)xi

+ 1 * a(0) div ux2t - 1 * (a(0) div u)4X2 + 1 * ct(0)x2 div ut

- 1 * (a(0)x2)t divu + 1 * A(0)xit - 1 * A(0)tXi- (4.8)

Then, we can test (4.8) by 0 and integrate in time over (0, t), with t arbitrary in (0,T).
Owing to (3.27) and (3.29) we first observe that (a(0) — 0a'(0)) and (A(0) — 0A'(0)) are
Lipschitz. Hence, let us point out that

(ct(0) - 0a'(0))' = -a"(9)6, {9X'(0))' = 0A"(0),

from which we can infer that (cf. (3.27))

|a(0) — Oa'(0)| < 0cca|0| a.e. in Q, (4-9)

and analogously (cf. (3.29))

|0A'(0) — A(0)| < c\\0\ a.e. in Q. (4-10)

Thus, we can write

[ [ (M0) - 0a/(0)|x2divu+ \0X'{0) - A(0)|(1 - X2))\0\
Jo Jn

< (0ccacKci + cA(l + ck))\\0\\2L2{Oj.H), (4.11)

so that, owing to (3.51) (cf. (3.53)), and integrating by parts in time, we can write

1 _ 9

C2\\0\\lW) + 2111 * (412)
3 = 1
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where the integrals j = 1,..., 9, are specified as follows:

h(t) = [ [ 0a'(0) divux2$, (4-13)
Jo Jn

h(t) = [ [ 0a'{0)x2 div u$, (4-14)
Jo Jn

I3(t) = [ [ 0\'{0)xl0, (4.15)
Jo Jn

h(t) = [ [ {I *a(9) div ux2t)Q, (4.16)
Jo Jn

h{t) = ~[ f (1 * (a(0)divu)tx£)0, (4.17)
Jo Jn

hit) = / (1 *a(6»)x2divut)6l, (4.18)
Jo 7o

h(t) = ~ [ /(I * (a(^)X2)tdivu)0, (4.19)
Jo Jn

h(t)= f f(l*W)Xit)0, (4.20)
Jo Jn

h(t) = -[ (4-21)
Jo Jn

and they will be handled in a moment.
We first treat the integrals and I3 by following analogous procedures. By (3.28)

and (3.50), just by use of Holder inequality, we get

1-TlWI ̂ ^cCQCl|IX2||L2(0,t;//)ll^llL2(0,t;H)

^ + CIIX2|||2(0,t;H)- (4.22)

Let us point out that here and in the sequel we denote by c possibly different posi-
tive constants which do not depend on the difference of the two solutions <Si and £2.
Analogously, on account also of (3.18), we can treat the other integrals as follows:

\h{t)\ < ^ccaCxP||L2(0,t;K)ll divu||L2(0 t.^), (4-23)

and, due to (3.29),

\h(t)\ ^ ||xT||L2(0,t;f/) ll^llL2(0,f;//)

^ 22 Plli2(0,t;H) + CIIXl|li2(0,t;H)- (4.24)

Now, we integrate by parts in time 1$, and, by use of a generalized version of the Holder
inequality and the continuous embedding //1($7) •—* L4(f2), we get (cf. also (3.49) and

(3.13))
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(t)|< [ \°l(6) divux2t| + [ [ |1 *0||a(0)divux2t|
Jq Jo Jo Jq

< ||(1 * 0)(t)||L4(n) [ ||X2t||L4(n)(ci0ccQ||0||// + ||q:||loo(R)|| divu||//)
JO

+ / ||1 *MLHn)\\X2t\\L*(n){ci0cCa\\0\\H + ||a||L=o(R)|| divu||ff)
Jo

— Yq 111 * ̂ llLoo(0,t;V) + c5 (/ l|X2i||v^ (ll^lli2(0,t;ff) + llUllL2(0,t;W))> (4-25)

for a positive constant eg we will fix later. Analogously, we can infer that

>(*)l < / |(l*(a(0)divu)tX2)WII(1*0)WI
J n

+ [ f l(aWdivu)txi| |1 *9\
Jo Jq

rt
< 11(1 *0)MIU4(fi) / IIW0)divu)t||tf||x2|U4(n)

+ [ ||1 * 0|U4(n)ll(a(0) divu)t||fl-||x2||l4(Q)
Jo

— I|1 * ̂ lli~(0,t;V) + CIIX2|li2(0,t;V)' (4.26)

where in particular the constant c depends on ||(a(0) divu)t||.L2(o,t;.F/) (cf. (3.47), (3.48),
and (3.27)). Hence, we can apply once more the Holder inequality on account of (3.48),
(3.27), and (3.18), exploit the Sobolev embedding H2(fl) <—* and finally write
(cf. also [8] for a similar estimate)

\h{t)\< [ [ \9\ |1 * (a(0)x2 +a(6,)x2)divut|
Jo Jq

^ [ \\e\\H [ II divut||Loo(n)(0ccacjcp||H + ||a||Loo(R)llx^Hw)
Jo Jo

^ ^Plli2(0,t;fl-) + c6 f f II div Ut(11x2Ilz,2(0,t;jff") + Plll2(0,t;ff))' (4-27)
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Analogously, we can integrate by parts I7 and owing to (3.27), (3.47), and (3.49), we are
allowed to deduce

\h{t)\< / 1(1 * {a{d)x2)t divu)(*)| |(1 *9)(t)\
Jn

rt
+ [ [ \(a(@)X2)t div u| |1 *6>|

J0 Jn

<||(l*0)(t)IU«(n) I I|divu||i4(n)||(a(0)x2)t||/f
JO

/ ||1 *5||i4(o)||divu||L4(j2)||(Q(0)x2)t||if
Jo

+

^ 111 * ̂ IIl~(0,t\V)

+ e7 (jf ||(a(6l)X2)t||ff j ||u|||2(0it;W). (4.28)

Next, by a similar procedure as that we have exploited to handle I4, and owing to (3.29)
and (3.49), it is now a standard matter to deduce

(i)| < f \(l*\(0)xu)(t)m*0)(t)[+ ft |A(0)Xlt||l*0|
Jn Jo Jn

t;V)+c8^y llXltllv^ ll^lli2(0,t;//)- (4.29)~ To111* 0||^(°.'
Finally, we deal with the last integral

|/8(f)l< I l(i*A(0)t5cr)(t)||(i*0)(OI
Jn

— n II1 * ̂ lli°°(0,i;V) + c 11X1 llz.2(0,t;V)' (4.30)

1(1

- f f |A(0)«xr| |l *0|
Jo Jo.

£9.111 ... an2 , „|| —1|2
101

where c here depends in particular on ||0(||l2(o,(;H)j as A(6)t = X'(9)9t (cf. (3.29) and

(3.47)).
Now, we can proceed by considering the difference of the equation (3.45) written for

.Si and S2, and testing it by u. After an integration over (0, £) and owing to (3.15),
(3.16), (3.18), and (3.27), we can infer that

§llnlli»(o,t;W) + — +2///"/'j))ldivnHi2(o,t;tf) + ^l|Vdivu||^2(0it;ff)
nt

< [ f \a(0)X2\|divu| + |a(0)x2| |divu|
Jo Jn

< 0cCaCK\\0\\L^(O,t-.H)\\ divu||L2(0it;ff)

+ 3i//"'||a||L°o(R) || X2II L2(0,f;//) l|u|| L2 (O.f :W)

< 0cCaCK ||0|U2(O,<;H) II div u||i/2(0,(;//)

+ 7j-|lUl!!2(0,i;W) + cllx'2 llz,2(0,f;//) • (4-31)
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Finally, we write (3.44) for £1 and 1S2, take the difference, test it by (xT, X2), and integrate
over (0,£). Let us first note that, by monotonicity of the operator 8Ik,v, we have

2 ^ ft
£ / (£il _ £i2, Xil — X12) > 0, (4.32)
i—1

since (£ij,6y) 6 dlK,v{XijiX2j)- Thus, by integrating by parts in time and recalling
(3.27), (3.29), and (3.50), it is straightforward to deduce

Y. 2 HXj (*)IIV + II^Xjlll2(0,t;//) - CA||0||L2(O,t;if)IIXl||L2(O,t;fr)
3=1

+ {8cCaC\W\\L2(0,t-,H) + ||ct|| (R) || div u||£2(0j;H)) ||.X2 || L2(0,t\H)

- C 2
^ 02 H^lli2(0,t;//) + ^5 HUHi2(0,t;W) + CE HXj'lli^O.t;//')- (4.33)

3= 1

Now, we combine (4.22)-(4.30) with (4.12) and add the resulting inequality to (4.31)
and (4.33). In particular, after recalling that

||1 *0(t)\\h < T1/2\\6\\L?(o,t-,H),

we can take, i.e.,

c9 = min , (4-34)

and write

-^ll^lll2(0 ,t\H) + c9 II (1 * ̂ )Wllv + ^"llUlli2(0,t;W)
, (Al + 2/ii/3M J. _l|2
 2 " V UH ̂2(0,t;ff)

2 2

+ £ - "if"1 * ̂ L°°(0,t;V) + CE Ilx7lli,2(0,t;v)
J=1 j=l

+ 0cCaC/f(l + 0c)||^||L2(O,i;K)ll div u|| £2 (0,t;H)
ft

+ C5
Vo /
/ft \ /ft \

ttI|2

IIX2t||v'^ (ll^lli2(0,t;//) + llUllL2(0,t;W)

+ c6 ||divut||^2(n)^ P||i2(0,t;/f) + c7 ^ ll("(0)X2)t||ff^ ||u

GC
I L2(0,t;W)

/ WU /

+ <*( /f llxullv) PllL2(0,t;m- (4-35)IL2(0,t;tf)

By recalling (3.52) we can easily verify that

0ccacK( 1 + 6,c)||^||L2(o,t;/f)l|divu||L2(0it.w)

^ ~^\\M2Li(0,t-,H) + " J1 ^ ^ II divu|||2(0it;H), (4.36)
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so that two terms cancel in (4.35). Then, we observe that, due to (3.47)—(3.49), ||x'2t||\ >
|| divut||^2(Q), \\(a{0)x2)t\\2H, and \\xu\\v belong to Ll(Q,T). Thus, we can find t suffi-
ciently small, such that

rt+T rt+T
l|2 l|2

/•£-+-r rt-tr

max ic5 J \\x2t\\v,c6J || divu4||H2(n),

C7 J \\{a(d)x2)t\\H,c8 \\xit\\v | < min{jf>5§} ' (4'37)

for any r G [0,T-(], Thus, at the end, by combining (4.35) with (4.36) and (4.37), we
finally get

~g~ Plli2(0, t-H) + c9 II (! * 9)(t)\\v + Y^IIuIIl2(0,(;W)
2 2

+ + yp * (4.38)
j—1 J=1

i.e., for any t € (0,£). Now, by virtue of the generalized version of the Gronwall lemma
introduced in [2], from (4.38) it follows

0 = XT = X2 = u = O a-e- 'n ^ x (0; t)- (4.39)

Finally, as we can repeat the same estimates for any interval (r, r + t) (cf. (4.37)), by
iterating the above procedure we are allowed to extend (4.39) over the whole interval
(0, T), which concludes the proof of the uniqueness result.
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